
T i 7Topic 7
Interfaces and AbstractInterfaces and Abstract

Classes

“I prefer Agassiz in the abstract,
rather than in the concrete.”

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

1

InterfacesInterfaces

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

2

Multiple Inheritance
��The are classes where the “is-a” test is true

for more than one other class
– a graduate teaching assistant is a graduate

students
– a graduate teaching assistant is a faculty

member
��Java requires all classes to inherit from

exactly one other class
– does not allow multiple inheritance
– some object oriented languages do

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

3

Problems with Multiple Inheritance
�S lti l i h it ll d�Suppose multiple inheritance was allowed
public class GradTA extends Faculty, GradStudent

�Suppose Faculty overrides toString and that�Suppose Faculty overrides toString and that
GradStudent overrides toString as well
GradTA ta1 = new GradTA();GradTA ta1 = new GradTA();
System.out.println(ta1.toString());

�What is the problemWhat is the problem
�Certainly possible to overcome the problem

– provide access to both (scope resolution in C++)– provide access to both (scope resolution in C++)
– require GradTA to pick a version of toString or

override it itself (Eiffel)

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

4

()

Interfaces – Not quite Multiple Inheritance

��Java does not allow multiple inheritance
– syntax headaches not worth the benefits

�Java has a mechanism to allow specification
of a data type with NO implementationyp p
– interfaces

�Pure DesignPure Design
– allow a form of multiple inheritance without the

possibility of conflicting implementationspossibility of conflicting implementations

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

5

A List Interface
��What if we wanted to specify the operations

for a List, but no implementation?
�Allow for multiple, different implementations.
�Provides a way of creating abstractions.o des a ay o c eat g abst act o s

– a central idea of computer science and
programming. p g g

– specify "what" without specifying "how"
– "Abstraction is a mechanism and practice toAbstraction is a mechanism and practice to

reduce and factor out details so that one can
focus on a few concepts at a time. "

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

6

Interface Syntax
i i ipublic interface List{

public void add(Object val);

public int size();

public Object get(int location);

public void insert(int location,

Object val);

public void addAll(List other);
public Object remove(int location);

}

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

7

Interfaces
��All methods in interfaces are public and

abstract
– can leave off those modifiers in method headers

�No constructors
�No instance variables
�can have class constants�can have class constants

public static final int DEFAULT_SIDES = 6

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

8

Implementing Interfaces
��A class inherits (extends) exactly one other

class, but …
�A class can implement as many interfaces

as it likes
public class ArrayList implements List

�A class that implements an interface mustA class that implements an interface must
provide implementations of all method
declared in the interface or the class must bedeclared in the interface or the class must be
abstract

�interfaces can extend other interfaces
CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

9

interfaces can extend other interfaces

Why interfaces?
�I f ll h i f b t t d t t�Interfaces allow the creation of abstract data types

– "A set of data values and associated operations that are
precisely specified independent of any particularprecisely specified independent of any particular
implementation. "

– multiple implementations allowed
�Interfaces allow a class to be specified without

worrying about the implementation
– do design first
– What will this data type do?

D ’t b t i l t ti til d i i d– Don’t worry about implementation until design is done.
– separation of concerns

�allow a form of multiple inheritance
CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

10

�allow a form of multiple inheritance

The Comparable Interface
��The Java Standard Library

contains a number of interfaces
– names are italicized in the class

listing
�One of the most important

interfaces is the Comparable
interface

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

11

Comparable Interface version 1.4
package java.lang

public interface Comparable
{

public int compareTo(Object other);public int compareTo(Object other);
}

�compareTo should return an int <0 if the calling
object is less than the parameter, 0 if they areobject is less than the parameter, 0 if they are
equal, and an int >0 if the calling object is greater
than the parameter

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

12

Implementing Comparable
��Any class that has a natural ordering of its

objects (that is objects of that type can be
sorted based on some internal attribute)
should implement the Comparable interface

�Back to the ClosedShape example
�Suppose we want to be able to sort Suppose e a o be ab e o so
ClosedShapes and it is to be based on area

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

13

Example compareTo
��Suppose we have a class to

model playing cards
– Ace of Spades, King of Hearts,

Two of Clubs
�each card has a suit and a

value, represented by ints
�this version of compareTo will

compare values first and then p
break ties with suits

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

14

compareTo in a Card class
public class Card implements Comparable
{

public int compareTo(Object otherObject)
{ C d th (C d) th Obj t{ Card other = (Card)otherObject;

int result = this.myRank - other.myRank;
if(result == 0)

result = this mySuit - other mySuit;result = this.mySuit - other.mySuit;
return result

}
// other methods not shown// ot e et ods ot s o

}

Assume ints for ranks (2, 3, 4, 5, 6,...) and suits (0 is
clubs, 1 is diamonds, 2 is hearts, 3 is spades).

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

15

Interfaces and Polymorphism
��Interfaces may be used as the data type

for object variables
�Can’t simply create objects of that type
�Can refer to any objects that implement the�Can refer to any objects that implement the

interface or descendants
�Ass me C d implements C bl�Assume Card implements Comparable
Card c = new Card();
Comparable comp1 = new Card();
Comparable comp2 = c;

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

16

Polymorphism Again!
What can this Sort?What can this Sort?

public static void SelSort(Comparable[] list)
{ Comparable temp;p p

int smallest;
for(int i = 0; i < list.length - 1; i++)
{ small = i;{ ;

for(int j = i + 1; j < list.length; j++)

{ if(list[j].compareTo(list[small]) < 0)

ll jsmall = j;
} // end of j loop
temp = list[i];

list[i] = list[small];
list[small] = temp;

} // end of i loop

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

17
}

Abstract ClassesAbstract Classes

Part Class, part Interface

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

18

Back to the ClosedShape Example
��One behavior we might want in

ClosedShapes is a way to get the area
�problem: How do I get the area of something

that is “just a ClosedShape”?

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

19

The ClosedShape class
public class ClosedShape
{ private double myX;

private double myY;

public double getArea()
{ //Hmmmm?!?!
}

//

}}
// Other methods not shown

Doesn’t seem like we have enough information to
get the area if all we know is it is a ClosedShape.

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

20

Options
1. Just leave it for the sub classes.

� Have each sub class define getArea() if they
want to.

2. Define getArea() in ClosedShape and
simply return 0.
� Sub classes can override the method with more

meaningful behavior.

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

21

Leave it to the Sub - Classes
// no getArea() in ClosedShape

public void printAreas(ClosedShape[] shapes)
{

f (Cl dSh h)for(ClosedShape s : shapes)
{ System.out.println(s.getArea());
}

}}

ClosedShape[] shapes = new ClosedShape[2];
shapes[0] = new Rectangle(1 2 3 4);shapes[0] = new Rectangle(1, 2, 3, 4);
shapes[1] = new Circle(1, 2, 3);
printAreas(shapes);

Will the above code compile?

How does the compiler determine if a method
ll i ll d?

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

22

call is allowed?

Fix by Casting
// tA () i Cl dSh// no getArea() in ClosedShape

public void printAreas(ClosedShape[] shapes)
{

for(ClosedShape s : shapes)
{ if(s instanceof Rectangle)

System.out.println(((Rectangle)s).getArea());
else if(s instanceof Circle)e se (s sta ceo C c e)

System.out.println(((Circle)s).getArea());
}

}

ClosedShape[] shapes = new ClosedShape[2];
shapes[0] = new Rectangle(1, 2, 3, 4);
shapes[1] = new Circle(1, 2, 3);

i tA (h)printAreas(shapes);

What happens as we add more sub classes of ClosedShape?

Wh t h if f th bj t i j t ?
CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

23

What happens if one of the objects is just a ClosedShape?

Fix with Dummy Method
// getArea() in ClosedShape returns 0// getArea() in ClosedShape returns 0

public void printAreas(ClosedShape[] shapes)
{{

for(ClosedShape s : shapes)
{ System.out.println(s.getArea());
}}

}

ClosedShape[] shapes = new ClosedShape[2];
shapes[0] = new Rectangle(1, 2, 3, 4);
shapes[1] = new Circle(1, 2, 3);
printAreas(shapes);

What happens if sub classes don’t override getArea()?

Does that make sense?

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

24

Does that make sense?

A Better Fix
��We know we want to be able to find the area

of objects that are instances of
ClosedShape

�The problem is we don’t know how to do that
if all we know is it a ClosedShape

�Make getArea an abstract method g

�Java keyword

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

25

Making getArea Abstract
bli l Cl dShpublic class ClosedShape

{ private double myX;
private double myY;

public abstract double getArea();
// I know I want it.// I know I want it.
// Just don’t know how, yet…

}}
// Other methods not shown

M th d th t d l d b t t h b dMethods that are declared abstract have no body
an undefined behavior.

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

26
All methods in an interface are abstract.

Problems with Abstract Methods

Given getArea() is now an abstract method
what is wrong with the following code?what is wrong with the following code?

ClosedShape s = new ClosedShape();p p ()
System.out.println(s.getArea());

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

27

Undefined Behavior = Bad
��Not good to have undefined behaviors
�If a class has 1 or more abstract methods,

the class must also be declared abstract.
– version of ClosedShape shown would cause a

compile error
�Even if a class has zero abstract methods a

programmer can still choose to make it
abstract
– if it models some abstract thing
– is there anything that is just a “Mammal”?

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

28

is there anything that is just a Mammal ?

Abstract Classes
public abstract class ClosedShapepublic abstract class ClosedShape
{ private double myX;

private double myY;

public abstract double getArea();
// I know I want it.
// Just don’t know how, yet…, y

}
// Other methods not shown

if a class is abstract the compiler will not allow
constructors of that class to be calledconstructors of that class to be called
ClosedShape s = new ClosedShape(1,2);
//syntax error

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

29

y

Abstract Classes
��In other words you can’t create instances of

objects where the lowest or most specific
class type is an abstract class

�Prevents having an object with an undefined
behavior

�Why would you still want to have y ou d you s a o a e
constructors in an abstract class?

�Object variables of classes that are abstractObject variables of classes that are abstract
types may still be declared
ClosedShape s; //okay

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

30

ClosedShape s; //okay

Sub Classes of Abstract Classes
��Classes that extend an abstract class must

provided a working version of any abstract
methods from the parent class
– or they must be declared to be abstract as well
– could still decide to keep a class abstract

regardless of status of abstract methods

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

31

Implementing getArea()
public class Rectangle extends ClosedShapep g p
{ private double myWidth;

private double myHeight;

public double getArea()public double getArea()
{ return myWidth * myHeight; }

// other methods not shown
}

public class Square extends Rectangle
{ public Square(){ public Square()

{ }

public Square(double side)
{ (id id) }{ super(side, side); }

public Square(double x, double y, double side)
{ super(side, side, x, y); }

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

32

{ p (, , , y); }
}

A Circle Class
public class Circle extends ClosedShape
{ d bl dM R di{ double dMyRadius;

public Circle()
{ super(0,0); }

public Circle(double radius)
{ super(0,0);

dMyRadius = radius;y ;
}

public Circle(double x, double y, double radius)
{ super(x y);{ super(x,y);

dMyRadius = radius;
}

public double getArea()public double getArea()
{ return Math.PI * dMyRadius * dMyRadius; }

public String toString()

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

33

{ return super.toString() + " radius: " + dMyRadius; }
}

Polymorphism in Action
public class UsesShapes
{ public static void go(){ public static void go()

{ ClosedShape[] sList = new ClosedShape[10];
double a, b, c, d;
int x;
for(int i = 0; i < 10; i++)()
{ a = Math.random() * 100;

b = Math.random() * 100;
c = Math.random() * 100;
d = Math.random() * 100;
x = (int)(Math.random() * 3);
if(x == 0)

sList[i] = new Rectangle(a,b,c,d);
else if(x == 1)

Li t[i] S (d)sList[i] = new Square(a, c, d);
else

sList[i] = new Circle(a, c, d);
}
double total = 0 0;double total = 0.0;
for(int i = 0; i < 10; i++)
{ total += sList[i].getArea();

System.out.println(sList[i]);
}

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

34

}
}

}

The Kicker
�We want to expand our pallet of shapes�We want to expand our pallet of shapes
�Triangle could also be a sub class of ClosedShape.

it would inherit from ClosedShape– it would inherit from ClosedShape
public double getArea()
{ return 0.5 * dMyWidth * dMyHeight;}

�What changes do we have to make to the code on
the previous slide for totaling area so it will now
handle Triangles as well?

�Inheritance is can be described as new code using
old code.

�Polymorphism can be described as old code
i d

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

35

using new code.

Comparable in ClosedShape
public abstract class ClosedShape implements Comparablepublic abstract class ClosedShape implements Comparable
{ private double myX;

private double myY;

public abstract double getArea();

public int compareTo(Object other)
{ int result;{ int result;

ClosedShape otherShape = (ClosedShape)other;
double diff = getArea() – otherShape.getArea();
if(diff == 0)

result = 0;result = 0;
else if(diff < 0)

result = -1;
else

result = 1;
return result

}
}

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

36

}

About ClosedShapes compareTo
��don’t have to return -1, 1.

– Any int less than 0 or int greater than 0 based on
2 objects

�the compareTo method makes use of the
getArea() method which is abstract in
ClosedShape
– how is that possible?

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

37

