"bit twiddling: 1. (pejorative) An exercise in tuning (see tune) in which incredible amounts of time and effort go to produce little noticeable improvement, often with the result that the code becomes incomprehensible."

- The Hackers Dictionary, version 4.4.7
Is This Algorithm Fast?

- Problem: given a problem, how fast does this code solve that problem?
- Could try to measure the time it takes, but that is subject to lots of errors
 - multitasking operating system
 - speed of computer
 - language solution is written in
"My program finds all the primes between 2 and 1,000,000,000 in 1.37 seconds."
– how good is this solution?

A. Good
B. Bad
C. It depends
Grading Algorithms

- What we need is some way to grade algorithms and their representation via computer programs for efficiency
 - both time and space efficiency are concerns
 - are examples simply deal with time, not space

- The grades used to characterize the algorithm and code should be independent of platform, language, and compiler
 - We will look at Java examples as opposed to pseudocode algorithms
Big O

- The most common method and notation for discussing the execution time of algorithms is "Big O"
- Big O is the *asymptotic execution time* of the algorithm
- Big O is an upper bounds
- It is a mathematical tool
- Hide a lot of unimportant details by assigning a simple grade (function) to algorithms
Typical Big O Functions – "Grades"

<table>
<thead>
<tr>
<th>Function</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N!$</td>
<td>factorial</td>
</tr>
<tr>
<td>2^N</td>
<td>Exponential</td>
</tr>
<tr>
<td>$N^d, d > 3$</td>
<td>Polynomial</td>
</tr>
<tr>
<td>N^3</td>
<td>Cubic</td>
</tr>
<tr>
<td>N^2</td>
<td>Quadratic</td>
</tr>
<tr>
<td>$\sqrt[N]{N}$</td>
<td>N Square root N</td>
</tr>
<tr>
<td>$N \log N$</td>
<td>N log N</td>
</tr>
<tr>
<td>N</td>
<td>Linear</td>
</tr>
<tr>
<td>\sqrt{N}</td>
<td>Root - n</td>
</tr>
<tr>
<td>$\log N$</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>1</td>
<td>Constant</td>
</tr>
</tbody>
</table>
Big O Functions

- N is the size of the data set.
- The functions do not include less dominant terms and do not include any coefficients.
- $4N^2 + 10N - 100$ is not a valid $F(N)$.
 - It would simply be $O(N^2)$
- It is possible to have two independent variables in the Big O function.
 - Example $O(M + \log N)$
 - M and N are sizes of two different, but interacting data sets
Actual vs. Big O

Time for algorithm to complete

Amount of data

Actual

Simplified
Formal Definition of Big O

- $T(N)$ is $O(F(N))$ if there are positive constants c and N_0 such that $T(N) \leq cF(N)$ when $N \geq N_0$
 - N is the size of the data set the algorithm works on
 - $T(N)$ is a function that characterizes the actual running time of the algorithm
 - $F(N)$ is a function that characterizes an upper bound on $T(N)$. It is a limit on the running time of the algorithm. (The typical Big functions table)
 - c and N_0 are constants
What it Means

- \(T(N) \) is the actual growth rate of the algorithm
 - can be equated to the number of executable statements in a program or chunk of code
- \(F(N) \) is the function that bounds the growth rate
 - may be upper or lower bound
- \(T(N) \) may not necessarily equal \(F(N) \)
 - constants and lesser terms ignored because it is a bounding function
Yuck

- How do you apply the definition?
- Hard to measure time without running programs and that is full of inaccuracies
- Amount of time to complete should be directly proportional to the number of statements executed for a given amount of data
- Count up statements in a program or method or algorithm as a function of the amount of data
 - This is one technique
- Traditionally the amount of data is signified by the variable N
Counting Statements in Code

- So what constitutes a statement?
- Can’t I rewrite code and get a different answer, that is a different number of statements?
- Yes, but the beauty of Big O is, in the end you get the same answer – remember, it is a simplification
Assumptions in For Counting Statements

- Once found accessing the value of a primitive is constant time. This is one statement:

  ```
  x = y; //one statement
  ```

- Mathematical operations and comparisons in boolean expressions are all constant time.

  ```
  x = y * 5 + z % 3; // one statement
  ```

- If statement constant time if test and maximum time for each alternative are constants

  ```
  if( iMySuit == DIAMONDS || iMySuit == HEARTS )
    return RED;
  else
    return BLACK;
  // 2 statements (boolean expression + 1 return)
Counting Statements in Loops

Attendence Question 2

Counting statements in loops often requires a bit of informal mathematical *induction*

What is output by the following code?

```java
int total = 0;
for(int i = 0; i < 2; i++)
 total += 5;
System.out.println(total);
```

A. 2  B. 5  C. 10  D. 15  E. 20
What is output by the following code?

```java
int total = 0;
// assume limit is an int >= 0
for(int i = 0; i < limit; i++)
 total += 5;
System.out.println(total);
```

A. 0  
B. limit  
C. limit * 5  
D. limit * limit  
E. limit^5
What is output by the following code?

```java
int total = 0;
for(int i = 0; i < 2; i++)
 for(int j = 0; j < 2; j++)
 total += 5;
System.out.println(total);
```

A. 0
B. 10
C. 20
D. 30
E. 40
Attendance Question 5

What is output by the following code?

```java
int total = 0;
// assume limit is an int >= 0
for(int i = 0; i < limit; i++)
 for(int j = 0; j < limit; j++)
 total += 5;
System.out.println(total);
```

A. 5
B. limit * limit
C. limit * limit * 5
D. 0
E. limit^5
Loops That Work on a Data Set

- The number of executions of the loop depends on the length of the array, `values`.

```java
public int total(int[] values) {
 int result = 0;
 for(int i = 0; i < values.length; i++)
 result += values[i];
 return result;
}
```

- How many many statements are executed by the above method
- \( N = \text{values.length} \). What is \( T(N) \)? \( F(N) \)?
Counting Up Statements

- `int result = 0;` \(1\) time
- `int i = 0;` \(1\) time
- `i < values.length;` \(N + 1\) times
- `i++` \(N\) times
- `result += values[i];` \(N\) times
- `return total;` \(1\) time

- \(T(N) = 3N + 4\)
- \(F(N) = N\)
- \(\text{Big O} = O(N)\)
Showing O(N) is Correct

- Recall the formal definition of Big O
  - T(N) is O( F(N) ) if there are positive constants c and N₀ such that T(N) ≤ cF(N) when N > N₀

- In our case given T(N) = 3N + 4, prove the method is O(N).
  - F(N) is N

- We need to choose constants c and N₀
- how about c = 4, N₀ = 5?
vertical axis: time for algorithm to complete. (approximate with number of executable statements)

\[ T(N), \text{ actual function of time. In this case } 3N + 4 \]

\[ c \cdot F(N), \text{ in this case, } c = 4, c \cdot F(N) = 4N \]

\[ F(N), \text{ approximate function of time. In this case } N \]

horizontal axis: \( N \), number of elements in data set

\( N_0 = 5 \)
Which of the following is true?

A. Method total is $O(N)$
B. Method total is $O(N^2)$
C. Method total is $O(N!)$
D. Method total is $O(N^N)$
E. All of the above are true
Just Count Loops, Right?

// assume mat is a 2d array of booleans
// assume mat is square with N rows,
// and N columns

int numThings = 0;
for(int r = row - 1; r <= row + 1; r++)
    for(int c = col - 1; c <= col + 1; c++)
        if( mat[r][c] )
            numThings++;

What is the order of the above code?
A. O(1)  B. O(N)  C. O(N^2)  D. O(N^3)  E. O(N^{1/2})
It is Not Just Counting Loops

// Second example from previous slide could be rewritten as follows:
int numThings = 0;
if( mat[r-1][c-1] ) numThings++;
if( mat[r-1][c] ) numThings++;
if( mat[r-1][c+1] ) numThings++;
if( mat[r][c-1] ) numThings++;
if( mat[r][c] ) numThings++;
if( mat[r][c+1] ) numThings++;
if( mat[r+1][c-1] ) numThings++;
if( mat[r+1][c] ) numThings++;
if( mat[r+1][c+1] ) numThings++;
Sidetrack, the logarithm

Thanks to Dr. Math

\[ 3^2 = 9 \]

\[ \text{likewise } \log_3 9 = 2 \]

\[ \text{"The log to the base 3 of 9 is 2."} \]

The way to think about log is:

\[ \text{"the log to the base x of y is the number you can raise x to to get y."} \]

\[ \text{Say to yourself "The log is the exponent." (and say it over and over until you believe it.)} \]

\[ \text{In CS we work with base 2 logs, a lot} \]

\[ \log_2 32 = ? \quad \log_2 8 = ? \quad \log_2 1024 = ? \quad \log_{10} 1000 = ? \]
When Do Logarithms Occur

- Algorithms have a logarithmic term when they use a divide and conquer technique
- the data set keeps getting divided by 2

```java
public int foo(int n)
{
 // pre n > 0
 int total = 0;
 while(n > 0)
 {
 n = n / 2;
 total++;
 }
 return total;
}
```

- What is the order of the above code?

A. O(1)  B. O(logN)  C. O(N)
D. O(Nlog N)  E. O(N^2)
Dealing with other methods

What do I do about method calls?

double sum = 0.0;
for (int i = 0; i < n; i++)
    sum += Math.sqrt(i);

Long way
– go to that method or constructor and count statements

Short way
– substitute the simplified Big O function for that method.
– if Math.sqrt is constant time, O(1), simply count
  sum += Math.sqrt(i); as one statement.
Dealing With Other Methods

public int foo(int[] list) {
    int total = 0;
    for (int i = 0; i < list.length; i++) {
        total += countDups(list[i], list);
    }
    return total;
}

// method countDups is O(N) where N is the length of the array it is passed

What is the Big O of foo?
A. O(1)  B. O(N)  C. O(NlogN)
D. O(N^2)  E. O(N!)
Quantifiers on Big O

- It is often useful to discuss different cases for an algorithm
- Best Case: what is the best we can hope for?
  - least interesting
- Average Case (a.k.a. expected running time): what usually happens with the algorithm?
- Worst Case: what is the worst we can expect of the algorithm?
  - very interesting to compare this to the average case
Best, Average, Worst Case

- To Determine the best, average, and worst case Big O we must make assumptions about the data set
- Best case -> what are the properties of the data set that will lead to the fewest number of executable statements (steps in the algorithm)
- Worst case -> what are the properties of the data set that will lead to the largest number of executable statements
- Average case -> Usually this means assuming the data is randomly distributed
  - or if I ran the algorithm a large number of times with different sets of data what would the average amount of work be for those runs?
Another Example

```java
public double minimum(double[] values)
{
 int n = values.length;
 double minValue = values[0];
 for(int i = 1; i < n; i++)
 if(values[i] < minValue)
 minValue = values[i];
 return minValue;
}
```

- T(N)? F(N)? Big O? Best case? Worst Case? Average Case?
- If no other information, assume asking average case
Independent Loops

// from the Matrix class
public void scale(int factor) {
    for (int r = 0; r < numRows(); r++)
        for (int c = 0; c < numCols(); c++)
            iCells[r][c] *= factor;
}

Assume an numRows() = N and numCols() = N.
In other words, a square Matrix.
What is the $T(N)$? What is the Big O?
A. $O(1)$   B. $O(N)$   C. $O(N\log N)$
D. $O(N^2)$ E. $O(N!)$
Significant Improvement – Algorithm with Smaller Big O function

Problem: Given an array of ints replace any element equal to 0 with the maximum value to the right of that element.

Given:
[0, 9, 0, 8, 0, 0, 7, 1, -1, 0, 1, 0]

Becomes:
[9, 9, 8, 8, 7, 7, 7, 1, -1, 1, 1, 0]
Replace Zeros – Typical Solution

```java
public void replace0s(int[] data){
 int max;
 for(int i = 0; i < data.length - 1; i++){
 if(data[i] == 0){
 max = 0;
 for(int j = i+1; j<data.length; j++)
 max = Math.max(max, data[j]);
 data[i] = max;
 }
 }
}
```

Assume most values are zeros.

Example of a dependent loops.
Replace Zeros – Alternate Solution

public void replace0s(int[] data){
    int max =
        Math.max(0, data[data.length - 1]);
    int start = data.length - 2;
    for(int i = start; i >= 0; i--){
        if( data[i] == 0 )
            data[i] = max;
        else
            max = Math.max(max, data[i]);
    }
}

Big O of this approach?

A. O(1)  B. O(N)  C. O(NlogN)
D. O(N^2)  E. O(N!)

CS 307 Fundamentals of Computer Science
Algorithm Analysis
A Caveat

What is the Big O of this statement in Java?

\[ \text{int}\[\text{n}\]
\text{list} = \text{new int}[\text{n}]; \]

A. O(1)  
B. O(N)  
C. O(NlogN)  
D. O(N^2)  
E. O(N!)  

Why?
Summing Executable Statements

- If an algorithm's execution time is $N^2 + N$ the it is said to have $O(N^2)$ execution time not $O(N^2 + N)$
- When adding algorithmic complexities the larger value dominates
- Formally, a function $f(N)$ dominates a function $g(N)$ if there exists a constant value $n_0$ such that for all values $N > n_0$ it is the case that $g(N) < f(N)$
Example of Dominance

- Look at an extreme example. Assume the actual number as a function of the amount of data is:
  \[ \frac{N^2}{10000} + 2N \log_{10} N + 100000 \]
- Is it plausible to say the \( N^2 \) term dominates even though it is divided by 10000 and that the algorithm is \( O(N^2) \)?
- What if we separate the equation into \( \left( \frac{N^2}{10000} \right) \) and \( 2N \log_{10} N + 100000 \) and graph the results.
For large values of $N$ the $N^2$ term dominates so the algorithm is $O(N^2)$

When does it make sense to use a computer?
Comparing Grades

- Assume we have a problem
- Algorithm A solves the problem correctly and is $O(N^2)$
- Algorithm B solves the same problem correctly and is $O(N \log_2 N)$
- Which algorithm is faster?
- One of the assumptions of Big O is that the data set is large.
- The "grades" should be accurate tools if this is true
**Running Times**

- Assume $N = 100,000$ and processor speed is $1,000,000,000$ operations per second

<table>
<thead>
<tr>
<th>Function</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^N$</td>
<td>$3.2 \times 10^{30086}$ years</td>
</tr>
<tr>
<td>$N^4$</td>
<td>3171 years</td>
</tr>
<tr>
<td>$N^3$</td>
<td>11.6 days</td>
</tr>
<tr>
<td>$N^2$</td>
<td>10 seconds</td>
</tr>
<tr>
<td>$\sqrt{N} \cdot N$</td>
<td>0.032 seconds</td>
</tr>
<tr>
<td>$N \log N$</td>
<td>0.0017 seconds</td>
</tr>
<tr>
<td>$N$</td>
<td>0.0001 seconds</td>
</tr>
<tr>
<td>$\sqrt{N}$</td>
<td>$3.2 \times 10^{-7}$ seconds</td>
</tr>
<tr>
<td>$\log N$</td>
<td>$1.2 \times 10^{-8}$ seconds</td>
</tr>
</tbody>
</table>
Theory to Practice OR
Dykstra says: "Pictures are for the Weak."

<table>
<thead>
<tr>
<th></th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
<th>16000</th>
<th>32000</th>
<th>64000</th>
<th>128K</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>O(N)</strong></td>
<td>2.2x10^{-5}</td>
<td>2.7x10^{-5}</td>
<td>5.4x10^{-5}</td>
<td>4.2x10^{-5}</td>
<td>6.8x10^{-5}</td>
<td>1.2x10^{-4}</td>
<td>2.3x10^{-4}</td>
<td>5.1x10^{-4}</td>
</tr>
<tr>
<td><strong>O(N\log N)</strong></td>
<td>8.5x10^{-5}</td>
<td>1.9x10^{-4}</td>
<td>3.7x10^{-4}</td>
<td>4.7x10^{-4}</td>
<td>1.0x10^{-3}</td>
<td>2.1x10^{-3}</td>
<td>4.6x10^{-3}</td>
<td>1.2x10^{-2}</td>
</tr>
<tr>
<td><strong>O(N^{3/2})</strong></td>
<td>3.5x10^{-5}</td>
<td>6.9x10^{-4}</td>
<td>1.7x10^{-3}</td>
<td>5.0x10^{-3}</td>
<td>1.4x10^{-2}</td>
<td>3.8x10^{-2}</td>
<td>0.11</td>
<td>0.30</td>
</tr>
<tr>
<td><strong>O(N^2)</strong> ind.</td>
<td>3.4x10^{-3}</td>
<td>1.4x10^{-3}</td>
<td>4.4x10^{-3}</td>
<td>0.22</td>
<td>0.86</td>
<td>3.45</td>
<td>13.79</td>
<td>(55)</td>
</tr>
<tr>
<td><strong>O(N^2)</strong> dep.</td>
<td>1.8x10^{-3}</td>
<td>7.1x10^{-3}</td>
<td>2.7x10^{-2}</td>
<td>0.11</td>
<td>0.43</td>
<td>1.73</td>
<td>6.90</td>
<td>(27.6)</td>
</tr>
<tr>
<td><strong>O(N^3)</strong></td>
<td>3.40</td>
<td>27.26</td>
<td>(218)</td>
<td>(1745) 29 min.</td>
<td>(13,957) 233 min</td>
<td>(112k) 31 hrs</td>
<td>(896k) 10 days</td>
<td>(7.2m) 80 days</td>
</tr>
</tbody>
</table>

**Times in Seconds.** Red indicates predicated value.

CS 307 Fundamentals of Computer Science
Algorithm Analysis
Change between Data Points

<table>
<thead>
<tr>
<th></th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
<th>16000</th>
<th>32000</th>
<th>64000</th>
<th>128K</th>
<th>256k</th>
<th>512k</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(N)</td>
<td>-</td>
<td>1.21</td>
<td>2.02</td>
<td>0.78</td>
<td>1.62</td>
<td>1.76</td>
<td>1.89</td>
<td>2.24</td>
<td>2.11</td>
<td>1.62</td>
</tr>
<tr>
<td>O(NlogN)</td>
<td>-</td>
<td>2.18</td>
<td>1.99</td>
<td>1.27</td>
<td>2.13</td>
<td>2.15</td>
<td>2.15</td>
<td>2.71</td>
<td>1.64</td>
<td>2.40</td>
</tr>
<tr>
<td>O(N^{3/2})</td>
<td>-</td>
<td>1.98</td>
<td>2.48</td>
<td>2.87</td>
<td>2.79</td>
<td>2.76</td>
<td>2.85</td>
<td>2.79</td>
<td>2.82</td>
<td>2.81</td>
</tr>
<tr>
<td>O(N^2) ind</td>
<td>-</td>
<td>4.06</td>
<td>3.98</td>
<td>3.94</td>
<td>3.99</td>
<td>4.00</td>
<td>3.99</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O(N^2) dep</td>
<td>-</td>
<td>4.00</td>
<td>3.82</td>
<td>3.97</td>
<td>4.00</td>
<td>4.01</td>
<td>3.98</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O(N^3)</td>
<td>-</td>
<td>8.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Value obtained by $\frac{\text{Time}_x}{\text{Time}_{x-1}}$
Okay, Pictures

Results on a 2Ghz laptop

- Time
- Value of N

Graph shows the relationship between time and value of N for different algorithms: N, NlogN, NsqrtN, N^2.
Put a Cap on Time

Results on a 2Ghz laptop

Time

Value of N

CS 307 Fundamentals of Computer Science
Algorithm Analysis
No $O(N^2)$ Data

Results on a 2Ghz laptop

Time

Value of $N$

Value

CS 307 Fundamentals of Computer Science
Algorithm Analysis
Just $O(N)$ and $O(N \log N)$

Results on a 2Ghz laptop

Value of $N$ vs. Time

$N$ and $N \log N$
Just $O(N)$
Reasoning about algorithms

- We have an $O(N)$ algorithm,
  - For 5,000 elements takes 3.2 seconds
  - For 10,000 elements takes 6.4 seconds
  - For 15,000 elements takes …?
  - For 20,000 elements takes …?

- We have an $O(N^2)$ algorithm
  - For 5,000 elements takes 2.4 seconds
  - For 10,000 elements takes 9.6 seconds
  - For 15,000 elements takes …?
  - For 20,000 elements takes …?
A Useful Proportion

- Since \( F(N) \) is characterizes the running time of an algorithm the following proportion should hold true:
  \[
  \frac{F(N_0)}{F(N_1)} \approx \frac{\text{time}_0}{\text{time}_1}
  \]

- An algorithm that is \( O(N^2) \) takes 3 seconds to run given 10,000 pieces of data.
  - How long do you expect it to take when there are 30,000 pieces of data?
  - common mistake
  - logarithms?
### 10⁹ instructions/sec, runtimes

<table>
<thead>
<tr>
<th>$N$</th>
<th>$O(\log N)$</th>
<th>$O(N)$</th>
<th>$O(N \log N)$</th>
<th>$O(N^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.0000000003</td>
<td>0.000000001</td>
<td>0.000000033</td>
<td>0.0000001</td>
</tr>
<tr>
<td>100</td>
<td>0.0000000007</td>
<td>0.000000010</td>
<td>0.000000664</td>
<td>0.0001000</td>
</tr>
<tr>
<td>1,000</td>
<td>0.0000000010</td>
<td>0.000001000</td>
<td>0.000100000</td>
<td>0.001</td>
</tr>
<tr>
<td>10,000</td>
<td>0.0000000013</td>
<td>0.000010000</td>
<td>0.000132900</td>
<td>0.1 min</td>
</tr>
<tr>
<td>100,000</td>
<td>0.0000000017</td>
<td>0.000100000</td>
<td>0.001661000</td>
<td>10 seconds</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.0000000020</td>
<td>0.001</td>
<td>0.0199</td>
<td>16.7 minutes</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>0.0000000030</td>
<td>1.0 second</td>
<td>30 seconds</td>
<td>31.7 years</td>
</tr>
</tbody>
</table>
Why Use Big O?

- As we build data structures Big O is the tool we will use to decide under what conditions one data structure is better than another.
- Think about performance when there is a lot of data.
  - "It worked so well with small data sets..."
  - Joel Spolsky, Schlemiel the painter's Algorithm
- Lots of tradeoffs
  - Some data structures good for certain types of problems, bad for other types.
  - Often able to trade SPACE for TIME.
  - Faster solution that uses more space
  - Slower solution that uses less space.
Big O Space

- Less frequent in early analysis, but just as important are the space requirements.
- Big O could be used to specify how much space is needed for a particular algorithm.
Formal Definition of Big O (repeated)

- \( T(N) \) is \( O( F(N) ) \) if there are positive constants \( c \) and \( N_0 \) such that \( T(N) \leq cF(N) \) when \( N \geq N_0 \)
  - \( N \) is the size of the data set the algorithm works on
  - \( T(N) \) is a function that characterizes the *actual* running time of the algorithm
  - \( F(N) \) is a function that characterizes an upper bounds on \( T(N) \). It is a limit on the running time of the algorithm
  - \( c \) and \( N_0 \) are constants
More on the Formal Definition

- There is a point $N_0$ such that for all values of $N$ that are past this point, $T(N)$ is bounded by some multiple of $F(N)$.
- Thus if $T(N)$ of the algorithm is $O(N^2)$ then, ignoring constants, at some point we can *bound* the running time by a quadratic function.
- Given a *linear* algorithm it is *technically correct* to say the running time is $O(N^2)$. $O(N)$ is a more precise answer as to the Big O of the linear algorithm.
  - thus the caveat “pick the most restrictive function” in Big O type questions.
What it All Means

- $T(N)$ is the actual growth rate of the algorithm
  - can be equated to the number of executable statements in a program or chunk of code
- $F(N)$ is the function that bounds the growth rate
  - may be upper or lower bound
- $T(N)$ may not necessarily equal $F(N)$
  - constants and lesser terms ignored because it is a bounding function
Other Algorithmic Analysis Tools

- **Big Omega** $T(N)$ is $\Omega(F(N))$ if there are positive constants $c$ and $N_0$ such that $T(N) \geq cF(N)$ when $N \geq N_0$
  - Big O is similar to less than or equal, an upper bound
  - Big Omega is similar to greater than or equal, a lower bound

- **Big Theta** $T(N)$ is $\Theta(F(N))$ if and only if $T(N)$ is $O(F(N))$ and $T(N)$ is $\Omega(F(N))$.
  - Big Theta is similar to equals
### Relative Rates of Growth

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Mathematical Expression</th>
<th>Relative Rates of Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big O</td>
<td>$T(N) = \mathcal{O}(F(N))$</td>
<td>$T(N) \leq F(N)$</td>
</tr>
<tr>
<td>Big $\Omega$</td>
<td>$T(N) = \Omega(F(N))$</td>
<td>$T(N) \geq F(N)$</td>
</tr>
<tr>
<td>Big $\theta$</td>
<td>$T(N) = \theta(F(N))$</td>
<td>$T(N) = F(N)$</td>
</tr>
</tbody>
</table>

"In spite of the additional precision offered by Big Theta, Big O is more commonly used, except by researchers in the algorithms analysis field" - Mark Weiss