"People in every direction
No words exchanged
No time to exchange
And all the little ants are marching
Red and black antennas waving"

-Ants Marching, Dave Matthew's Band

"Welcome to L.A.'s Automated Traffic Surveillance and Control Operations Center. See, they use video feeds from intersections and specifically designed algorithms to predict traffic conditions, and thereby control traffic lights. So all I did was come up with my own... kick ass algorithm to sneak in, and now we own the place."

-Lyle, the Napster, (Seth Green), The Italian Job
 Attendance Question 1

- 2000 elements are inserted one at a time into an initially empty binary search tree using the traditional algorithm. What is the maximum possible height of the resulting tree?

A. 1
B. 11
C. 1000
D. 1999
E. 4000
Binary Search Trees

- Average case and worst case Big O for
 - insertion
 - deletion
 - access

- Balance is important. Unbalanced trees give worse than \(\log N \) times for the basic tree operations

- Can balance be guaranteed?
Red Black Trees

- A BST with more complex algorithms to ensure balance
- Each node is labeled as Red or Black.
- Path: A unique series of links (edges) traverses from the root to each node.
 - The number of edges (links) that must be followed is the path length
- In Red Black trees paths from the root to elements with 0 or 1 child are of particular interest
Paths to Single or Zero Child Nodes

How many?

```
1

19

12  35

3   16  21

56
```
Red Black Tree Rules

1. Every node is colored either Red or black

2. The root is black

3. If a node is red its children must be black. (a.k.a. the red rule)

4. Every path from a node to a null link must contain the same number of black nodes (a.k.a. the path rule)
Example of a Red Black Tree

- The root of a Red Black tree is black
- Every other node in the tree follows these rules:
 - Rule 3: If a node is Red, all of its children are Black
 - Rule 4: The number of Black nodes must be the same in all paths from the root node to null nodes

![Red Black Tree Diagram]
Red Black Tree?

Diagram of Red Black Tree:

- Root: 19
- Left child of 19: 12
- Right child of 19: 35
- Left child of 12: 0
- Right child of 12: -10
- Left child of -10: -5
- Right child of -10: -8
- Left child of -8: -6
- Right child of 35: 50
- Left child of 50: 75
- Right child of 50: 135
- Left child of 75: 100
- Right child of 100: 80
Attendance Question 2

Is the tree on the previous slide a binary search tree? Is it a red black tree?

BST? Red-Black?
A. No No
B. No Yes
C. Yes No
D. Yes Yes
Red Black Tree?

Perfect?
Full?
Complete?
Attendance Question 3

Is the tree on the previous slide a binary search tree? Is it a red black tree?

BST? Red-Black?

A. No No
B. No Yes
C. Yes No
D. Yes Yes
Implications of the Rules

- If a **Red** node has any children, it must have two children and they must be Black. (Why?)
- If a Black node has only one child that child must be a **Red** leaf. (Why?)
- Due to the rules there are limits on how unbalanced a **Red** Black tree may become.
 - on the previous example may we hang a new node off of the leaf node that contains 0?
Properties of **Red Black Trees**

- If a **Red** Black Tree is complete, with all Black nodes except for **Red** leaves at the lowest level the height will be minimal, $\sim \log N$
- To get the max height for N elements there should be as many **Red** nodes as possible down one path and all other nodes are Black
 - This means the max height would be $< 2 \times \log N$
 - see example on next slide
Max Height **Red Black Tree**

![Red Black Tree Diagram]

CS 307 Fundamentals of Computer Science
Maintaining the Red Black Properties in a Tree

- Insertions
- Must maintain rules of Red Black Tree.
- New Node always a leaf
 - can't be black or we will violate rule 4
 - therefore the new leaf must be red
 - If parent is black, done (trivial case)
 - if parent red, things get interesting because a red leaf with a red parent violates rule 3
Insertions with Red Parent - Child

Must modify tree when insertion would result in Red Parent - Child pair using color changes and rotations.
Case 1

- Suppose sibling of parent is Black.
 - by convention null nodes are black
- In the previous tree, true if we are inserting a 3 or an 8.
 - What about inserting a 99? Same case?
- Let X be the new leaf Node, P be its Red Parent, S the Black sibling and G, P's and S's parent and X's grandparent
 - What color is G?
Case 1 - The Picture

Relative to G, X could be an *inside* or *outside* node.
Outside -> left left or right right moves
Inside -> left right or right left moves
If X is an outside node a single rotation between P and G fixes the problem. A rotation is an exchange of roles between a parent and child node. So P becomes G's parent. Also must recolor P and G.
Single Rotation

Apparent rule violation?
Case 2

- What if \(X \) is an inside node relative to \(G \)?
 - a single rotation will not work
- Must perform a double rotation
 - rotate \(X \) and \(P \)
 - rotate \(X \) and \(G \)
After Double Rotation

Apparent rule violation?
Case 3
Sibling is Red, not Black

Any problems?
Fixing Tree when S is Red

- Must perform single rotation between parent, P and grandparent, G, and then make appropriate color changes
More on Insert

- Problem: What if on the previous example G's parent had been red?
- Easier to never let Case 3 ever occur!
- On the way down the tree, if we see a node X that has 2 Red children, we make X Red and its two children black.
 - if recolor the root, recolor it to black
 - the number of black nodes on paths below X remains unchanged
 - If X's parent was Red then we have introduced 2 consecutive Red nodes.(violation of rule)
 - to fix, apply rotations to the tree, same as inserting node
Example of Inserting Sorted Numbers

1 2 3 4 5 6 7 8 9 10

Insert 1. A leaf so red. Realize it is root so recolor to black.
Insert 2

make 2 red. Parent is black so done.
Insert 3. Parent is red. Parent's sibling is black (null) 3 is outside relative to grandparent. Rotate parent and grandparent.
Insert 4

On way down see 2 with 2 red children. Recolor 2 red and children black. Realize 2 is root so color back to black

When adding 4 parent is black so done.
Insert 5

5's parent is red. Parent's sibling is black (null). 5 is outside relative to grandparent (3) so rotate parent and grandparent then recolor.
Finish insert of 5

```
      2
     / \
    1   4
   /     \
  3       5
```

Red Black Trees
Insert 6

On way down see 4 with 2 red children. Make 4 red and children black. 4's parent is black so no problem.
Finishing insert of 6

6's parent is black so done.

```
    2
   / \
  1   4
 /     \
3       5
       /  \
       6   
```
Insert 7

7's parent is red. Parent's sibling is black (null). 7 is outside relative to grandparent (5) so rotate parent and grandparent then recolor
Finish insert of 7
Insert 8

On way down see 6 with 2 red children. Make 6 red and children black. This creates a problem because 6's parent, 4, is also red. Must perform rotation.
Still Inserting 8

Recolored now need to rotate
Finish inserting 8

Recolored now need to rotate
Insert 9

On way down see 4 has two red children so recolor 4 red and children black. Realize 4 is the root so recolor black
Finish Inserting 9

After rotations and recoloring
On way down see 8 has two red children so change 8 to red and children black
Again a rotation is needed.
Finish inserting 11

```
   4
  /  
 2    6
 / \
1  3  5
    /  \
   7    8
     /   /
    9   10
      /   /
     11
```