Topic 18
Binary Search Trees

"Yes. Shrubberies are my trade. I am a shrubber. My name is 'Roger the Shrubber'. I arrange, design, and sell shrubberies."
-Monty Python and The Holy Grail

The Problem with Linked Lists

- Accessing an item from a linked list takes O(N) time for an arbitrary element
- Binary trees can improve upon this and reduce access to O(log N) time for the average case
- Expands on the binary search technique and allows insertions and deletions
- Worst case degenerates to O(N) but this can be avoided by using balanced trees (AVL, Red-Black)

Binary Search Trees

- A binary tree is a tree where each node has at most two children, referred to as the left and right child
- A binary search tree is a binary tree in which every node's left subtree holds values less than the node's value, and every right subtree holds values greater than the node's value.
- A new node is added as a leaf.

Attendance Question 1

- After adding N distinct elements in random order to a Binary Search Tree what is the expected height of the tree?

A. O(N^{1/2})
B. O(logN)
C. O(N)
D. O(NlogN)
E. O(N^2)
Implementation of Binary Node

```java
public class BSTNode {
    private Comparable myData;
    private BSTNode myLeft;
    private BSTNode myRight;

    public BSTNode(Comparable item) {
        myData = item;
    }

    public Object getValue() {
        return myData;
    }

    public BSTNode getLeft() {
        return myLeft;
    }

    public BSTNode getRight() {
        return myRight;
    }

    public void setLeft(BSTNode b) {
        myLeft = b;
    }
    // setRight not shown
}
```

Sample Insertion

- 100, 164, 130, 189, 244, 42, 141, 231, 20, 153
 (from HotBits: www.fourmilab.ch/hotbits/)

If you insert 1000 random numbers into a BST using the naïve algorithm what is the expected height of the tree? (Number of links from root to deepest leaf.)

Worst Case Performance

- In the worst case a BST can degenerate into a singly linked list.
- Performance goes to O(N)
- 2 3 5 7 11 13 17

More on Implementation

- Many ways to implement BSTs
- Using nodes is just one and even then many options and choices

```java
public class BinarySearchTree {
    private TreeNode root;
    private int size;

    public BinarySearchTree() {
        root = null;
        size = 0;
    }
}
```
Add an Element, Recursive

Add an Element, Iterative

Attendance Question 2

What is the best case and worst case Big O to add N elements to a binary search tree?

- Best
 A. O(N)
 B. O(NlogN)
 C. O(N)
 D. O(NlogN)
 E. O(N²)

- Worst
 A. O(N)
 B. O(NlogN)
 C. O(NlogN)
 D. O(NlogN)
 E. O(N²)

Performance of Binary Trees

- For the three core operations (add, access, remove) a binary search tree (BST) has an average case performance of O(log N)
- Even when using the naïve insertion / removal algorithms
- no checks to maintain balance
- balance achieved based on the randomness of the data inserted
Remove an Element

- Three cases
 - node is a leaf, 0 children (easy)
 - node has 1 child (easy)
 - node has 2 children (interesting)

Properties of a BST

- The minimum value is in the left most node
- The maximum value is in the right most node
 - useful when removing an element from the BST
- An *inorder traversal* of a BST provides the elements of the BST in ascending order

Using Polymorphism

- Examples of dynamic data structures have relied on *null terminated ends*.
 - Use null to show end of list, no children
- Alternative form
 - use structural recursion and polymorphism

BST Interface

```java
public interface BST {
    public int size();
    public boolean contains(Comparable obj);
    public boolean add(Comparable obj);
}
```
EmptyBST

```java
public class EmptyBST implements BST {
    private static EmptyBST theOne = new EmptyBST();
    private EmptyBST(){}
    public static EmptyBST getEmptyBST() { return theOne; }
    public NEmptyBST add(Comparable obj) { return new NEmptyBST(obj); }
    public boolean contains(Comparable obj) { return false; }
    public int size() { return 0; }
}
```

Non Empty BST – Part 1

```java
public class NEmptyBST implements BST {
    private Comparable data;
    private BST left;
    private BST right;
    public NEmptyBST(Comparable d) {
        data = d;
        left = EmptyBST.getEmptyBST();
        right = EmptyBST.getEmptyBST();
    }
    public BST add(Comparable obj) {
        int val = obj.compareTo(data);
        if (val < 0) left = left.add(obj);
        else if (val > 0) right = right.add(obj);
        return this;
    }
    public boolean contains(Comparable obj) {
        int val = obj.compareTo(data);
        if (val == 0) return true;
        else if (val < 0) return left.contains(obj);
        else return right.contains(obj);
    }
    public int size() {
        return 1 + left.size() + right.size();
    }
}
```

Non Empty BST – Part 2