
Topic 5
Implementing ClassesImplementing Classes

“And so, from Europe, we get things such , p , g g
... object-oriented analysis and design (a
clever way of breaking up software
programming instructions and data into
small, reusable objects, based on certain
b t ti i i l d d iabstraction principles and design

hierarchies.)”
-Michael A Cusumano-Michael A. Cusumano,

The Business Of Software

CS 307 Fundamentals of
Computer Science

Implementing Classes 1

DefinitionsDefinitions

CS 307 Fundamentals of
Computer Science

Implementing Classes 2

Object Oriented Programming
8Wh i bj i d i ?8What is object oriented programming?
8"Object-oriented programming is a method of

i b d hi h f l dprogramming based on a hierarchy of classes, and
well-defined and cooperating objects. "
8What is a class?8What is a class?
8"A class is a structure that defines the data and the

methods to work on that data When you writemethods to work on that data. When you write
programs in the Java language, all program data is
wrapped in a class, whether it is a class you writewrapped in a class, whether it is a class you write
or a class you use from the Java platform API
libraries."

CS 307 Fundamentals of
Computer Science

Implementing Classes 3
– Sun code camp

Classes Are ...
88Another, simple definition:
8A class is a programmer defined data type.
8A data type is a set of possible values and

the operations that can be performed on t e ope at o s t at ca be pe o ed o
those values
8Example:Example:

– single digit positive base 10 ints
1 2 3 4 5 6 7 8 9– 1, 2, 3, 4, 5, 6, 7, 8, 9

– operations: add, subtract
bl ?

CS 307 Fundamentals of
Computer Science

Implementing Classes 4

– problems?

Data Types
88Computer Languages come with built in data

types
8In Java, the primitive data types, native arrays
8Most computer languages provide a way for the ost co pute a guages p o de a ay o t e

programmer to define their own data types
– Java comes with a large library of classesJava comes with a large library of classes

8So object oriented programming is a way of
programming that is dominated by creating newprogramming that is dominated by creating new
data types to solve a problem.
8We will look at how to create a new data type

CS 307 Fundamentals of
Computer Science

Implementing Classes 5

8We will look at how to create a new data type

A Very Short and Incomplete
History of Object OrientedHistory of Object Oriented

Programming. (OOP)

CS 307 Fundamentals of
Computer Science

Implementing Classes 6

OOP is not new.
8Si l 1 (1962 1965) d Si l 678Simula 1 (1962 - 1965) and Simula 67

(1967) Norwegian Computing Center, Oslo,
N b Ol J h D hl d K i tNorway by Ole-Johan Dahl and Kristen
Nygaard.

T i A d Wi 2001
CS 307 Fundamentals of
Computer Science

Implementing Classes 7
Turing Award Winners - 2001

OOP Languages
88Smalltalk (1970s), Alan Kay's group at Xerox

PARC

8C++ (early 1980s) Bjarne Stroustrup Bell8C++ (early 1980s), Bjarne Stroustrup, Bell
Labs

CS 307 Fundamentals of
Computer Science

Implementing Classes 8

OOP Languages
8M d l 3 Ob Eiff l J C#8Modula – 3, Oberon, Eiffel, Java, C#,

Python
– many languages have some Object

Oriented version or capability
8One of the dominant styles for

implementing complex programs with p g p p g
large numbers of interacting
componentsp
– … but not the only programming paradigm and

there are variations on object oriented
i

CS 307 Fundamentals of
Computer Science

Implementing Classes 9

programming

Program Design in OOP
88OOP breaks up problems based on the data

types found in the problem
– as opposed to breaking up the problem based on

the algorithms involved
8Given a problem statement, what things

appear in the problem?
8The nouns of the problem are candidate

classes.
8The actions and verbs of the problems are

candidate methods of the classes
CS 307 Fundamentals of
Computer Science

Implementing Classes 10

candidate methods of the classes

Short Object Oriented
Programming Design Example

CS 307 Fundamentals of
Computer Science

Implementing Classes 11

Attendance Question 1
The process of taking a large problem and
breaking it up into smaller parts is known as:

A. Functional programming
B. Object oriented programming
C Top down designC. Top down design
D. Bottom up design
E W f ll h dE. Waterfall method

CS 307 Fundamentals of
Computer Science

Implementing Classes 12

Monopoly

If we had to start
f h hfrom scratch what
classes would we
need to create?need to create?

CS 307 Fundamentals of
Computer Science

Implementing Classes 13

Individual Class DesignIndividual Class Design

CS 307 Fundamentals of
Computer Science

Implementing Classes 14

The Steps of Class Design
8RequirementsRequirements

– what is the problem to be solved
– detailed requirements lead to specificationsdetailed requirements lead to specifications

8Nouns may be classes
8Verbs signal behavior and thus methods (alsoVerbs signal behavior and thus methods (also

defines a classes responsibilities)
8walkthrough scenarios to find nouns and verbswalkthrough scenarios to find nouns and verbs
8implementing and testing of classes
8design rather than implementation is normally thedesign rather than implementation is normally the

hardest part
– planning for reuse

CS 307 Fundamentals of
Computer Science

Implementing Classes 15

p g

Class Design
8Cl h ld b h i8Classes should be cohesive.

– They should be designed to do one thing well.

8Classes should be loosely coupled.
– Changing the internal implementation details of a class

should not affect other classes.
– loose coupling can also be achieved within a class itself

CS 307 Fundamentals of
Computer Science

Implementing Classes 16

Encapsulation
8Al k i f d8Also know as separation of concerns and

information hiding
8Wh ti d t t (l) th d t il8When creating new data types (classes) the details

of the actual data and the way operations work is
hidden from the other programmers who will usehidden from the other programmers who will use
those new data types
– So they don't have to worry about themy y
– So they can be changed without any ill effects (loose

coupling)
8Encapsulation makes it easier to be able to use

something
i di i d th J St i l

CS 307 Fundamentals of
Computer Science

Implementing Classes 17

– microwave, radio, ipod, the Java String class

Design to Implementation
88Design must me implemented using the

syntax of the programming language
8In class example with a list of integers
8Slides include another example of creating a S des c ude a ot e e a p e o c eat g a

class to represent a playing die

CS 307 Fundamentals of
Computer Science

Implementing Classes 18

A List of intsA List of ints

CS 307 Fundamentals of
Computer Science

Implementing Classes 19

The Problem with Arrays
8S I d t t b h f fil titl8Suppose I need to store a bunch of film titles

from a file
The Godfather
The Princess Bride
The Incredible

String[] titles = new String[100];
// I never know how much
// space I need!
8I want the array to grow and shrink

CS 307 Fundamentals of
Computer Science

Implementing Classes 20

y g

Lists
88I need a list.
8A list is a collection of items with a definite

order.
8Our example will be a list of integers.Ou e a p e be a st o tege s
8Design and then implement to demonstrate

the Java syntax for creating a classthe Java syntax for creating a class.

CS 307 Fundamentals of
Computer Science

Implementing Classes 21

Attendance Question 2
When adding a new element to a list
what should be the default location towhat should be the default location to
add?

A. The beginning
B. The end
C The middleC. The middle
D. A random location

CS 307 Fundamentals of
Computer Science

Implementing Classes 22

IntList Design
8C I Li8Create a new, empty IntList
new IntList -> []

8The above is not code. It is a notation that shows
what the results of operations. [] is an empty list.
88add to a list.
[].add(1) -> [1]
[1].add(5) -> [1, 5]
[1, 5].add(4) -> [1, 5, 4]

8elements in a list have a definite order and a
position.

CS 307 Fundamentals of
Computer Science

Implementing Classes 23

– zero based position or 1 based positioning?

Instance Variables
8I t l d t8Internal data

– also called instance variables because every
instance (object) of this class has its own copy ofinstance (object) of this class has its own copy of
these

– something to store the elements of the listsomething to store the elements of the list
– size of internal storage container?
– if not what else is needed

8Must be clear on the difference between the
internal data of an IntList object and the j
IntList that is being represented
8Why make internal data private?

CS 307 Fundamentals of
Computer Science

Implementing Classes 24

y p

Attendance Question 3
Our IntList class will have an instance variable
of ints (int[] container). What should the
capacity of this internal array be?

A. less than or equal to the size of the list
B. greater than or equal to the size of the listg ea e a o equa o e s e o e s
C. equal to the size of the list
D some fixed amount that never changesD. some fixed amount that never changes
E. 0

CS 307 Fundamentals of
Computer Science

Implementing Classes 25

IntList aList = new IntList();
aList.add(42);
aList.add(12);
aList.add(37); aList

Abstract view of IntList

[42 12 37]

list of integers size

container

3

[42, 12, 37]

The wall of
abstraction.

42 12 37 0 0 0 0 0 0 0

CS 307 Fundamentals of
Computer Science

Implementing Classes 26

0 1 2 3 4 5 6 7 8 9

Constructors
88For initialization of objects
8IntList constructors

– default
– initial capacity?p y

8redirecting to another constructor
this(10);this(10);

8class constants
what t ti means– what static means

CS 307 Fundamentals of
Computer Science

Implementing Classes 27

Default add method
88where to add?
8what if not enough space?
[].add(3) -> [3]
[3] add(5) -> [3 5][3].add(5) > [3, 5]
[3, 5].add(3) -> [3, 5, 3]

8Testing, testing, testing!
– a toString method would be useful

CS 307 Fundamentals of
Computer Science

Implementing Classes 28

toString method
88return a Java String of list
8empty list -> []
8one element -> [12]
8multiple elements -> [12 0 5 4]multiple elements > [12, 0, 5, 4]
8Beware the performance of String

concatenationconcatenation.
8StringBuffer alternative

CS 307 Fundamentals of
Computer Science

Implementing Classes 29

Attendance Question 4
What is output by the following code?
IntList list = new IntList();();
System.out.println(list.size());

A 10A. 10
B. 0
C. -1
D unknownD. unknown
E. No output due to runtime error.

CS 307 Fundamentals of
Computer Science

Implementing Classes 30

get and size methods
8 t8get

– access element from list
diti ?– preconditions?

[3, 5, 2].get(0) returns 3
[3, 5, 2].get(1) returns 5
8size

– number of elements in the list
– Do not confuse with the capacity of the internal

t t istorage container
– The array is not the list!

[4 5 2] i () ret rns 3
CS 307 Fundamentals of
Computer Science

Implementing Classes 31

[4, 5, 2].size() returns 3

insert method
88add at someplace besides the end
[3, 5].insert(1, 4) -> [3, 4, 5]

where what

[3, 4, 5].insert(0, 4) -> [4, 3, 4, 5]

8preconditions?8preconditions?
8overload add?
8chance for internal loose coupling

CS 307 Fundamentals of
Computer Science

Implementing Classes 32

Attendance Question 5
What is output by the following code?What is output by the following code?
IntList list = new IntList();
list.add(3);
list.insert(0, 4);
list.insert(1, 1);
list.add(5);();
list.insert(2, 9);
System.out.println(list.toString());

A [4 1 3 9 5]A. [4, 1, 3, 9, 5]
B. [3, 4, 1, 5, 9]
C. [4, 1, 9, 3, 5]C. [4, 1, 9, 3, 5]
D. [3, 1, 4, 9, 5]
E. No output due to runtime error.

CS 307 Fundamentals of
Computer Science

Implementing Classes 33

remove method
88remove an element from the list based on

location
[3, 4, 5].remove(0) -> [4, 5]
[3, 5, 6, 1, 2].remove(2) ->[, , , ,] ()

[3, 5, 1, 2]

8preconditions?8preconditions?
8return value?

– accessor methods, mutator methods, and
mutator methods that return a value

CS 307 Fundamentals of
Computer Science

Implementing Classes 34

Attendance Question 6
What is output by the following code?
IntList list = new IntList();
li t dd(12)list.add(12);
list.add(15);
list.add(12);
li t dd(17)list.add(17);
list.remove(1);
System.out.println(list);

A. [15, 17]
B. [12, 17]
C [12 0 12 17]C. [12, 0, 12, 17]
D. [12, 12, 17]
E. [15, 12, 17]

CS 307 Fundamentals of
Computer Science

Implementing Classes 35

insertAll method
88add all elements of one list to another

starting at a specified location
[5, 3, 7].insertAll(2, [2, 3]) ->
[5, 3, 2, 3, 7][, , , ,]

The parameter [2, 3] would be unchanged.
8Working with other objects of the same type8Working with other objects of the same type

– this?
h i i t i t ?– where is private private?

– loose coupling vs. performance

CS 307 Fundamentals of
Computer Science

Implementing Classes 36

Class Design and Implementation –
Another Example

This example will not be covered
in class.

CS 307 Fundamentals of
Computer Science

Implementing Classes 37

The Die Class
8Consider a class used8Consider a class used

to model a die
8Wh t i th i t f ? Wh t8What is the interface? What

actions should a die be able
t f ?to perform?

8The methods or behaviors can be broken up
into constructors mutators accessors

CS 307 Fundamentals of
Computer Science

Implementing Classes 38

into constructors, mutators, accessors

The Die Class Interface
88Constructors (used in creation of objects)

– default, single int parameter to specify the
number of sides, int and boolean to determine if
should roll

8 (f)8Mutators (change state of objects)
– roll

8Accessors (do not change state of objects)
– getResult, getNumSides, toStringg , g , g

8Public constants
– DEFAULT SIDES

CS 307 Fundamentals of
Computer Science

Implementing Classes 39

DEFAULT_SIDES

Visibility Modifiers
8All parts of a class have visibility modifiers8All parts of a class have visibility modifiers

– Java keywords
– public, protected, private, (no modifier means package p , p , p , (p g

access)
– do not use these modifiers on local variables (syntax error)

8public means that constructor method or field may8public means that constructor, method, or field may
be accessed outside of the class.
– part of the interfacepa o e e ace
– constructors and methods are generally public

8private means that part of the class is hidden and
inaccessible by code outside of the class
– part of the implementation

data fields are generally private
CS 307 Fundamentals of
Computer Science

Implementing Classes 40

– data fields are generally private

The Die Class Implementation
8Implementation is made up of constructor code, p p ,

method code, and private data members of the
class.
8scope of data members / instance variables8scope of data members / instance variables

– private data members may be used in any of the
constructors or methods of a class

8I l t ti i hidd f f l d8Implementation is hidden from users of a class and
can be changed without changing the interface or
affecting clients (other classes that use this class)affecting clients (other classes that use this class)
– Example: Previous version of Die class,

DieVersion1.java
8Once Die class completed can be used in anythingOnce Die class completed can be used in anything

requiring a Die or situation requiring random
numbers between 1 and N

Di T t l Wh t d it d ?
CS 307 Fundamentals of
Computer Science

Implementing Classes 41

– DieTester class. What does it do?

DieTester method

public static void main(String[] args) {
final int NUM ROLLS = 50;final int NUM_ROLLS 50;
final int TEN_SIDED = 10;
Die d1 = new Die();
Die d2 = new Die();
Die d3 = new Die(TEN SIDED);_
final int MAX_ROLL = d1.getNumSides() +

d2.getNumSides() + d3.getNumSides();

for(int i = 0; i < NUM_ROLLS; i++)
{ d1.roll();

d2.roll();
System.out.println("d1: " + d1.getResult()

+ " d2 " + d2 tR lt() + " T t l "+ " d2: " + d2.getResult() + " Total: "
+ (d1.getResult() + d2.getResult()));

}

CS 307 Fundamentals of
Computer Science

Implementing Classes 42

DieTester continued
int total = 0;
int numRolls = 0;
do
{ d1 ll(){ d1.roll();

d2.roll();
d3.roll();
total = d1.getResult() + d2.getResult()

+ d3 getResult();+ d3.getResult();
numRolls++;

}
while(total != MAX_ROLL);

System.out.println("\n\nNumber of rolls to get "
+ MAX_ROLL + " was " + numRolls);

CS 307 Fundamentals of
Computer Science

Implementing Classes 43

Correctness Sidetrack
8Wh ti th bli i t f f l i8When creating the public interface of a class give

careful thought and consideration to the contract
you are creating between yourself and users (other you a e c ea g be ee you se a d use s (o e
programmers) of your class
8Use preconditions to state what you assume to be

ftrue before a method is called
– caller of the method is responsible for making sure these

are trueare true
8Use postconditions to state what you guarantee to

be true after the method is done if the preconditions
are met
– implementer of the method is responsible for making

sure these are true

CS 307 Fundamentals of
Computer Science

Implementing Classes 44

sure these are true

Precondition and
P t diti E lPostcondition Example

/* pre: numSides > 1
post: getResult() = 1, getNumSides() = sides

*/
bli Di (i t Sid)public Die(int numSides)

{ assert (numSides > 1) : “Violation of precondition: Die(int)”;
iMyNumSides = numSides;iMyNumSides = numSides;
iMyResult = 1;
assert getResult() == 1 && getNumSides() == numSides;assert getResult() 1 && getNumSides() numSides;

}

CS 307 Fundamentals of
Computer Science

Implementing Classes 45

Object Behavior - Instantiation
8C id h Di T l8Consider the DieTester class

Die d1 = new Die();
Die d2 = new Die();Die d2 new Die();
Die d3 = new Die(10);

8When the new operator is invoked control is p
transferred to the Die class and the specified
constructor is executed, based on parameter matching
8Space(memory) is set aside for the new object's fields
8The memory address of the new object is passed

back and stored in the object variable (pointer)
8After creating the object, methods may be called on it.

CS 307 Fundamentals of
Computer Science

Implementing Classes 46

Creating Dice Objects
a Die object

6 1
d1

memory
address

iMySides iMyResult

a Die object

d1
DieTester class. Sees
interface of Die class

Die class.
Sees

a Die object

6 1
memory
address

implementation.
(of Die class.)

iMySides iMyResult

a Die object
d2

address

j

10 1
memory
address

CS 307 Fundamentals of
Computer Science

Implementing Classes 47
iMySides iMyResultd3

Objects
8E Di bj t t d h it8Every Die object created has its own

instance of the variables declared in the
class blueprintclass blueprint

private int iMySides;
private int iMyResult;private int iMyResult;

8thus the term instance variable
8the instance vars are part of the hidden8the instance vars are part of the hidden

implementation and may be of any data type
– unless they are public which is almost always a– unless they are public, which is almost always a

bad idea if you follow the tenets of information
hiding and encapsulation

CS 307 Fundamentals of
Computer Science

Implementing Classes 48

Complex Objects
8What if one of the instance variables is itself

an object?
8add to the Die classadd to the Die class

private String myName;
a Die objecta Die object

6 1
d1

memory
address memory

address

iMySides iMyResultd1 myName

d1 can hold the memory address
a String object

implementation
details not shown

d1 can hold the memory address
of a Die object. The instance variable
myName inside a Die object can hold
the memory address of a String object

CS 307 Fundamentals of
Computer Science

Implementing Classes 49

details not shownthe memory address of a String object

The Implicit Parameter
8Consider this code from the Die class8Consider this code from the Die class

public void roll()
{ iMyResult =

ourRandomNumGen.nextInt(iMySides) + 1;
}

8Taken in isolation this code is rather confusing.Taken in isolation this code is rather confusing.
8what is this iMyResult thing?

– It's not a parameter or local variablep
– why does it exist?
– it belongs to the Die object that called this method
– if there are numerous Die objects in existence
– Which one is used depends on which object called

the method
CS 307 Fundamentals of
Computer Science

Implementing Classes 50

the method.

The this Keyword
8When a method is called it may be necessary

for the calling object to be able to refer to itself
– most likely so it can pass itself somewhere as a

parameter
8 hen an object calls a method an implicit8when an object calls a method an implicit

reference is assigned to the calling object
8the name of this implicit reference is this8the name of this implicit reference is this
8this is a reference to the current calling object

and may be used as an object variable (may notand may be used as an object variable (may not
declare it)

CS 307 Fundamentals of
Computer Science

Implementing Classes 51

this Visually
// i l th th Di

memory
dd// in some class other than Die

Die d3 = new Die();
d3.roll(); d3

address

// in the Die class
public void roll()
{ iMyResult ={ iMyResult =

ourRandomNumGen.nextInt(iMySides) + 1;
/* OR

thi iM R ltthis.iMyResult…
*/

}

a Die object

6 1
memory

iMySides iMyResult

6 1

this

address

CS 307 Fundamentals of
Computer Science

Implementing Classes 52

An equals methodq

8working with objects of the same type in aworking with objects of the same type in a
class can be confusing
8write an equals method for the Die classwrite an equals method for the Die class.

assume every Die has a myName instance
variable as well as iMyNumber and iMySidesvariable as well as iMyNumber and iMySides

CS 307 Fundamentals of
Computer Science

Implementing Classes 53

A Possible Equals Method
public boolean equals(Object otherObject)p q j j
{ Die other = (Die)otherObject;

return iMySides == other.iMySides
&& iMyResult== other iMyResult&& iMyResult== other.iMyResult
&& myName.equals(other.myName);

}
8Declared Type of Parameter is Object not Die8Declared Type of Parameter is Object not Die
8override (replace) the equals method instead of

overload (present an alternate version)overload (present an alternate version)
– easier to create generic code

8we will see the equals method is inherited from
the Object class
8access to another object's private instance

variables?
CS 307 Fundamentals of
Computer Science

Implementing Classes 54

variables?

Another equals Methods
public boolean equals(Object otherObject)
{ Die other = (Die)otherObject;

return this.iMySides == other.iMySides
&& this.iMyNumber == other.iMyNumber
&& this.myName.equals(other.myName);y q (y);

}

Using the this keyword / reference to access the implicit parameters
instance variables is unnecessary.
If th d ithi th l i ll d ithi th d thIf a method within the same class is called within a method, the
original calling object is still the calling object

CS 307 Fundamentals of
Computer Science

Implementing Classes 55

A "Perfect" Equals Method
88From Cay Horstmann's Core Java

public boolean equals(Object otherObject)
{ // check if objects identical{ // check if objects identical

if(this == otherObject)
return true;

// must return false if explicit parameter null// ust etu a se e p c t pa a ete u
if(otherObject == null)

return false;
// if objects not of same type they cannot be equal
if(getClass() != otherObject.getClass())

return false;
// we know otherObject is a non null Die
Die other = (Die)otherObject;
return iMySides == other.iMySides

&& iMyNumber == other.iMyNumber
&& m Name eq als(other m Name)

CS 307 Fundamentals of
Computer Science

Implementing Classes 56

&& myName.equals(other.myName);
}

the instanceof Operator
8 i J k d8instanceof is a Java keyword.
8part of a boolean statement
public boolean equals(Object otherObj)
{ if otherObj instanceof Die

{ //now go and cast
// rest of equals method

}}
}

8Should not use instanceof in equals methods8Should not use instanceof in equals methods.
8instanceof has its uses but not in equals

b f th t t f th l th d
CS 307 Fundamentals of
Computer Science

Implementing Classes 57

because of the contract of the equals method

Class Variables and Class Methods
8Sometimes every object of a class does not

need its own copy of a variable or constantneed its own copy of a variable or constant
8The keyword static is used to specify

class variables, constants, and methodsclass variables, constants, and methods
private static Random ourRandNumGen

= new Random();
public static final int DEFAULT SIDES = 6;public static final int DEFAULT_SIDES = 6;

8The most prevalent use of static is for class
constantsconstants.
– if the value can't be changed why should every

object have a copy of this non changing value

CS 307 Fundamentals of
Computer Science

Implementing Classes 58

j py g g

Class Variables and Constants
the Die class

DEFAULT_SIDES

6

ourRandNumGen

memory
address

a Random object

implementation
All objects of type Die have

t th l i bl implementation
details not shown

access to the class variables
and constants.

A public class variable or constant
may be referred to via the class name.

CS 307 Fundamentals of
Computer Science

Implementing Classes 59

Syntax for Accessing Class Variables
public class UseDieStaticpublic class UseDieStatic
{ public static void main(String[] args)

{ System.out.println("Die.DEFAULT_SIDES "
+ Die.DEFAULT_SIDES);

//// Any attempt to access Die.ourRandNumGen
// would generate a syntax error

Die d1 = new Die(10);();

System.out.println("Die.DEFAULT_SIDES "
+ Die.DEFAULT_SIDES);

S t t i tl ("d1 DEFAULT SIDES "System.out.println("d1.DEFAULT_SIDES "
+ d1.DEFAULT_SIDES);

// regardless of the number of Die objects in
// existence, there is only one copy of DEFAULT_SIDES
// in the Die class

} // end of main method

CS 307 Fundamentals of
Computer Science

Implementing Classes 60

} // end of main method
} // end of UseDieStatic class

Static Methods
88static has a somewhat different

meaning when used in a method
d l tideclaration
8static methods may not manipulate any

i t i blinstance variables
8in non static methods, some object

i k th th dinvokes the method
d3.roll();
88the object that makes the method call is

an implicit parameter to the method

CS 307 Fundamentals of
Computer Science

Implementing Classes 61

Static Methods Continued
8Since there is no implicit object parameter

sent to the static method it does not have
access to a copy of any objects instance
variables

l f th t bj t i t– unless of course that object is sent as an
explicit parameter

8Static methods are normally utility methods8Static methods are normally utility methods
or used to manipulate static variables
(class variables)(class variables)
8The Math and System classes are nothing

but static methods
CS 307 Fundamentals of
Computer Science

Implementing Classes 62

but static methods

static and this
8Why does this work (added to Die class)Why does this work (added to Die class)
public class Die
{

public void outputSelf()
{ System.out.println(this);
}

}

8but this doesn't?

}

but this doesn t?
public class StaticThis
{

public static void main(String[] args)public static void main(String[] args)
{ System.out.println(this);
}

}

CS 307 Fundamentals of
Computer Science

Implementing Classes 63

}

