"FISH queue: n.

[acronym, by analogy with FIFO (First In, First Out)] ‘First In, Still Here’. A joking way of pointing out that processing of a particular sequence of events or requests has stopped dead. Also FISH mode and FISHnet; the latter may be applied to any network that is running really slowly or exhibiting extreme flakiness."

- The Jargon File 4.4.7
Queues

- Similar to Stacks
- Like a line
 - In Britain people don’t “get in line” they “queue up”.

CS 307 Fundamentals of Computer Science

Queues
Queue Properties

- Queues are a first in first out data structure
 - FIFO (or LILO, but that sounds a bit silly)
- Add items to the end of the queue
- Access and remove from the front
 - Access to the element that has been in the structure the longest amount of time
- Used extensively in operating systems
 - Queues of processes, I/O requests, and much more
Queues in Operating Systems

- On a computer with 1 CPU, but many processes how many processes can actually use the CPU at a time?
- One job of OS, schedule the processes for the CPU issues: fairness, responsiveness, progress
Queue operations

- **add**(Object item)
 - a.k.a. **enqueue**(Object item)

- **Object get()**
 - a.k.a. **Object front()**, **Object peek()**

- **Object remove()**
 - a.k.a. **Object dequeue()**

- **boolean isEmpty()**

Specify in an interface, allow varied implementations
public interface Queue
{
 // place item at back of this Queue
 enqueue(Object item);

 // access item at front of this queue
 // pre: !isEmpty()
 Object front();

 // remove item at front of this queue
 // pre: !isEmpty()
 Object dequeue();

 boolean isEmpty();
}

Queue interface, version 1
Implementing a Queue

- Given the internal storage container and choice for front and back of queue what are the Big O of the queue operations?

<table>
<thead>
<tr>
<th>Container</th>
<th>enqueue</th>
<th>front</th>
<th>dequeue</th>
<th>isEmpty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArrayList</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>LinkedList (Singly Linked)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>LinkedList (Doubly Linked)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>
Attendance Question 1

If implementing a queue with a singly linked list with references to the first and last nodes (head and tail) which end of the list should be the front of the queue in order to have all queue operations $O(1)$?

A. The front of the list should be the front of the queue
B. The back of the list should be the front of the queue.
C. D. E. I don’t know, but I am sure looking forward to taking 307 again some time.
Alternate Implementation

- How about implementing a Queue with a native array?
 - Seems like a step backwards
Application of Queues

- Radix Sort
 - radix is a synonym for *base*. base 10, base 2
- Multi pass sorting algorithm that *only* looks at individual digits during each pass
- Use queues as *buckets* to store elements
- Create an array of 10 queues
- Starting with the least significant digit place value in queue that matches digit
- empty queues back into array
- repeat, moving to next least significant digit
Radix Sort in Action: 1s

- original values in array
 113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12
- Look at ones place
 113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12
- Queues:
 0: 70, 40
 1: 6: 86
 2: 12, 252, 12
 3: 113, 93
 4: 9: 9, 79
 5
 6: 86
 7: 37, 7
 8
 9: 9, 79
Radix Sort in Action: 10s

- Empty queues in order from 0 to 9 back into array
 70, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9, 79

- Now look at 10's place
 70, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9, 79

- Queues:
 0 _7, _9
 1 12, 12, 113
 2
 3 37
 4 40
 5 252
 6
 7 70, 79
 8 86
 9 93
Radix Sort in Action: 100s

- Empty queues in order from 0 to 9 back into array
 7, 9, 12, 12, 113, 37, 40, 252, 70, 79, 86, 93

- Now look at 100's place
 __7, __9, _12, _12, 113, _37, _40, 252, _70, _79, _86, _93

- Queues:
 0 _7, _9, _12, _12, _40, _70, _79, _86, _93 5
 1 113 6
 2 252 7
 3 8
 4 9
Radix Sort in Action: Final Step

- Empty queues in order from 0 to 9 back into array
 7, 9, 12, 12, 40, 70, 79, 86, 93, 113, 252
public static void sort(int[] list){
 ArrayList<Queue<Integer>> queues = new ArrayList<Queue<Integer>>();
 for(int i = 0; i < 10; i++)
 queues.add(new LinkedList<Integer>());
 int passes = numDigits(list[0]);
 int temp;
 for(int i = 1; i < list.length; i++){
 temp = numDigits(list[i]);
 if(temp > passes)
 passes = temp;
 }
 for(int i = 0; i < passes; i++){
 for(int j = 0; j < list.length; j++){
 queues.get(valueOfDigit(list[j], i)).add(list[j]);
 }
 int pos = 0;
 for(Queue<Integer> q : queues){
 while(!q.isEmpty())
 list[pos++] = q.remove();
 }
 }
}