
Topic 20:
Huffman Coding

April 4, 2024

1

Data Storage and Representation

2

Just a Little Bit of Magic

• Digital data is stored as sequences of 0s and 1s
• These sequences are encoded in physical devices by magnetic orientation

on small (10 nm) metal particles or by trapping electrons in small gates

• A single 0 or 1 is called a bit

• A group of 8 bits is called a byte

00000000, 00000001, 00000010, 00000011, 00000100, …

• There are 28, so 256, different bytes
• Good recursive backtracking practice: Write a function that lists all

possible byte sequences!

3

Representing Text

• We think of strings as being made of characters representing

letters, numbers, emojis, etc

• However, we just said that computers require everything to be

written as zeros and ones

• To bridge the gap, we need to agree on some universal way of

representing characters as sequences of bits

• Idea: ASCII!

4

5

ASCII Decoding

What is the mystery word represented by

this ASCII encoding?

010010000100100101010000

HIP

6

ASCII Observations

• Every characters uses exactly the same number of bits, 8, which

makes it very easy to differentiate between the characters

• Any message with n characters will use exactly 8n bits
• Space for RAMBUNCTIOUS: 8 x 12 = 96 bits

• Space for CS_314_ROCKS: 8 x 12 = 96 bits

• Let’s make this more efficient by reducing the number of bits we

need to encode text

7

Main Character Today

HAPPY HIP HOP

8

ASCII Encoding

• ASCII uses 8 bits to represent each character

• Let’s represent HAPPY HIP HOP in ASCII code

9

0100
1000

0100
0001

0101
0000

0101
0000

0101
1001

0010
0000

0100
1000

0100
1001

0101
0000

0010
0000

0100
1000

0100
1111

0101
0000

H A P P Y _ H I P _ H O P

character ASCII code

_ 00100000

A 01000001

H 01001000

I 01001001

O 01001111

P 01010000

Y 01011001

A Different Encoding

• If we’re specifically writing the string HAPPY
HIP HOP, which only has 7 different characters,

using full bytes (8 bits) is wasteful

• Let’s use a 3-bit encoding instead

10

010 001 101 101 101 000 010 011 101 000 010 100 101

H A P P Y _ H I P _ H O P

character code

_ 000

A 001

H 010

I 011

O 100

P 101

Y 110

A Different Encoding

What is the mystery word represented by this 3-bit

encoding?

010011101

HIP

11

character code

_ 000

A 001

H 010

I 011

O 100

P 101

Y 110

A Different Encoding

• When specifically writing the string HAPPY HIP
HOP
• ASCII used 13 x 8 bits = 104 bits

• 3-bit encoding used 13 * 3 bits = 39 bits

• We used 37.5% of the space that ASCII uses!

12

010 001 101 101 101 000 010 011 101 000 010 100 101

H A P P Y _ H I P _ H O P

character code

_ 000

A 001

H 010

I 011

O 100

P 101

Y 110

The Journey Ahead

• Storing data using the ASCII encoding is portable across systems,
but is not ideal in terms of space usage

• Building custom codes for specific strings (and files!) might let us
save space

• Idea: Use this approach to build a compression algorithm to
reduce the amount of space needed to store text

• We want to find a way to
give all characters a bit pattern,
that both the sender and receiver know about, and
that can be decoded uniquely, and
that leads to less space usage.

13

Compression Algorithms

• Compression algorithms are a whole class of real-world algorithms that have
widespread prevalence and importance

• We’re interested in algorithms that provide lossless compression on a stream
of characters or other data
• We make the amount of data smaller without losing any of the details, and we can

decompress the data to exactly the same as it was before compression
• Virtually everything you do online involves data compression

• When you visit a website, download a file, or transmit video/audio, the data is
compressed when sending and decompressed when receiving

• A video stream on Zoom has a compression of roughly 2000:1, meaning that a 2MB
image is compressed down to just 1000 bytes

• Compression algorithms identify patterns in data and take advantage of those
to come up with more efficient representations of that data

14

A Different Encoding

• Let’s make this encoding even more efficient!

15

010 001 101 101 101 000 010 011 101 000 010 100 101

H A P P Y _ H I P _ H O P

character code

_ 000

A 001

H 010

I 011

O 100

P 101

Y 110

Take Advantage of Redundancy

• Not all letters have the same frequency in

HAPPY HIP HOP
• We can calculate the frequencies of each letter

• So far, we’ve given each letter a code of the

same length

• Maybe we can give shorter encodings to more

frequent letters to save space?

16

_ 2

A 1

H 3

I 1

O 1

P 4

Y 1

character frequency

Morse Code

• Morse code is an example of an

encoding system that makes use

of this insight

• The codes for frequent letters (ex:

e, t, a) are much shorter than the

codes for infrequent letters (ex: q,

y, j)

17

Our New Code

18

P 4 0

H 3 1

_ 2 00

A 1 01

I 1 10

O 1 11

Y 1 100

character frequency code

1 01 0 0 100 00 1 10 0 00 1 11 0

H A P P Y _ H I P _ H O P

• When specifically writing the string HAPPY
HIP HOP
• ASCII used 13 x 8 bits = 104 bits

• 3-bit encoding used 13 * 3 bits = 39 bits

• Variable-length encoding used 20 bits

• We saved even more space!

Our New Code

19

P 4 0

H 3 1

_ 2 00

A 1 01

I 1 10

O 1 11

Y 1 100

character frequency code

What is the mystery word represented by this

variable-length encoding?

001100

O

PPO_

PAY

Our New Code

20

P 4 0

H 3 1

_ 2 00

A 1 01

I 1 10

O 1 11

Y 1 100

character frequency code

HAPPY HIP HOP

10100100001100001110

IIPH_PAYPAOP

What went wrong?

• If we use a different number of bits for each letter, we can’t

necessarily uniquely determine the boundaries between letters

• We need an encoding that makes it possible to determine where

one characters ends and the next begins
• Codes for each character need to be unique and unambiguous

• Otherwise, it isn't possible to decode the words accurately

• How can we do this?

21

Prefix Code

• A prefix code is an encoding system in which no

code is a prefix of another code

22

P 10

H 01

_ 110

A 001

I 000

O 1111

Y 1110

character code

Prefix Code

23

character code

What is the mystery word represented by this

encoding?

100011110
PAY

P 10

H 01

_ 110

A 001

I 000

O 1111

Y 1110

Prefix Code

24

character code

HAPPY HIP HOP

0100110101110110010001011001111110

01 001 10 10 1110 110 01 000 10 110 01 1111 10

H A P P Y _ H I P _ H O P

P 10

H 01

_ 110

A 001

I 000

O 1111

Y 1110

Prefix Code

• When specifically writing the string HAPPY HIP
HOP
• ASCII used 13 x 8 bits = 104 bits

• 3-bit encoding used 13 * 3 bits = 39 bits

• Variable-length encoding used 34 bits

• We saved even more space and the encoding is

ambiguous!

25

character code

01 001 10 10 1110 110 01 000 10 110 01 1111 10

H A P P Y _ H I P _ H O P

P 10

H 01

_ 110

A 001

I 000

O 1111

Y 1110

Coding Tree

• We can represent a prefix coding scheme using a binary tree,

specifically a coding tree

26

character code

P H _ A I O Y

0

0

0 0 0 0

1

0 1

1

1

11

P 000

H 001

_ 010

A 011

I 100

O 101

Y 110

Coding Tree

What is the mystery word represented by this encoding?

110011000

27

K I R ’ S _ D

0

0

0 0 0 0

1

0 1

1

1

11

P H _ A I O Y

Coding Trees

• Not all binary trees work as coding trees

• Why is this binary tree not a coding tree?
• Doesn’t give a prefix code!

• The code for A is a prefix for the codes for

B and C, and the code for D is a prefix for

the codes for E and F

28

B C E F

0

0 0

1

11
A D

Coding Trees

• A coding tree is valid if all the letters are

stored in the leaves, with internal nodes

only used for routing

29

C 0 6

0

0 0

1

11

S 1

0 1

Huffman Coding

30

It’s 1951. You’re at MIT as an electrical
engineering PhD student.

31

You have a choice for your class: take the final
exam or write a term paper.

32

You choose to write the term paper.
The prompt is: find a provably most efficient
method of representing numbers, letters, or

symbols using binary code

33

David Huffman tries to solve this
problem for months.

34

It’s 1951, so no Google or StackOverflow.

35

Important note:
Neither his professor, Robert M. Fano, nor the

inventor of information theory, Claude Shannon,
had any idea how to solve it

36

So David Huffman gives up, and starts studying
for the final exam instead.

37

But then, epiphany!

"It was the most singular moment of my life. There was
the absolute lightning of sudden realization."

- Huffman

38

“It was my luck to be there at the right
time and also not have my professor

discourage me by telling me that other
good people had struggled with his

problem.”
- Huffman

39

Link to full story

https://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-14/Huffman.pdf

The Algorithm

40

Huffman Coding

• Huffman coding is an algorithm for generating a coding tree for a given piece of

data that produces a provably minimal encoding for a given pattern of letter

frequencies

• Applicable to many forms of data transmission
• Our examples use characters and text files

• JPEG and MP3 still use prefix codes

• Different data will each have their own personalized Huffman coding tree

• We want an encoding tree that
• Allows for variable length codes (so most frequent characters can get shorter codes,

aka their leaf nodes are closer to the root node)

• Represents a prefix code system (no ambiguity in when characters stop and start)

41

Goal: Build the optimal encoding tree for
HAPPY HIP HOP

42

1. Build a frequency table

Input text: HAPPY HIP HOP

43

P 4

H 3

_ 2

A 1

I 1

O 1

Y 1

character frequency

2. Initialize an empty priority queue

44

higher priority lower priority

3. Add all unique characters as leaf nodes to queue

45

higher priority lower priority

P 4

H 3

_ 2

A 1

I 1

O 1

Y 1

character frequency

I AOY PH_

1 1 1 1 2 3 4

46

3 4

1 1

0 1

I A

PH

2

0 1

2

1 1

0 1
2

Y O

_

0 1
4

0 1

0 1

5 8

13

Huffman Coding Algorithm

1. Scan the file to be compressed and build a frequency table that
tallies the number of times each value appears.

2. Initialize an empty priority queue that will hold partial trees.
3. Create one leaf node per distinct value and add each leaf node to

the queue where the priority is the frequency of the value.
4. While there are two or more trees in the priority queue:

a. Dequeue the two lowest-priority trees.
b. Combine them together to form a new tree whose priority is the

sum of the priorities of the two trees.
c. Add that tree back to the priority queue.

47

Generate Table from Tree

48

_ 110

A 001

H 01

I 000

O 1111

P 10

Y 1110

character code

3 4

1 1

0 1

I A

PH

2

0 1

2

1 1

0 1
2

Y O

_

0 1
4

0 1

0 1

5 8

13

Huffman Coding Algorithm

5. Traverse the tree to create the encoding table.

6. Scan the file again to create a new compressed file using the

Huffman codes.

49

Prefix Code

50

character code

HAPPY HIP HOP

0100110101110110010001011001111110

01 001 10 10 1110 110 01 000 10 110 01 1111 10

H A P P Y _ H I P _ H O P

P 10

H 01

_ 110

A 001

I 000

O 1111

Y 1110

End of File

• Not possible to write a single bit at a time, all output is written in

"chunks" (often 8 bits)

• If a program writes a number of bits that is not a multiple of 8,

extra bits are added (usually 0s)
• Can't just keep reading bits in from a file until you run our, since the bits

might be dummy data at the end

• Instead, create a pseudo-EOF value that has its own Huffman

encoding and write that to the compressed file
• Add to frequency table with count of 1

51

Our Goal

We want to find a way to
• give all characters a bit pattern,
• that both the sender and receiver know about, and
• that can be decoded uniquely, and
• that leads to less space usage.

We've created an encoding, but need to make sure that the receiver
can also decode the file.

52

Decode

53

111000010110111000010

Transmitting the Tree

• In order to decode the file, we need to have access to the encoding

scheme that was used.

• In the encoded file, prefix the compressed data with a header

containing information to rebuild the tree

• Option 1: Send the frequencies of the values.

• Option 2: Send a "flattened" tree.

54

Info to Rebuild Tree 1110000101101110000101101110000101…

Flattening a Tree

• If a node is a leaf, it is represented as the bit 1.

• If a node is an internal node, it is represented as the bit 0.

• Start at the root node, write its bit representation.

• Follow this with the flattened version of its left subtree and then

the flattened version of its right subtree.

• Any time a leaf node is reached, include the ASCII (fixed-length)

representation of the value of that node.

55

56

0 1

I A

PH

0 1

0 1
2

Y O

_

0 1

0 1

0 1

00010010010011001000001100100100001001010000…

Unflatten a Tree

57

char code

I 000

N 001

E 010

C 011

PEOF 100

001 011 101 001 100 010 011 000

Decode a Message

58

1101 1100 0110 0000

Huffman Coding Recap

• In order to support variable-length encodings for data, we must

use prefix coding schemes, which can be modeled as binary trees

• Huffman coding constructs encodings by building a tree from the

bottom-up, putting the most frequent characters higher up in the

coding tree.

• We must send a header with information to reconstruct the tree

with the encoded message so that it can be decoded

59

