
CS314 Exam 1 - Spring 2015 - Suggested Solution and Criteria 1

CS314 Spring 2015 Exam 1 Solution and Grading Criteria.

Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
GCE - Gross Conceptual Error. Did not answer the question asked or showed fundamental misunderstanding
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.
RTQ - Read the question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -1 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and braces.

A. 3N2 + 6N + 4, + 1 on each coefficient and the constant

B. O(N2)

C. O(NlogN) // base 2 okay

D. O(N2) // even though starts at end what if we remove first half?

E. 2000 seconds

F. 10 seconds

G. O(N3) // when data double time goes up by factor of 8

H. [K, P, P, X] // missing commas or brackets okay

I. 5 8 -2 [8, 0, 2, 4] // missing commas or brackets okay

J. CC CC A C

K. M 11

L. 1. valid

 2. invalid // LabClass not a sub class of CrossListed

M. 1. invalid // cannot instantiate interface types

 2. invalid // AcademicClass not a sub class of CrossListed

N. I 21

O. GOV60 // extra spaces okay

P. ECO 1 // calls getStudents() based on dynamic type

Q. true

R. false true

S. runtime error // ClassCastException or Exception okay

T. true C25 // extra spaces okay

CS314 Exam 1 - Spring 2015 - Suggested Solution and Criteria 2

2A. Comments. Meant to be an easy problem using ArrayLists.

Common problems:

 base decade does not play any role in the this solution

 not handling the stored 0 case (convert to 1001)

 minor logic errors

Suggested Solution:

 public int[] getBestAndWorst() {

 // assume at least one rank

 int min = ranks.get(0);

 if(min == 0)

 min = 1001;

 int max = min;

 for(int i = 1; i < ranks.size(); i++) {

 int rank = ranks.get(i);

 if(rank == 0)

 rank = 1001;

 if(rank < min)

 min = rank;

 if(rank > max)

 max = rank;

 }

 return new int[]{min, max};

 }

10 points , Criteria:

 initialize min and max correctly, okay for max = 0, min = 1001, // 1 point

o okay to use array of length 2 for this

 loop through array list correctly 3 points

 adjust 0 to 1001 correctly, 2 points

 check for new min and max correctly, 2 points

 create array of length 2 and place min rank (best) in first pos, max rank (worst) in second pos

 return result correctly 1,point (must be an array)

CS314 Exam 1 - Spring 2015 - Suggested Solution and Criteria 3

2B. Comments: Also meant to be an easy problem. One tricky item to make solution more efficient in most
cases.

Common problems:

 not using getRank to stop as soon as one rank out of range. (Calling get bestAndWorst does
unnecessary work in many cases.

 not accessing nameList correctly

Suggested Solution:

public ArrayList<NameRecord> getConstrained(NameRecord source) {

 int[] bestAndWorst = source.getBestAndWorst();

 int bestSource = bestAndWorst[0];

 int worstSource = bestAndWorst[1];

 ArrayList<NameRecord> result = new ArrayList<NameRecord>();

 for(int i = 0; i < nameList.size(); i++) {

 NameRecord nr = nameList.get(i);

 boolean inRange = true;

 int decade = 0;

 while(inRange && decade < NUM_DECADES) {

 int rank = nr.getRank(decade);

 if(rank == 0)

 rank = 1001;

 inRange = bestSource< rank && rank < worstSource;

 decade++;

 }

 if(inRange)

 result.add(nr);

 }

 return result;

}

10 points , Criteria:

 get minMax for source, 1 point

 create result, 1 point

 loop though nameList, 1 point

 check current rank not outside range correctly, 5 points (-1 if call method)

 if constrained add to result, 1 point

 return correct result, 1 point

CS314 Exam 1 - Spring 2015 - Suggested Solution and Criteria 4

3. Comments: This was a tough problem. There were very few methods in the GenericList class you were allowed to use
and you had to keep track of three different GenericLists

Common problems:

 going through entire container array instead of active (size) portion

 assuming GenericList was Iterable (given header did not implement Iterable)

 assuming add, get, and size methods available

 ineffecient solutions that did not stop as soon as watch found

 using == instead of .equals

 not ensuring enough capacity in result.conatainer

 not updating result.size correctly

 adding too many items. Often occurred when add was inside inner loop

 no inner loop, in correct logic

 confusing GenericLists for arrays and vice versa

public GenericList<E> inOtherListOnly(GenericList<E> other) {

 GenericList<E> result = new GenericList<E>();

 result.container = getArray(other.size);

 for(int i = 0; i < other.size; i++) {

 E current = other.container[i];

 int indexThis = 0;

 boolean distinct = true;

 while(distinct && indexThis < this.size) {

 distinct = !current.equals(this.container[indexThis]);

 indexThis++;

 }

 if(distinct) {

 result.container[result.size] = current;

 result.size++;

 }

 }

 return result;

}

20 points, Criteria:

 create result: 1

 make resulting container large enough, 2

 loop through correct elements of other, 2

 check current from other not in this.container, 3

 equals called correctly, 3

 if not in this.container add to result correctly, 3

 does not confuse list with array and vice versa, 3

 update result.size correctly, 2

 return correct result, 1

Other deductions:

 iterable: -5

 add method: -5

 length of array not size: 3

 add too many: -4

CS314 Exam 1 - Spring 2015 - Suggested Solution and Criteria 5

4. Comments: A tough problem. Lots of abstraction going on. Had to keep track of current location in the outer
container.

Common problems:

 slow check in hasNext() instead of updating current position

 not decrementing outer bag size when remove

 using size of outer Bag instead of length of array in hasNext check. (index vs. number of items returned.)

 not searching for next non null in array

Suggested Solution:
 private class BagIterator implements Iterator<E> {

 private int numToReturn;

 private int index;

 private boolean removeOk;

 private BagIterator() {

 numToReturn = size;

 }

 public boolean hasNext() {

 return numToReturn > 0;

 }

 public E next() {

 if(!hasNext()) throw new NoSuchElementException();

 // find the next spot;

 while(container[index] == null) {

 index++;

 }

 removeOk = true;

 numToReturn--;

 E result = container[index];

 index++; // move past current item;

 return result;

 }

 public void remove() {

 if(!removeOk) throw new IllegalStateException();

 removeOk = false;

 container[index - 1] = null; // remove previous item

 size--;

 }

 }

15 points, Criteria:

• instance var for position, 2

• instance var for removeOK, 1

• constructor if necessary, 1

• hasNext() correct, 3

• next() correct, 4

• remove(), 3 (must be O(1) or -1), decrements size

• one of hasNext() and next() O(N), other O(1), 1

CS314 Exam 1 - Spring 2015 - Suggested Solution and Criteria 6

