
CS314 Exam 2 - Spring 2015 - Suggested Solution and Criteria 1

CS314 Spring 2015 Exam 2 Solution and Grading Criteria.
Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
GCE - Gross Conceptual Error. Did not answer the question asked or showed fundamental misunderstanding
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.
RTQ - Read the question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -1 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and braces .

A. 15

B. GIU_A!

C. 190

D. Compiler error OR Syntax error

E. O(N2)

F. O(N) // linked list remove with iterator O(1)

G. O(N2) // remove for ArrayList O(N) even with iterator

H. BST for S.

I. 52.5 or 105 / 2 seconds (no logs in answer)

J. Insertion sort

K. 320 seconds

L. -17

M. (3 + 2) * (17 - 4)

N. 5 10 5 3 8 5 OR Compile Error

O. r s j

P. A B D G H C E I F

Q. B G D H A E I C F

R. G H D B I E F C A

S. See above next to node drawing on H

T. 2000 seconds

CS314 Exam 2 - Spring 2015 - Suggested Solution and Criteria 2

2. Comments. A simple toy problem using Stacks and Queues

Common problems:

 not dealing with first element. Topping an empty stack generally causes an exception.
 not handling the case of an empty queue

 using == instead of .equals

Suggested Solution:

 public static <E> void removeConsecutiveDuplicates(Queue<E> q) {

 Stack<E> st = new Stack<E>();

 while(!q.isEmpty()) {

 E element = q.dequeue();

 if(st.isEmpty() || !element.equals(st.top())) {

 st.push(element);

 }

 }

 while(!st.isEmpty())

 q.enqueue(st.pop());

 }

20 points , Criteria:

 create Stack, 2 points

 while loop for queue, 5 points

 push element from queue only if Stack empty or top element does not match, 5 points

 while loop for stack, 5 points

 enqueue and pop correctly, 3 points

CS314 Exam 2 - Spring 2015 - Suggested Solution and Criteria 3

3. Comments: A decent LinkedList problem. Not too easy, not too hard. Dealing with consecutive elements
was the real trick.

Common problems:

 comparing nodes (which are not Comparable) instead of the data in the nodes

 Null Pointer Exception on the last node.
 not advancing through the list

 not dealing with empty list correctly

 Using O(N) space instead of O(1) space

 destroying the list
 O(N2) solution instead of O(N)

Suggested Solution:

 public boolean isSorted() {

 if(first == null)

 return true; // trivial case

 // 1 or more elements

 E previousData = first.getData();

 Node<E> temp = first.getNext();

 boolean sorted = true;

 while(sorted && temp != null) {

 E currentData = temp.getData();

 sorted = previousData.compareTo(currentData) <= 0;

 previousData = currentData;

 temp = temp.getNext();

 }

 return sorted;

 }

20 points , Criteria:

 handle case when list empty (okay for 1 element as well), 3 points

 temp node variable assigned value in first, 1 point

 loop until end of list correctly, 2 points

 correctly compare consecutive values, 4 points

 stop as soon as answer known, 3 points

 move through linked structure of nodes correctly, 6 points

 return correct result, 1 point

CS314 Exam 2 - Spring 2015 - Suggested Solution and Criteria 4

4. Comments: A lot of code to write for this. A lot of abstractions to deal with. Determining the number of problems
solved was just like the map example we did in class. A good problem because there were many different, viable
solutions.

Common problems:

 assuming map is Iterable
 assuming sets have a get based on position

 adding frequency to result instead of problem number

 O(N2) instead of O(N) where N is the total number of problems solved
 calling contains on map instead of containsKey

 accessing maps and sets like arrays

public static TreeSet<Integer> getMostSolverProblems(Map<String,

 Set<Integer>> solved) {

 HashMap<Integer, Integer> freqs = new HashMap<Integer, Integer> ();

 // determine frequency of problems solved

 for(String name : solved.keySet()) {

 for(int problem : solved.get(name)) {

 if(freqs.containsKey(problem)) {

 int prev = freqs.get(problem);

 freqs.put(problem, prev + 1);

 }

 else

 freqs.put(problem, 1);

 }

 }

 // find the problem solved the maximum number of times

 // (could track max in previous part as well)
 int max = Integer.MIN_VALUE;

 for(int problem : freqs.keySet()) {

 int numSolved = freqs.get(problem);

 if(numSolved > max)

 max = numSolved;

 }

 // add problems solved max number of times to result

 TreeSet<Integer> result = new TreeSet<Integer>();

 for(int problem : freqs.keySet()) {

 int numSolved = freqs.get(problem);

 if(numSolved == max)

 result.add(problem);

 }

 return result;

 }

20 points, Criteria:

 use HashMap<Integer, Integer> to correctly determine number of times each problem solved, 9
o includes obtaining key, obtaining value, using iterators or for-each loop correctly, getting and putting in

HashMap correctly

 determine which problem solved the most, 5
 add all problems solved the max number of times to result, 5

 return result, 1

CS314 Exam 2 - Spring 2015 - Suggested Solution and Criteria 5

5. Comments: A nifty recursive backtracking problem. For the most part students did well.

Common problems:

 stopping when path total greater than target (or target less than zero if subtracting node data from target)
Negative values lower in the tree may make it possible so find a path equal to the total. There was an example
like this in the question. Target of 3 = 5 + -2 = 3

 not handling case when target == 0 and tree is NOT empty (trivially true)

 not adding root to path total

 not checking base case on leaf nodes after adding there data to total
 destroying the tree

Suggested Solution:
 public boolean hasPath(int tgt) {

 if(tgt == 0)

 return true;

 else if(root == null)

 return false;

 return hasPathHelp(root, tgt, root.data);

 }

 private boolean hasPathHelp(IntNode n, int tgt, int pathTotal) {

 // base case, DONE! no more node's necessary

 if(pathTotal == tgt)

 return true;

 else {

 // try children in path

 for(IntNode child : n.children) {

 boolean solved = hasPathHelp(child, tgt,

 pathTotal + child.data);

 if(solved)

 return true;

 }

 // no good

 return false;

 }

 }

20 points, Criteria:

 kickoff method handles special cases if tree empty or target 0, 1

 kickoff calls helper, 1

 helper method created, 1

 helper adds current nodes value to total and correctly uses all nodes in path (or subtracts from goal), 3

 checks base case correctly, 4

 if not at base case, tries children, 4

 returns only if solved, 5 (not an early return on first result)

 if children don't work, returns false, 1

