
Topic 10
R i B kt kiRecursive Backtracking

"In ancient times, before computers were invented,In ancient times, before computers were invented,
alchemists studied the mystical properties of
numbers. Lacking computers, they had to rely on
dragons to do their work for them The dragonsdragons to do their work for them. The dragons
were clever beasts, but also lazy and bad-tempered.
The worst ones would sometimes burn their keeper
to a crisp with a single fiery belch But most dragonsto a crisp with a single fiery belch. But most dragons
were merely uncooperative, as violence required too
much energy. This is the story of how Martin, an
alchemist’s apprentice discovered recursion byalchemist s apprentice, discovered recursion by
outsmarting a lazy dragon."

- David S. Touretzky, Common Lisp: A Gentle Introduction to
Symbolic Computation

CS 307 Fundamentals of
Computer Science Recursive Backtracking

1

Symbolic Computation

Backtracking
Start

Success!

Success!

Failure
Problem space consists of states (nodes) and actionsp ()
(paths that lead to new states). When in a node can
can only see paths to connected nodes

If a node only leads to failure go back to its "parent"
node. Try other alternatives. If these all lead to failure

CS 307 Fundamentals of
Computer Science Recursive Backtracking

2

y
then more backtracking may be necessary.

A More Concrete Example
8S d k8Sudoku
89 by 9 matrix with some

b fill d inumbers filled in
8all numbers must be between

1 and 91 and 9
8Goal: Each row, each column,

and each mini matrix mustand each mini matrix must
contain the numbers between
1 and 9 once each1 and 9 once each
– no duplicates in rows, columns,

or mini matrices

CS 307 Fundamentals of
Computer Science Recursive Backtracking

3

Solving Sudoku – Brute Force
88A brute force algorithm is a

simple but general
approach
8Try all combinations until

you find one that works
8This approach isn’t clever, s app oac s c e e ,

but computers are fast
8Then try and improve onThen try and improve on

the brute force resuts

CS 307 Fundamentals of
Computer Science Recursive Backtracking

4

Solving Sudoku
88Brute force Sudoku Soluton

– if not open cells, solved 1
– scan cells from left to right,

top to bottom for first open
llcell

– When an open cell is found
t t li th h di it 1start cycling through digits 1

to 9.
When a digit is placed check– When a digit is placed check
that the set up is legal
now solve the board

CS 307 Fundamentals of
Computer Science Recursive Backtracking

5

– now solve the board

Attendance Question 1
88After placing a number in a cell is the

remaining problem very similar to the original
problem?

A. Yes
B. No

CS 307 Fundamentals of
Computer Science Recursive Backtracking

6

Solving Sudoku – Later Steps
1 1 2 1 2 4

1 2 4 8 1 2 4 8 91 2 4 8 9

uh oh!uh oh!

CS 307 Fundamentals of
Computer Science Recursive Backtracking

7

Sudoku – A Dead End
88We have reached a dead end in our search

1 2 4 8 9

8With the current set up none of the nine
digits work in the top right corner

CS 307 Fundamentals of
Computer Science Recursive Backtracking

8

g p g

Backing Up
8Wh h h h d d8When the search reaches a dead

end in backs up to the previous
cell it was trying to fill and goes

1 2 4 8 9

cell it was trying to fill and goes
onto to the next digit
8We would back up to the cell withWe would back up to the cell with

a 9 and that turns out to be a dead
end as well so we back up again

1 2 4 9
p g

– so the algorithm needs to remember
what digit to try next

1 2 4 9

8Now in the cell with the 8. We try
and 9 and move forward again.

CS 307 Fundamentals of
Computer Science Recursive Backtracking

9

Characteristics of Brute Force
and Backtrackingand Backtracking

8Brute force algorithms are slowg
8The don't employ a lot of logic

– For example we know a 6 can't go in the last 3For example we know a 6 can t go in the last 3
columns of the first row, but the brute force
algorithm will plow ahead any wayg p y y

8But, brute force algorithms are fairly easy to
implement as a first pass solutionimplement as a first pass solution
– backtracking is a form of a brute force algorithm

CS 307 Fundamentals of
Computer Science Recursive Backtracking

10

Key Insights
8Af i l i di i i ll l8After trying placing a digit in a cell we want to solve

the new sudoku board
Isn't that a smaller (or simpler version) of the same– Isn't that a smaller (or simpler version) of the same
problem we started with?!?!?!?

8After placing a number in a cell the we need toAfter placing a number in a cell the we need to
remember the next number to try in case things
don't work out.
8We need to know if things worked out (found a

solution) or they didn't, and if they didn't try the next
number
8If we try all numbers and none of them work in our

CS 307 Fundamentals of
Computer Science Recursive Backtracking

11
cell we need to report back that things didn't work

Recursive Backtracking
88Problems such as Suduko can be solved

using recursive backtracking
8recursive because later versions of the

problem are just slightly simpler versions of
the original
8backtracking because we may have to try bac ac g because e ay a e o y

different alternatives

CS 307 Fundamentals of
Computer Science Recursive Backtracking

12

Recursive Backtracking
P d d f i b kt kiPseudo code for recursive backtracking

algorithms

If at a solution, report success
for(every possible choice from current state /for(every possible choice from current state /

node)
Make that choice and take one step along path
U i t l th bl f th d / t tUse recursion to solve the problem for the new node / state
If the recursive call succeeds, report the success to the next

high level
B k t f th t h i t t th t t t thBack out of the current choice to restore the state at the

beginning of the loop.
Report failure

CS 307 Fundamentals of
Computer Science Recursive Backtracking

13

p

Goals of Backtracking
8Possible goalsPossible goals

– Find a path to success
Find all paths to success– Find all paths to success

– Find the best path to success
8N t ll bl tl lik d8Not all problems are exactly alike, and

finding one success node may not be the
d f th hend of the search

Start
Success!

Success!

CS 307 Fundamentals of
Computer Science Recursive Backtracking

14

The 8 Queens ProblemThe 8 Queens Problem

CS 307 Fundamentals of
Computer Science Recursive Backtracking

15

The 8 Queens Problem
88A classic chess puzzle

– Place 8 queen pieces on a chess board so that
none of them can attack one another

CS 307 Fundamentals of
Computer Science Recursive Backtracking

16

The N Queens Problem
8Pl N Q N b N h b d th t8Place N Queens on an N by N chessboard so that

none of them can attack each other
8Number of possible placements?Number of possible placements?
8In 8 x 8

64 * 63 * 62 * 61 * 60 * 59 * 58 * 57
= 178,462, 987, 637, 760 / 8!
= 4,426,165,368

n choose k
– How many ways can you choose k things from ay y y g
set of n items?
– In this case there are 64 squares and we want to choose

8 of them to put queens on
CS 307 Fundamentals of
Computer Science Recursive Backtracking

17

8 of them to put queens on

Attendance Question 2
88For valid solutions how many queens can be

placed in a give column?
A. 0
B. 1
C. 2
D 3D. 3
E. 4
F. Any number

CS 307 Fundamentals of
Computer Science Recursive Backtracking

18

Reducing the Search Space
8Th i l l ti i l d t lik thi8The previous calculation includes set ups like this

one
Q
Q

8Includes lots of set ups with
multiple queens in the same

Q

Q
Q
Qp q

column
8How many queens can there be

i l ?

Q
Q
Q

in one column?
8Number of set ups

8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 = 16 777 216

Q

8 8 8 8 8 8 8 8 = 16,777,216
8We have reduced search space by two orders of

magnitude by applying some logic

CS 307 Fundamentals of
Computer Science Recursive Backtracking

19

g y pp y g g

A Solution to 8 Queens
8 If b f i fi d d I li th 't b8 If number of queens is fixed and I realize there can't be

more than one queen per column I can iterate through the
rows for each column

for(int c0 = 0; c0 < 8; c0++){
board[c0][0] = 'q';
for(int c1 = 0; c1 < 8; c1++){

board[c1][1] = 'q';
for(int c2 = 0; c2 < 8; c2++){

board[c2][2] = 'q';
// a little later
for(int c7 = 0; c7 < 8; c7++){

board[c7][7] = 'q';
if(queensAreSafe(board))

printSolution(board);
board[c7][7] = ' '; //pick up queen

}

CS 307 Fundamentals of
Computer Science Recursive Backtracking

20

}
board[c6][6] = ' '; // pick up queen

N Queens
88The problem with N queens is you don't

know how many for loops to write.
8Do the problem recursively
8Write recursive code with class and demote ecu s e code t c ass a d de o

– show backtracking with breakpoint and
debugging optiongg g p

CS 307 Fundamentals of
Computer Science Recursive Backtracking

21

Recursive Backtracking
88You must practice!!!
8Learn to recognize problems that fit the

pattern
8Is a kickoff method needed?s a c o et od eeded
8All solutions or a solution?
8Reporting results and acting on results8Reporting results and acting on results

CS 307 Fundamentals of
Computer Science Recursive Backtracking

22

Another Backtracking Problem
A Simple MazeA Simple Maze

Search maze until waySearch maze until way
out is found. If no way
out possible report that.

CS 307 Fundamentals of
Computer Science Recursive Backtracking

23

The Local View
Whi h dWhich way do
I go to get

t? North
West

out?

East

Behind me, to the South

CS 307 Fundamentals of
Computer Science Recursive Backtracking

24
is a door leading South

Modified Backtracking
Algorithm for MazeAlgorithm for Maze

8 If the current square is outside, return TRUE to indicate that a solution has been
foundfound.

If the current square is marked, return FALSE to indicate that this path has been
tried.

Mark the current square.
for (each of the four compass directions)
{ if (this direction is not blocked by a wall)

{ Move one step in the indicated direction from the current square.
Try to solve the maze from there by making a recursive callTry to solve the maze from there by making a recursive call.
If this call shows the maze to be solvable, return TRUE to indicate that

fact.
}

}
Unmark the current square.
Return FALSE to indicate that none of the four directions led to a solution.

CS 307 Fundamentals of
Computer Science Recursive Backtracking

25

Backtracking in Action
The crucial part of the
algorithm is the for loop g
that takes us through the
alternatives from the curren

H hsquare. Here we have move
to the North.

for (dir = North; dir <= West; dir++)for (dir = North; dir <= West; dir++)
{ if (!WallExists(pt, dir))

{if (SolveMaze(AdjacentPoint(pt, dir)))
return(TRUE);

CS 307 Fundamentals of
Computer Science Recursive Backtracking

26

return(TRUE);
}

Backtracking in Action

Here we have moved
North again, but there is
a wall to the North .
E i lEast is also
blocked, so we try South.
That call discovers thatThat call discovers that
the square is marked, so
it just returns.t just etu s

CS 307 Fundamentals of
Computer Science Recursive Backtracking

27

So the next move we
can make is West.

Wh i thi l di ?Where is this leading?

CS 307 Fundamentals of
Computer Science Recursive Backtracking

28

This path reachesThis path reaches
a dead end.

Time to backtrack!

Remember the
program stack!program stack!

CS 307 Fundamentals of
Computer Science Recursive Backtracking

29

The recursive calls
end and return untilend and return until
we find
ourselves back hereourselves back here.

CS 307 Fundamentals of
Computer Science Recursive Backtracking

30

And now we try
South

CS 307 Fundamentals of
Computer Science Recursive Backtracking

31

Path Eventually Found

CS 307 Fundamentals of
Computer Science Recursive Backtracking

32

More Backtracking ProblemsMore Backtracking Problems

CS 307 Fundamentals of
Computer Science Recursive Backtracking

33

Other Backtracking Problems
88Knight's Tour
8Regular Expressions
8Knapsack problem / Exhaustive Search

– Filling a knapsack Given a choice of items withFilling a knapsack. Given a choice of items with
various weights and a limited carrying capacity
find the optimal load out. 50 lb. knapsack. items
are 1 40 lb, 1 32 lb. 2 22 lbs, 1 15 lb, 1 5 lb. A
greedy algorithm would choose the 40 lb item
fi t Th th 5 lb L d t 45lb E h tifirst. Then the 5 lb. Load out = 45lb. Exhaustive
search 22 + 22 + 5 = 49.

CS 307 Fundamentals of
Computer Science Recursive Backtracking

34

The CD problem
88We want to put songs on a Compact Disc.

650MB CD and a bunch of songs of various
sizes.

If there are no more songs to consider return resultIf there are no more songs to consider return result
else{

Consider the next song in the list.
Try not adding it to the CD so far and use recursion to evaluate best

without it.
Try adding it to the CD, and use recursion to evaluate best with it
Whichever is better is returned as absolute best from here

}}

CS 307 Fundamentals of
Computer Science Recursive Backtracking

35

Another Backtracking Problem
8Ai li i f fli il8Airlines give out frequent flier miles as a way to get

people to always fly on their airline.
8Ai li l h t i li A if8Airlines also have partner airlines. Assume if you

have miles on one airline you can redeem those
miles on any of its partnersmiles on any of its partners.
8Further assume if you can redeem miles on a

partner airline you can redeem miles on any of itspartner airline you can redeem miles on any of its
partners and so forth...
– Airlines don't usually allow this sort of thing.y g

8Given a list of airlines and each airlines partners
determine if it is possible to redeem miles on a

CS 307 Fundamentals of
Computer Science Recursive Backtracking

36
given airline A on another airline B.

Airline List – Part 1
8D lt8Delta

– partners: Air Canada, Aero Mexico, OceanAir

8UnitedUnited
– partners: Aria, Lufthansa, OceanAir, Quantas, British Airways

8Northwest
– partners: Air Alaska, BMI, Avolar, EVA Air

8Canjet
– partners: Girjetpartners: Girjet

8Air Canda
– partners: Areo Mexico, Delta, Air Alaska

8Aero Mexico
– partners: Delta, Air Canda, British Airways

CS 307 Fundamentals of
Computer Science Recursive Backtracking

37

Airline List - Part 2
8O Ai8Ocean Air

– partners: Delta, United, Quantas, Avolar
8AlohaAir

– partners: Quantas
8Aria

– partners: United Lufthansapartners: United, Lufthansa
8Lufthansa

– partners: United, Aria, EVA Air
8Q t8Quantas

– partners: United, OceanAir, AlohaAir
8BMI

– partners: Northwest, Avolar
8Maxair

– partners: Southwest Girjet

CS 307 Fundamentals of
Computer Science Recursive Backtracking

38

partners: Southwest, Girjet

Airline List - Part 3
8Gi j t8Girjet

– partners: Southwest, Canjet, Maxair
8British Airways8British Airways

– partners: United, Aero Mexico
8Air Alaska

– partners: Northwest, Air Canada
8Avolar

– partners: Northwest, Ocean Air, BMI
8EVA Air

t N th t L ft– partners: Northwest, Luftansa
8Southwest

– partners: Girjet Maxair

CS 307 Fundamentals of
Computer Science Recursive Backtracking

39

– partners: Girjet, Maxair

Problem Example
8 If I h il N th t I d th A i ?8 If I have miles on Northwest can I redeem them on Aria?
8Partial graph:

Ocean Air

BMI Avolar

Northwest

Air Alaska

EVA Air

CS 307 Fundamentals of
Computer Science Recursive Backtracking

40

