
 CS 307 – Midterm 2 – Fall 2008 1

Exam Number:
Points off 1 2 3 4 5 Total off Net Score

CS 307 – Midterm 2 – Fall 2008

Name__

UTEID login name _______________________________

TA's Name: Mikie Ron Sarah (Circle One)

Instructions:

1. Please turn off your cell phones and other electronic devices.
2. There are 5 questions on this test.
3. You have 2 hours to complete the test.
4. You may not use a calculator on the test.
5. When code is required, write Java code.
6. When writing methods, assume the preconditions of the method are met. Do not write code to check

the preconditions.
7. In coding question you may add helper methods if you wish.
8. After completing the test please turn it in to one of the test proctors and show them your UTID.

1. (2 points each, 30 points total) Short answer. Place you answers on the attached answer sheet.

• If the code contains a syntax error or other compile error, answer “compile error”.
• If the code would result in a runtime error / exception answer “Runtime error”.
• If the code results in an infinite loop answer “Infinite loop”.

Recall that when asked for Big O your answer should be the most restrictive correct Big O function. For
example Selection Sort has an average case Big O of O(N2), but per the formal definition of Big O it is
correct to say Selection Sort also has a Big O of O(N3) or O(N4). I want the most restrictive correct Big O
function. (Closest without going under.)

A. What is the worst case Big O of the following method? N = n

public int a(int n){
 int count = 0;
 int limit = 3 * n;
 for(int i = 1; i <= limit; i++){
 if(limit % i == 0)
 count++;
 }
 return count;
}

 CS 307 – Midterm 2 – Fall 2008 2

B. What is the best case Big O of the following method? N = data.length

public int b(int[] data, int tgt){
 int count = 0;
 for(int i = 0; i < data.length; i++){
 for(int j = 0; j < data.length; j++){
 if(data[i] * data[j] == tgt)
 count++;
 }
 }

 for(int i = 0; i < data.length; i++){
 if(data[i] == tgt)
 count++;
 }

 return count;
}

C. What is the Big O of the following method? N = data.size()

public int c(ArrayList<Integer> data){
 int sum = 0;
 for(int i = 1; i < data.size(); i *= 3)
 sum += data.get(i);
 return sum;
}

D. What is the Big O of the following method? N = data.length. Method numPresent is O(N).

public int d(int[] data){
 int sum = 0;
 for(int i = 1; i <= data.length; i *= 2)
 sum += numPresent(data, i);
 return sum;
}

E. What is the Big O of adding an element at position 0 to an array based list that already
 contains N elements?

F. What is the Big O of adding an element at position 0 to a linked list that already
 contains N elements?

G. What is the Big O of the following method? N = data.length.

public int g(LinkedList<Integer> data){
 int total = 0;
 for(int i = 0; i < data.size(); i++)
 for(int j = i; j < data.size(); j++)
 total += data.get(i) * data.get(j);
 return total;
}

 CS 307 – Midterm 2 – Fall 2008 3

H. What is the T(N) of the following method? N = data.length. data is a square matrix with the
 same number of columns as rows. other will be the same size as data.

public int sub(int[][] data, int[][] other){
 int total = 0;
 int temp = 0;
 for(int r = 0; r < data.length; r++){
 for(int c = 0; c < data.length; c++){
 temp = data[r][c] - other[r][c];
 total += temp * 2;
 }
 }
 return total;
}

I. Given an unsorted array of 10,000 integers, how many of the integers will be checked when
 doing a search for a value that is not present in the array?

J. A method is O(N2). It takes 1 second for the method to complete on a data set with 5,000 items.
 What is the expected time for the method to complete with a data set of 20,000 items?

K. A method is O(log2N). It takes 0.020 seconds for the method to complete on a data set with

1,000,000 items. What is the expected time for the method to complete with a data set of 2,000,000
items? Recall log21,000,000 ~= 20.

L. Consider the following timing data for a sorting method. The method sorts data into ascending order.

In each case there are N distinct integers (no duplicates) in the array and they are already sorted into
ascending order. Of the sorting algorithms we studied which one is most likely used in the method?

 N time for sorting method to complete
 200,000 1.000 second
 400,000 2.000 seconds
 800,000 4.000 seconds
 1,600,000 8.000 seconds
 3,200,000 16.000 seconds

M. What is returned by the method call m(7)?

public int m(int val){
 int result = 0;
 if(val <= 3)
 result = 2;
 else
 result = m(val - 2) + (val - 2);
 return result;
}

 CS 307 – Midterm 2 – Fall 2008 4

N. What is returned by the method call n("deep")?

public String n(String s){
 if(s.length() == 0)
 return "";
 else
 return s.charAt(0) + n(s.substring(1))
 + s.charAt(s.length() - 1);
}

O. Consider the following methods from the Java ArrayList class.

Method Summary

 void add(E o)
 Appends the specified element to the end of this list.

 void add(int index, E element)
 Inserts the specified element at the specified position in this list.

 E get(int index)
 Returns the element at the specified position in this list.

E remove(int index)
 Removes the element at the specified position in this list. Return the element that is
removed from the list.

 E set(int index, E element)
 Replaces the element at the specified position in this list with the specified element.
Returns the element that was previously at index.

 int size()
 Returns the number of elements in this list.

What is output when method k is called?

public void k(){
 ArrayList<String> ls = new ArrayList<String>();

 ls.add("A");
 ls.add("B");
 ls.add(0, "A");
 ls.set(1, "B");
 ls.add(0, ls.get(ls.size() - 1));

 for(String s : ls)
 System.out.print(s);
}

 CS 307 – Midterm 2 – Fall 2008 5

Scratch Paper

 CS 307 – Midterm 2 – Fall 2008 6

2. (Implementing data structures, 20 points). Write an instance method for a LinkedList class
named numPresent. The method returns the number of elements in the linked list that are equal
to a given value.

This LinkedList class uses singly linked nodes. Each node stores a single Object and a link
to the next node.

• This LinkedList class only contains a reference to the first node in the list.
• The last node in the list's next reference is set to null.
• When the list is empty head is set to null.
• The LinkedList does not contain a size instance variable.

Examples:
[1, 5, 0, 5, 6].numPresent(1) returns 1
[1, 5, 0, 5, 6].numPresent(0) returns 1
[1, 5, 0, 5, 6].numPresent(5) returns 2
[1, 5, 0, 5, 6].numPresent(12) returns 0
[].numPresent(12) returns 0
[12].numPresent(12) returns 1
[12, 12, 12, 12].numPresent(12) returns 4

• You may not use any other methods in the LinkedList class, but you may create
your own helper methods if you wish.

• Your solution must be O(1) space. In other words you cannot use an auxiliary array or
ArrayList.

public class Node
{ public Node(Object value, Node next)

 public Object getData()

 public Node getNext()

 public void setValue(Object value)

 public void setNext(Node next)
}

public class LinkedList
{ // points to the first node in the list
 // if the list is empty, head == null
 private Node head;

 // pre: value != null
 // post: return the number of elements in this list
 // equal to value
 public int numPresent(Object value){
 // complete this method on the next page

 CS 307 – Midterm 2 – Fall 2008 7

// pre: value != null
// post: return the number of elements in this list
// equal to value
public int numPresent(Object value){

 CS 307 – Midterm 2 – Fall 2008 8

3. (Implementing Data Structures 20 points) Consider an array based list class like the one we
developed in class. The class is named GenericList. The class uses a native array of
Objects as its internal storage container. The internal storage container may have extra capacity
and thus its length will be greater than or equal to the length of the list that is being represented.

Complete an instance method that removes all elements from the list equal to some given value. The
relative order of elements in the list that are not equal to the given value is unchanged.

• Your method may not use any other methods in the GenericList class, but you
may create your own helper methods if you wish.

• You may use native arrays in your solution.
• You may not use any other Java classes (other than native arrays) in your solution

other than calling their equals methods.

Here are some examples of the expected behavior of the method on various lists:
[].removeAll(A) -> []
[B, C, D, B, D, E].removeAll(A) -> [B, C, D, B, D, E]
[B, C, D, B, D, E].removeAll(B) -> [C, D, D, E]
[B, C, D, B, D, E].removeAll(D) -> [B, C, B, E]
[B, C, D, B, D, E].removeAll(122) -> [B, C, D, B, D, E]
[B, C, D, B, D, E].removeAll(b) -> [B, C, D, B, D, E]

public class GenericList{

 // container is never set to null
 private Object[] container; // internal storage container

 private int size; // number of elements in list

 // pre: value != null
 // post: all elements of this list equal to value have been
 // removed. The relative order of elements not equal to
 // value is unchanged. size has been updated correctly
 public void removeAll(Object obj){
 // Complete this method on the next page.
 //
 // Complete this method on the next page.
 //
 // Complete this method on the next page.
 //
 // Complete this method on the next page.

 CS 307 – Midterm 2 – Fall 2008 9

// pre: value != null
// post: all elements of this list equal to value have been
/ removed. The relative order of elements not equal to
// value is unchanged. size has been updated correctly
public void removeAll(Object obj){

 CS 307 – Midterm 2 – Fall 2008 10

4. (Using data structures, 15 points) Write a method that determines how many elements of a
SortedSet are greater than a given value. The elements of the SortedSet are in ascending
order. This method is not in the SortedSet class so you do not have access to the
SortedSet's storage container or other instance variables.

• Assume the SortedSet class in the question is generic based on Java's generic syntax.
• You may not use any other Java classes to solve this problem, except the iterator class,

other classes' equals method and the compareTo method.
• The SortedSet is not altered as a result of this method.
• Recall, do not write code to check the precondition
• Your method must be O(1) space. In other words you cannot use an auxiliary array.

Examples:

().numGreater(0) -> returns 0
(1, 5, 10, 12, 50, 100).numGreater(0) -> returns 6
(1, 5, 10, 12, 50, 100).numGreater(1) -> returns 5
(1, 5, 10, 12, 50, 100).numGreater(12) -> returns 2
(1, 5, 10, 12, 50, 100).numGreater(200) -> returns 0

Here are the methods from the SortedSet class you may use:

Iterator<C> iterator()
 Returns an iterator over the elements in this set in ascending order.
boolean add(C obj)
 Adds the specified element to this set if it is not already present.
boolean contains(Object o)
 Returns true if this set contains the specified element.
int size()
 Returns the number of elements in this set (its cardinality).
boolean remove(Object o)
 Removes the specified element from this set if it is present.

Recall the methods from the Iterator interface:

 boolean hasNext()
 Returns true if the iteration has more elements.
C next()
 Returns the next element in the iteration.
void remove()
 Removes from the underlying collection the last element returned by the iterator

Recall the compareTo method from the Comparable interface.

int compareTo(Object o)

Compares this object with the specified object for order. Returns a negative integer, zero, or
a positive integer as this object is less than, equal to, or greater than the specified object.

 CS 307 – Midterm 2 – Fall 2008 11

Complete the following method:

// pre: set != null, value != null, all elements of set are
// the same data type and that data type implements the Comparable
// interface, value is the same data type as the elements of set
public int numGreater(SortedSet set, Comparable value){

 CS 307 – Midterm 2 – Fall 2008 12

5. (Recursion, 15 points) The knapsack problem or "thief's dilemma" is this: Given a sack that has a
weight limit and a set of items each of which has a value and a weight, determine which items
should be put in the sack to maximize the value of the items in the sack.

For example, consider if we had the following items: (There is only one of each item.)

Weight in pounds Value in dollars
12 4
2 2
2 1
1 1
4 10

and had a backpack that could hold 15 pounds maximum. (We are assuming the items are all very
small and that we are not constrained by space, only weight. In other words if all the items together
weighed less than the weight limit of the backpack they would all fit.)

The optimum solution for the above example is to take the all of the items expect the one that
weighs 12 pounds and is worth 4 dollars.

Write a method that determines the maximum value that can be achieved given an ArrayList of
Items and the maximum weight the backpack can hold. Note, your method does not need to
determine which Items to include, only the maximum value that can be achieved. (This simplifies
the problem somewhat.)

The Item class only has two methods:

int getWeight() Returns the weight of this item in pounds.
int getValue() Returns the value of this item in dollars.

Complete the following method: (There are no class, time, or space restrictions.)

// pre: things != null, capacity >= 0
// post: return the maximum possible value that can be obtained
// with the Items in the ArrayList named things and the given
// capacity. things is unaltered after this method completes.
public int getMaxValue(ArrayList<Item> things, int capacity){

 // Complete this method on the next page.
 //
 // Complete this method on the next page.
 //
 // Complete this method on the next page.
 //
 // Complete this method on the next page.

 CS 307 – Midterm 2 – Fall 2008 13

// pre: things != null, capacity >= 0
// post: return the maximum possible value that can be obtained
// with the Items in the ArrayList named things and the given
// capacity. things is unaltered after this method completes.
public int getMaxValue(ArrayList<Item> things, int capacity){

 CS 307 – Midterm 2 – Fall 2008 14

Scratch Paper

 CS 307 – Midterm 2 – Fall 2008 15

Name:_______________________________

TAs name: Mikie Ron Sarah (Circle One)

Answer sheet for question 1, short answer questions

A. _______________________________

B. _______________________________

C. _______________________________

D. _______________________________

E. _______________________________

F. _______________________________

G. _______________________________

H. _______________________________

I. _______________________________

J. _______________________________

K. _______________________________

L. _______________________________

M. _______________________________

N. _______________________________

O. _______________________________

