
                   CS 314 – Final Exam – Fall 2017  1 

    Points off            1            2            3            4            5           6       Total off      Net Score 

        

 

CS 314 – Final Exam – Fall 2017 

 

Your Name____________________________________ 

 

Your UTEID __________________________________  

 

Instructions:  
1. There are 6 questions on this test. 100 points available. Scores will be scaled to 300 points.  

2. You have 3 hours to complete the test. 

3. Place your final answers on this test, not on scratch paper. Answer in pencil.  

4. You may not use any electronic devices while taking the test. 

5. When answering coding questions, ensure you follow the restrictions of the question. 

6. Do not write code to check the preconditions. 

7. On coding questions, you may implement your own helper methods. 

8. On coding questions make your solutions as efficient as possible given the restrictions of the question. 

9. Test proctors will not answer any questions regarding the content of the exam. If you think a question 

is ambiguous or has an error, state your assumptions and answer based on those assumptions. 

10. When you complete the test show the proctor your UTID, give them the test and all the scratch paper, 

used or not, and leave the room quietly. 

 

1. Short answer - 1 point each, 20 points total. Place your answer on the line next to or under the 

question.  Assume all necessary imports have been made. 

a. If a question contains a syntax error or other compile error, answer “Compile error”. 

b. If a question would result in a runtime error or exception answer “Runtime error”. 

c. If a question results in an infinite loop answer “Infinite loop”. 

d. Recall when asked for Big O your answer shall be the most restrictive correct Big O 

function. For example, Selection Sort has an average case Big O of O(N2), but per the 

formal definition of Big O it is correct to say Selection Sort also has a Big O of O(N3) or 

O(N4). I want the most restrictive, correct Big O function. (Closest without going under.) 

 

A. The root of a complete binary tree has a height of 4. What is the minimum number of nodes in the 

tree that have a depth of 4? 

          ________________________ 
 

B. The root of a complete binary tree has a height of 5. What is the maximum number of nodes in the 

tree that have a depth of 5?   

          ____________________ 

 

C. The indegree of a vertex V in a directed graph is the number of edges that originate at other 

vertices and lead directly to V. Recall our graph class on assignment 11 used an adjacency list of 

edges. Recall one alternative for representing a graph is an adjacency matrix. Which 

representation is faster when determining the indegree of a vertex and why? 

 

 

 
______________________________________________________________________ 



                   CS 314 – Final Exam – Fall 2017  2 

D. Most implementations of graphs do not use an adjacency matrix to represent the graph. Why not? 

 

 
______________________________________________________________________ 

 

          

E. Consider the following array which is the internal storage container for a min heap of size 9. Draw 

the min heap as a tree. Element indices are shown in the top row and the element is shown in the 

bottom row. 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 3 5 10 12 8 37 19 25 13 21 42 53 60 65 62 

 

 

  

 

 

 

 

 

 

 
 

  

   

 

F. The value 3 is added to the heap in part E. Draw the new heap as a tree. 

 

 

 

 

 

 

 

 

 

 

 
           

 

G. What is the worst case order for the remove method of a hash table that uses open addressing and 

linear probing to resolve collisions and currently has N elements? The hash table uses a load limit 

of 0.75. When does the worst case occur? 

 

 

 

 
 ____________________________________________________________  



                   CS 314 – Final Exam – Fall 2017  3 

H. What is the path rule for Red Black Trees? 

 

 

 

 

 
 ____________________________________________________________ 

  

 

I. What is the minimum number of bits needed to encode 20 distinct items? 

 

          ________________________ 

 

 

J. The following method takes 0.0001 seconds to complete when n = 1000. What is the expected 

time for the method to complete when n = 4000? 

          ________________________ 
public static double[] j(int n) { 

 double[] result = new double[n]; 

 sort(result); // uses mergesort as shown in class 

 return result; 

} 

 

 

K. What is returned by the method call k(7)?    ________________________ 

 
public static int k(int x) { 

 if (x <= 3) 

  return x * 2; 

 return k(x - 3) + x + k(x - 1); 

} 

 

 
 ____________________________________________________________ 

 

L. The following method takes 40 seconds to complete when data.length = 500,000 and the 

maximum value in the array has 9 digits. What is the expected time for the method to complete 

when data.length = 1,000,000 and the maximum value in the array has 9 digits? 

 

          ________________________ 

          
public static void el(int[] data) { 

 int max = findMax(data); // linear search 

 sort(data, max); // radix sort 

} 

 

  

  



                   CS 314 – Final Exam – Fall 2017  4 

M. The following method takes 1 second to complete when n = 1_000_000. How long do you 

expect the method to take when n = 2_000_000? The PriorityQueue class uses a min 

heap as its internal storage container. 
           _______________ 

 
 public static PriortyQueue<Integer> m(int n) { 

  PriortyQueue<Integer> result = new PriorityQueue<Integer>(); 

  for (int i = 0; i < n; i++) { 

   result.enqueue(n); 

  } 

  return result; 

 } 

 

 

N. Consider the following SortedSet class implementation. 

 
 private ArrayList<E> con; 

 

 public SortedSet() { 

  con = new ArrayList<>(); 

 } 

 

 public boolean add(E val) { 

  if (!this.contains(val)) { // uses binary search 

   con.add(val); 

   sort(con); // mergesort 

   return true; 

  } 

  return false; 

 } 

 

 What is the order (Big O) of the following method? Assume Math.random is O(1). 

 

          ________________________ 
     public static SortedSet<Double> getSet(int n) { 

  SortedSet<Double> result = new SortedSet<>(); 

  for (int i = 0; i < n; i++) { 

   result.add(Math.random()); 

  } 

  return result; 

 } 

  

O. The Collections.bianrySearch method accepts any collection that implements the Java 

List interface. The Java LinkedList class implements the List interface. If the 

Collections.binarySearch method used the binary search algorithm presented in class, 

what would the average case order (Big O) of the method be when passed a LinkedList? 

 
          _________________ 



                   CS 314 – Final Exam – Fall 2017  5 

P.  Given the undirected, weighted graph below, what is the cost of the lowest cost path from vertex 

D to vertex G? 
         _________________________ 

 
 

 

Q. Given the graph above, what is the cost of a minimum spanning tree for the graph? 

 
          _________________ 

 
 

R.  What is output by the following code? It uses the Java Stack class. 

 
Stack<Integer> st = new Stack<>(); 

for (int i = 1; i < 50; i += i + 1) { 

 st.push(i - 1); 

} 

for (int i = 0; i < st.size(); i++) { 

 System.out.print(st.pop() + " "); 

} 

      ________________________________________ 

 

 S.  500,000 distinct items that are in random order are added to an initially empty binary search tree 

that uses the naive insertion algorithm. What is the expected height of the resulting tree? Given an 

actual value, not a bounds. 
          ___________________ 

 

T. The following method takes 4 seconds to complete when n = 1_000_000. What is the 

expected time to complete when n = 2_000_000? 

 
          ___________________ 

public static TreeSet<Double> t(int n) { 

 TreeSet<Double> result = new TreeSet<>(); 

 for (int i = 0 ; i < n; i++) { 

  result.add(i * 1.0); 

 } 

 return result; 

}  



                   CS 314 – Final Exam – Fall 2017  6 

2. Linked Lists - 16 points.  Complete the insertAndRemove instance method for a linked list class. 

The method inserts a given value after each occurrence of a target value and removes all occurrences of a 

second target value.  

 

 You may not use any other methods in the LinkedList314 class unless you implement 

them yourself as a part of your solution. 

 The LinkedList314 class uses doubly linked nodes. 

 The list only has a reference to the first node in the chain of nodes. 

 When the list is empty, first stores null. 

 If the list is not empty, the last node in the chain of nodes next reference stores null and the 

first node's prev reference stores null. 

 You may use the nested Node class.   

 You may not use any other Java classes or native arrays.  

 You may use the Object equals method.  

 
public class LinkedList314<E> { 

 // Refers to first node in the chain of nodes.  

 private Node<E> first;  

 

 // No other instance variables 

 

 // The nested Node class.  

 private static class Node { 

  private E data; 

  private Node<E> next; 

  private Node<E> prev; 

  // No other methods. Default constructor only. 

 } 

} 

 

Examples of calls to insertAndRemove(E insertAfter, E insertVal, E remove). 

Values shown in the examples are Strings. The method returns the number of elements in the new list 

 
[A, D, A, B, A].insertAndRemove(A, M, B) -> [A, M, D, A, M, A, M] 

returns 7 

 

[A, D, A, B, A].insertAndRemove(J, M, C) -> [A, D, A, B, A] returns 5 

 

[].insertAndRemove(A, M, B) -> [] returns 0 

 

[B, B, B].insertAndRemove(A, M, B) -> [] returns 0 

 

[B, J, A, J, B].insertAndRemove(A, J, B) -> [J, A, J, J] returns 4 

 

Complete the insertAndRemove method for the LinkedList314 class on the next page 

  



                   CS 314 – Final Exam – Fall 2017  7 

/* pre: insertAfter != null, insertVal != null, remove != null 

 insertAfter, insertVal, and remove are all distinct values. 

   post: per the question description. */ 

public int insertAndRemove(E insertAfter, E insertVal, E remove) {  



                   CS 314 – Final Exam – Fall 2017  8 

3. Trees -16 points. Complete a method for a binary tree class that ensures the tree is perfect up to and 

including a given depth. Recall a perfect tree has the maximum number of nodes at every level. For this 

method you are only ensuring the tree is perfect up to and including the given depth. 

 

For example, given the tree on the left and a depth of 2, the resulting tree is shown on the right. The value 

to place in the new nodes is passed as a parameter to the method. 

                 
Another example with the depth equal to 2. Original tree on the left and resulting tree on the right. 

 
Use the given BinaryTree and BNode class. Do not use any other Java classes or methods.  

 

public class BinaryTree { 

 

 private int size; // number of elements in this binary tree 

 private BNode root; //root of tree. root == null iff size == 0 

 

 private static class BNode { 

 

  private int data; 

  private BNode left; // left child, null if no left child 

  private BNode right; // right child, null no rt. child 

  

  public BNode(int d) { data = d; } 

 

Complete the method on the next page. 



                   CS 314 – Final Exam – Fall 2017  9 

 

/* pre: depth >= 0 

   post: Per the problem description. size updated 

 Returns the number of nodes added to the tree*/ 

private int makePerfectToGivenDepth(int depth,int newVal) {   

   



                   CS 314 – Final Exam – Fall 2017  10 

4. Maps- 16 points.  Reference counting is a garbage collection technique. We track the number of references 

to each object. When the reference count for an object is 0, no other objects are referring to the object and it 

can be deleted.  

 

In this question we use a map. The keys are integers that represent objects. The associated value is an array of 

ints with at least one element. The first value in the array is the number of references to the object 

represented by the key. There may be other elements in the array. The array elements beyond the first 

represent the objects the key itself references.  

 

Note, in the example, not all objects are stored in the map. Therefore, an object's reference count may be 

greater than 0 even though none of the objects in the map refer to the object. Likewise, an object may have 

references to objects that do not appear in the map. Also note in the example all of the values are sorted for 

ease of viewing, but this may not be the case in the actual map. 

 

 Consider the following small example. 

 

If we are told to decrement the reference counter for object 335 (-335), its 

reference count goes from 2 to 1. No other change needs to take place. 

 

If we are told to increment the reference count for 755, its reference count goes 

from 3 to 4. No other changes need to take place. 

 

If we are told to increment the reference count for 800 we must add that key to the map and create an array of 

length 1 with a value equal to 1.  

 

If we are told to decrement the reference count of 222 (-222) we must remove that element from the map 

because its reference count becomes 0. 

 

Finally, it we are told to decrement the reference count of 123 (-123), its count goes from 1 to 0. It must be 

removed from the map and the objects it references must have their reference counts decremented. 755 and 

900 each have their reference counts decremented. So does 457, which reduces its count to 0, so now it must 

be removed and the objects it references, 335 and 900 have their counts decremented. 

 

Here is the map after performing only the last change, decrementing the reference count for 123: 

 

123 and 457 have been removed from the map. 

 

For this question you are passed an int representing the object reference to alter and a 

Map<Integer, int[]> representing the objects, their reference counts, and the objects 

they in turn reference. The int will be positive if we are to increment the reference count and negative if we 

are to decrement the reference count.  

 

You may use the following methods: 

Map:  put(K key, V value), V get(K key), V remove(K key) removes the given key 

 

The only data structure you may create are arrays of ints of length one when adding a value to the map that 

was not already present.  

 

Do not create or use any other data structures in your answer.  

  

123 [1, 457, 755, 900] 

222 [1] 

335 [2] 

457 [1, 335, 900] 

755 [3, 222] 

900 [4] 

222 [1] 

335 [1] 

755 [2, 222] 

900 [2] 



                   CS 314 – Final Exam – Fall 2017  11 

/* pre:  refMap != null, objectRef != 0 

   post: per the problem statement. */ 

public void updateRefCount(int objectRef, Map<Integer, int[]> refMap) { 

 

 

 

 
  



                   CS 314 – Final Exam – Fall 2017  12 

5. Graphs - 16 points.  Complete an instance method for the Graph class that determines if a path exists 

from one vertex to another, along with its cost, using the depth first search algorithm and recursive 

backtracking. Recall, depth first searching explores as far as possible away from a vertex before 

backtracking. 

 

Recall the following classes: 

 
public class Graph { 

    // The vertices in the graph. 

    private Map<String, Vertex> vertices; 

 

 // for all vertices, set scratch to 0 and prev to null. 

    private void clearAll()  

 

    private static class Vertex { 

        private String name; 

        private List<Edge> adjacent; 

        private int scratch;  

        private Vertex prev; 

    } 

 

    private static class Edge { 

        private Vertex dest; 

        private double cost; 

        // equals NOT overridden 

    } 

} 

 

You may use the get method from the Map class and the get and size methods from the List 

interface. You may use the for-each loop. 

 

You may use the clearAll method from the Graph class. 

 

Do not add or remove any elements from the Graph's Map of vertices.  

 

When complete the path from the start vertex to the destination vertex is stored via the prev references 

in the Vertex objects in the path, if one exists. 

 

All costs in the Graph are > 0. 

 

The method returns the cost of the path found or -1.0 if there is no path from the start vertex to the 

destination vertex. Note, we are not finding the shortest (lowest cost) path.  

  

Do not create ANY additional data structures.   

 
  



                   CS 314 – Final Exam – Fall 2017  13 

/* pre: start != null, dest != null, !start.equals(dest) 
   post: Returns the cost of the first path found from start to dest 

if one exists or -1.0 if no path exists. The method performs a depth 

first search */ 

public double dfsPathCost(String start, String dest) { 

  

  



                   CS 314 – Final Exam – Fall 2017  14 

6. Encoding - 16 points.  Run length encoding, encodes data by listing the count of a value and the value 

instead of each individual value.  

 

For example, the data 111111111 is encoded as 9 1. Run length encoding can lead to compression if a 

file has long runs of the same value such as images with a limited number of colors, especially black and 

white images.  

 

Write a method that determines the difference between the number of bits in a file and the number of bits 

it would take to encode the file with run length encoding. Our run length encoding format uses an 8-bit 

integer for the run length and a single bit for the value.  

 

Using 8 bits for our run lengths mean we have values of 0 to 255. However, since we don't need to 

represent a run length of 0, each 8-bit integer actually represents a count of one more. 0 indicates a run 

length of run, 1 indicates a run length of 2, and so forth.  

 

For example, a file of five hundred 1's followed by three 0's, followed by one hundred 1's would be 

encoded with the following binary (spaces added for clarity) using our run length encoding scheme. 

 
11111111 1 11110011 1 00000010 0 01100011 1 

 

The data above, when interpreted as base 10 values is 255 1 243 1 2 0 99 1. Recall each run 

length value would be increased by 1 by the decoder. 

 

You may use the BitInputReader from the Huffman Encoding assignment and its readBits 

method: 

 
public int readBits(int howManyBits) 

 

Returns the number of bits requested as rightmost bits in returned value, returns -1 if not enough bits 

available to satisfy the request. 

 

 

The source file will have at least 1 byte of data. 

 

Complete the method on the next page.  

 

Do not use any other Java classes or objects. 

 

Question. (2 points). What average run length is required so the technique in this question results in 

compression? Explain your answer. 

 

 

 

 

 

 

 
____________________________________________________________  



                   CS 314 – Final Exam – Fall 2017  15 

/* in != null, at least one byte of data in source 

   Return the difference between the number of bits in the file in is 

connected to and the number of bits required to encode the same file 

use the run length encoding technique described in the question. */ 

public int bitsSaved(BitInputReader in) { 

 

 


