0CS314 Spring 2022 Exam 3 Solution and Grading Criteria.

Grading acronyms:

AIOBE - Array Index out of Bounds Exception may occur.

BOD - Benefit Of the Doubt. Not certain code works, but, can't prove otherwise.
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
LE - Logic Error in code.

MCE - Major Conceptual Error. Answer is way off base, question not understood.
NAP - No Answer Provided. No answer given on test.

NN - Not Necessary. Code is unneeded. Generally, no points off.

NPE - Null Pointer Exception may occur.

OBOE - Off By One error. Calculation is off by one.

RTQ - Read The question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -2 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and brace unless noted.

A. 36 seconds P
B. 80 seconds
C. 4 seconds n1|3-——> / /
e 12 =31
F. D 0. nzP/
G. A P. false true
H. 9 Q. 30 -512 17 7
I. E
J. 3N2 + 5N + 4, +/- 1 each e
coefficient e
K. 5
/ 0\ e o
8 5
/N / d
12 12 5 R. ~~ @ o o @
S. O(N)
L. O(N) T. O(N?)
M. Selection, Quicksort (1 U. O(N3)
point each, -1 per other to 0 BLACK
points) e
N. 65 RED Gj/ RED
V.
W. B
X. false
Y. 20

CS314 Exam 3 - Spring 2022- Suggested Solution and Criteria



2. Comments

private boolean helper (String currentName) {

Vertex currentVertex = vertices.get (currentName) ;
int currentColor = currentVertex.scratch;
int adjacentcolor = (currentColor == 1) ? 2 : 1;
for (Edge e : currentVertex.adjacent) {

Vertex neighbor = e.dest;

if (neighbor.scratch == currentColor) {

return false; // same color adjacent
} else if (neighbor.scratch == 0) {

// Neighbor is uncolored, so color it and recurse
neighbor.scratch = adjacentcolor;
if ('helper (neighbor.name)) {
return false;
}
}
// else neighbor is other color, so just keep going.
}
// Never got back false. Success!
return true;

18 points, Criteria:

clear explanation, 3 points (partial credit possible)

get current Vertex from map, 1 point

loop through all edges, 2 points

any edge colored same as this, return false 3 points

return false right away when adjacent colors the same, 1 point

if neighbor is uncolored, recurse on it, 2 points

if get back false from recursive call, return false, 3 points

color Vertex correctly using scratch and correct color (opposite of neighbors), 2 points
e return true after loop if coloring correct, 1 point

Other deductions:
o flip true / false, -4
e early return anywhere, -5
e call help but ignore return value, -5
e all scratch set to same, -4

CS314 Exam 3 - Spring 2022- Suggested Solution and Criteria



3. Comments:

public int depthSum() {
return help(root, 0);

private int help (IntNode n, int depth) {
if (n == null) {
return 0O;
} else {
return depth * n.val
+ help(n.left, depth + 1)
+ help(n.right, depth + 1);

14 points, Criteria:

e create private helper method, 1 point

e helper parameters, only current node and current depth, 2 points (lose if pass in
cumulative sum variable)

e correctly call method with root and 0 (zero), 1 point (okay if treat empty as special case
and / or just call on children of root)

e base case present (null or leaf node acceptable), 2 points

e account for current node value and depth added and / or returned as part of sum, 2
points

e recursive calls to left and right children, 2 points

e new depth in recursive call, 2 points

e add result of recursive calls and return that. 2 points

Others:
e altering tree, -5
e (Creates new array, even length 1, -4
¢ infinite loop due to while n != null instead of if, -4
e Return anything other than 0 for empty tree (not a special case), -2

CS314 Exam 3 - Spring 2022- Suggested Solution and Criteria 3



4, Comments:
public HuffmanTree (String[] [] codes) {
// have to make the root
root = new TreeNode (-1, -1);

numLeaves = codes.length;

for (int row = 0; row < codes.length; row++) {
int value = Integer.parselnt (codes[row] [0])
String code = codes[row] [1];
TreeNode n = root;

for (int 1 = 0; 1 < code.length(); i++) {
char bit = code.charAt(i);
if (bit == '0") {
if (n.left == null)
n.left = new TreeNode (-1, -1);
n = n.left;

} else {
// current bit must be a '1'
if (n.right == null)
n.right = new TreeNode (-1, -1);
n = n.right;
}
}
// n must be referring to the leaf node for the value.
n.value = value;

}

18 points, Criteria:
e create root node, 1 point
e loop through rows (codes) of parameter. for-each loop okay, 2 points
e for given code loop through characters (bits), 2 points
e temp node that starts at root of tree to move to new leaf node, 1 point
e check if moving left (a '0') or right (a '1') correctly, 2 point
e correctly create new nodes when necessary and only when necessary, 3 points
¢ all nodes frequency set to -1, internal nodes value set to -1, 1 point
¢ move temp node reference to next node (lower in tree), 3 points
e set value of leaf nodes, call Integer.parselnt on correct element from codes 2d array (1 point each)
e set numLeaves instance variable. Can be at start or for each leaf added, 1 point

e triple (or quad) loop, -2

e recursion, -4

e substring, -2

e create a HuffmanTree object or return (this is the constructor), -1

CS314 Exam 3 - Spring 2022- Suggested Solution and Criteria 4



