Topic 1
CS314 Course Introduction

Chapman: | didn't expect a kind of Spanish Inquisition.

Cardinal Ximinez: NOBODY expects the Spanish Inquisition!
Our chief weapon is surprise...surprise and fear...fear and
surprise.... Our two weapons are fear and surprise...and
ruthless efficiency.... Our three weapons are fear, surprise,
and ruthless efficiency...and an almost fanatical devotion to the
Pope.... Our four...no... Amongst our weapons.... Amongst

our weaponry...are such diverse elements as fear, surprise....

In class: please close laptops
and put away mobile devices.

Mike Scott, Gates 6.304
scottm@cs.utexas.edu
www.cs.utexas.edu/~scottm/cs314/

Who Am [|?

» Professor of Instruction (lecturer)
in CS department since 2000

» Undergrad Stanford, MSCS RPI
» US Navy for 8 years, submarines

» 2 years Round Rock High School
prior to coming to UT

CS314 Course Overview 2

Purpose of these Slides

> Discuss
— course content
— procedures
— tools

» For your TO DO list:

— complete items on the startup page

www.cs.utexas.edu/~scottm/cs314/handouts/startup.htm

CS314 Course Overview

Course Goals

> Analyze algorithms and code for efficiency

» Be able to create and use canonical data
structures: lists (array and linked), stacks, queues,
trees, binary search trees, balanced binary search
trees, maps, sets, graphs, hash tables, heaps, tries

» Know and use the following programming tools and
techniques: object oriented programming
(encapsulation, inheritance, polymorphism), Java
Interfaces, iterators, sorting, searching, recursion,
dynamic programming, functional programming

CS314 Course Overview

Course Goals

> After CS314 you can design and implement
medium size programs (several 100’s of lines
of code split between multiple classes) to
solve interesting problems

» Recall, the three core areas of the UTCS
undergrad degree:
Programming, Theory, Systems

> After this class your instructors shall expect
you can write complex programs given a
specification or problem statement.
— You have to design the algorithm in many cases.

CS314 Course Overview

Prerequisites
» Formal: CS312 with a grade of C- or higher

> Informal: Ability to design and implement
programs in Java using the following:

*variables and data types

sexpressions, order of
operations

*Conditionals (if statements)

sincluding boolean logic and
boolean expressions

siteration (loops)
*Methods (functions,
procedures)
*Parameters

estructures or records or
objects

arrays (vectors, lists)
top down design (breaking big
rocks into little rocks)
ealgorithm and data design
screate and implement program of
at least 200 - 300 loc
ecould you write a program to let
two people play connect 47?

Course Overview

CS314 Topics
1. Introduction 14. Searching, Simple Sorts
2. Algorithm Analysis 15. Stacks
3. Encapsulation 16. Queues
4. Inheritance 17. Fast Sorting
5. Polymorphism 18. Trees
6. Generics 19. Binary Search Trees
7. Interfaces 20. Graphs
8. lterators 21. Hash tables
9. Abstract Classes 22. Red-Black Trees
10. Maps, Sets 23. Huffman Code Trees
11. Linked Lists 24. Heaps
12. Recursion 25. Tries
13. Recursive 26. Dynamic Programming

Backtracking 27. Functional Programming

Data Structures

> simple definition:
— variables that store other
variables
> We will learn a
toolbox full of ,
data structures ... =

» ... and how to
build them ...

» ... and how to
use new ones.

CS314

Clicker Question 1

» Which of the following is a data structure?
A. a method

B. a try / catch block

C. a double

D. an array

E. more thanone of A-D

CS314

Course Overview 9

Resources

» Class web site —
most course material

» Class discussion
group — Piazza

» Canvas -> Grades,
Program
Submissions, Access
Zoom Links,
Recorded Lectures,

Help Videos
Wednesday ->

Books

* books are recommended, not required

« free alternatives on the web, see schedule
* BJP (CS312 book) strongly recommended
* Thinking Recursively in Java - recursion

Building Java Program

ABACK TO BASICS APPROACH 5e

Stuart Reges / Marty Stepp(

CS314 Course Overview 11

Clicker Question 2

Which of these best describes you?

A. First year at UT and first year college student

B. First year at UT, transferring from another college
or university

C. Second year at UT
D. Third year at UT
E. Other

CS314 Course Overview

12

Graded Course Components

Syllabus Quiz, 10 points
Extra credit: Background survey 10 points

»
»
» Academic Integrity Quiz, 10 points (all correct or 0, multiple attempts)
» Section problems, 8 sections with problems, 4 points each. 4 * 8 = 32

>

Programming projects
— 11 projects, 20 points each, 220 points total
> Exams: Outside of class
— Exam 1, Thursday 2/15, 6:45 — 9:15 pm, 250 points
— Exam 2, Thursday, 3/28, 6:45 - 9:15 pm, 250 points
— Exam 3, TBD, could be as late as 5/6, 250 points
» Course Instructor Evals 10 points
> 10 + 10 + 10 + 32 + 220 + 250 + 250 + 250 + 10 = 1042
» Non exam points capped at 250 pts
— 42 points of “slack” among those non exam components
> No points added! Grades based on 1000 points, not 1042

> final points = min(250, sum of non exam)
+ e1 score + e2 score + e3 score

Grades and Performance
» Final grade determined by final point total and a

900 — 800 — 700 — 600 scale
— plusses and minuses if within 25 points of cutoff:

A:925-1000 A-:900-924 B+:875-899 B:825-874

» My CS314 Historical Grades
> 82% C- or higher:

— 28% A's, 34% B's, 20% C’s
»8% DorF
> 10% Q or W (drop)

» WORK LOAD EVALUATED AS HIGH (but not
EXCESSIVE) ON COURSE SURVEYS

14

Programming Assignments
» Individual — do your own work (no copying
or use of LLMs / generative Als)

» Programs checked automatically with
plagiarism detection software (MOSS)

» Turn in the right thing - correct name, correct
format or you will lose points / slip days
» Graded on Correctness AND program hygiene

"Code is read more often than it is written."
- Guido Van Rossum, Creator of Python

> Slip days: 8 for term, max 2 per assignment,
don’t use frivolously

Succeeding in the Course

"

» Randy Pausch,
CS Professor at CMU said:

» "When I got tenure a year o
early at Virginia, other "'\” 2
Assistant Professors would come up to me and say "You
got tenure early!?!?! What's your secret?!?/?' and T
would tell them, 'Call me in my office at 10pm on Friday
night and I'll tell you.""

> "A lot of people want a shortcut. I find the best
shortcut is the long way, which is basically two words:
work hard.”

16

Succeeding in the Course - Meta

> “Be the first penguin”
— Ask questions!!!
— lecture, section, Ed Diss, lab hours

“It is impossible to be perfect’ Qs\

AR

— Mistakes are okay.

— That is how we learn.
— Trying to be perfect means not taking risks.
— no risks, no learning

“Find a Pack”
— Make friends. L
— Study with them! |,

How to Get Help

» Ed Discussion Post

» Help Hours

» Class examples

» Examples from book

» Discuss with other students at a high level

18

Succeeding in the Course - Concrete

» Former student:

— "l really like the boot camp nature of
your course."
> do the readings
> start on assignments early

> get help from the teaching staff when you get stuck on an
assignment

attend lecture and discussion sections

go to the extra study sessions

participate on the class discussion group

do extra problems - http://tinyurl.com/pnzp28f
study for tests using the old tests

study for tests in groups

ask questions and get help

v v Vv Vv Vv Vv v

19

Software
» Java - Oracle or OpendJDK, limit ourselves to Java 8

» IDE such as IntelliJ or Eclipse

» SSH into CS machines to test your programs

— CS department account
— SSH keys

— Ability to transfer files and login remotely
(WIinSCP, Putty, Cyberduck, Filezilla, ...)

> A zip tool (create zip files to turn in)
» Zoom, used occasionally

CS314 Course Overview

20

Clicker Question 3

Which computer programming language are
you most comfortable with?

A. Java

B. C or C++
C. Python

D. Javascript
E. Other

See: http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
and http://lang-index.sourceforge.net/

CS314 Course Overview

21

Topic Number 2
Efficiency — Complexity -
Algorithm Analysis

"bit twiddling: 1. (pejorative) An exercise in tuning

(see tune) in which incredible amounts of time and
effort go to produce little noticeable improvement,

often with the result that the code

becomes incomprehensible."

- The Hackers Dictionary, version 4.4.7

Clicker Question 1

> “A program finds all the prime numbers
between 2 and 1,000,000,000 from scratch
in 0.37 seconds."

— Is this a fast solution?
A. no
B. yes
C. it depends

CS 314 Efficiency - Complexity 2

Efficiency

» Computer Scientists don’t just write programs.
> They also analyze them.

> How efficient is a program?
— How much time does it take program to complete?
— How much memory does a program use?

— How do these change as the amount
of data changes?

— What is the difference between the average case
and worst case efficiency if any?

CS 314 Efficiency - Complexity 3

Technique
» Informal approach for this class
— more formal techniques in theory classes, CS331
» How many computations will this program
(method, algorithm) perform to get the answer?
» Many simplifications
— view algorithms as Java programs

— determine by analysis the total number
executable statements (computations) in
program or method as a function of the amount
of data

— focus on the dominant term in the function
T(N) = 17.5N3 + 25N? + 35N + 251 IS ORDER N3

Counting Statements

int x; // one statement

x = 12; // one statement

int y =z * x+3%5*x/i; //

x++; // one statement

boolean p = x <y & y 5 2 == 0 ||
z >=vy * x; // 1

int[] data = new int[100]; // 100

data[50] = x * x + vy * vy; // 1

CS 314 Efficiency - Complexity

1

Clicker 2
» What is output by the following code?

int total = 0;

for (int i = 0; i < 13; i++)
for (int j = 0; J < 11; J++)
total += 2;

System.out.println(total);
A. 24
B. 120
C. 143
D. 286
E. 338

CS 314 Efficiency - Complexity 6

Clicker 3

> What is output when method sample is called?
// pre: n >= 0, m >= 0
public static void sample(int n, int m)
int total = 0;

for (int i = 0; i < n; i++)
for (int j = 0; J < m; J++)
total += 5;

System.out.println(total);
}

A.5 D.nm
B.n*m E.(n*m)°
C.n*m*5

CS 314 Efficiency - Complexity

{

Example
public int total (int[] wvalues) {
int result = 0;
for (int i = 0; 1 < values.length; i++)
result += values[i]:;

return result;

}

» How many statements are executed by
method total as a function of
values.length

» Let N = values. length

» N is commonly used as a variable that denotes
the amount of data

CS 314 Efficiency - Complexity 8

Counting Up Statements

» int result = 0; 1

v

int 1 = 0; 1
» i < values.length, N + 1
»i++ N

» result += values[i]; N

» return total; 1

»T(N)=3N + 4
» T(N) is the number of executable

statements in method total as function of

values.length
CS 314 Efficiency - Complexity 9

Another Simplification
» When determining complexity of an
algorithm we want to simplify things

— ignore some details to make comparisons easier

» Like assigning your grade for course

— At the end of CS314 your transcript won't list all
the details of your performance in the course

— it won't list scores on all assignments, quizzes,
and tests

— simply a letter grade, B- or A or D+

> So we focus on the dominant term from the
function and ignore the coefficient

CS 314 Efficiency - Complexity 10

Big O
» The most common method and notation for
discussing the execution time of algorithms is
Big O, also spoken Order

» Big O is the asymptotic execution time
of the algorithm

— In other words, how does the running time of the
algorithm grow as a function of the amount of
input data?

» Big O is an upper bounds
> It is a mathematical tool

» Hide a lot of unimportant details by assigning
a simple grade (function) to algorithms

Formal Definition of Big O

» T(N) is O(F(N)) if there are positive
constants c and N, such that T(N) < cF(N)
when N > N,

— N is the size of the data set the algorithm works on

— T(N) is a function that characterizes the actual
running time of the algorithm

— F(N) is a function that characterizes an upper
bounds on T(N). It is a limit on the running time of
the algorithm. (The typical Big functions table)

—c and N, are constants

CS 314 Efficiency - Complexity 12

What it Means

» T(N) is the actual growth rate of the
algorithm

— can be equated to the number of executable
statements in a program or chunk of code

» F(N) is the function that bounds the growth
rate

— may be upper or lower bound
» T(N) may not necessarily equal F(N)

— constants and lesser terms ignored because it is
a bounding function

CS 314 Efficiency - Complexity 13

Showing O(N) is Correct

» Recall the formal definition of Big O

— T(N) is O(F(N)) if there are positive constants c
and N, such that T(N) < cF(N) when N > N,

» Recall method total, T(N)=3N +4

— show method total is O(N).

—F(N)is N
> We need to choose constants c and N,
» how aboutc=4,N,=57?

CS 314 Efficiency - Complexity 14

vertical axis: time for algorithm to complete. (simplified to
number of executable statements)

c * F(N), in this case,
c=4,c*F(N)=4N

T(N), actual function of number of computations.
In this case 3N + 4

F(N), approximate function
of computations. In this case N

N, =5

horizontal axis: N, number of elements in data set

CS 314 Efficiency - Complexity 15

Typical Big O Functions — "Grades"

Function Common Name
N! factorial Running
N . time grows
2 Exponential ‘quickly’ with
Nd, d>3 Polynomial more input.
N3 Cubic
N2 Quadratic
N/N N Square root N
N log N N log N
N Linear
Running
VN Root - n time grows
log N Logarithmic 'slowly’ with
more input.
1 Constant

CS 314 Efficiency - Complexity 16

Clicker 4

> Which of the following is true?
Recall T(N),,y = 3N + 4

A. Method total is O(N'2)

B. Method total is O(N)

C. Method total is O(N?)

D. Two of A — C are correct

E. All of three of A — C are correct

CS 314 Efficiency - Complexity 17

Showing Order More Formally ...

> Show 10N2 + 15N is O(N2)
» Break into terms.

> 10N? < 10N?

» 15N < 15N2? for N > 1 (Now add)

> 10N? + 15N < 10N2 + 15N? for N > 1

» 10N2 + 15N < 25N? for N > 1

»c=25,Ny,=1

> Note, the choices for ¢ and N, are not unique.

CS 314 Efficiency - Complexity 18

Dealing with other methods
» What do | do about method calls?

double sum = 0.0;
for (int i = 0; 1 < n; 1i++)
sum += Math.sqgrt(i);
> Long way
— go to that method or constructor and
count statements

> Short way

— substitute the simplified Big O function for
that method.

— if Math.sqrt is constant time, O(1), simply count
sum += Math.sqgrt (i) ; as one statement.

CS 314 Efficiency - Complexity 19

Dealing With Other Methods

public int foo(int[] data) {
int total = 0;
for (int 1 = 0; i < data.length; i++)
total += countDups(datali], data);
return total;
}
// method countDups is O(N) where N is the
// length of the array it is passed

Clicker 5, What is the Big O of foo?

A. O(1) B. O(N) C. O(NIogN)
D. O(N2) E. O(N!)
CS 314 Efficiency - Complexity 20

Independent Loops

// from the Matrix class

public void scale(int factor) {

Just Count Loops, Right?

// Assume mat is a 2d array of booleans.

for (int r = 0; r < numRows(); r++) // Assume mat is square with N rows,
for (int ¢ = 0; ¢ < numCols(); c++) // and N columns.
iCells[r][c] *= factor; public static void count (boolean[][] mat,
} | | int row, int col) {
numRows () returns number of rows in the matrix iCells ;2; Tiizhinierwoi 1: r <= row + 1; r+4)
numCols () returns number of columns in the matrix iCells for (int ¢ = col - 1; c <= col + 1; c++)
Assume iCells is an N by N square matrix. if (mat[r]lc])
Assume numRows and numCols are O(1) numThings++;
What is the T(N)? Clicker 6, What is the Order? Clicker 7, What is the order of the method count?
A. O(1) B. O(N) C. O(NlogN) A. O(1) B. O(N°5) C.O(N) D.O(N?) E.O(N3)
D. O(N?) E. O(N!)
Bonus question. What if numRows is O(N)? s eeneyCompierty 2
It is Not Just Counting Loops Just Count Loops, Right?
private static void mystery(int[] data) ({
// "Unroll" the loop of method count: stopIndex = data.length — 1;
int numThings = 0; int 3 = 1;
if (mat[r-1][c-1]) numThings++; vwhile l(:t‘zflzzj‘?’]‘ > 2; idata[j]) {
if (mat[r-1][c]) numThings++; int t = data[j]’;
if (mat[r-1]([c+1]) numThings++; o T
if (mat[r][c-1]) numThings++; }
if (mat[r]llc]) numThings++; if (3 ::oz‘;;l;zf‘j’:) {
if (mat([r][c+l]) numThings++; j = 1;
if (mat[r+1][c-1]) numThings++; } else {
if (mat[r+1][c]) numThings++; } I
if (mat[r+1][c+1]) numThings++; } N = data.length
Clicker 8, What is the order of method mystery?
CSs 314 Efficiency - Complexity 23 A. O(1) B. O(N%%) C.O(N) D. O(N?) E. O(N3)

Sidetrack, the logarithm

» Thanks to Dr. Math
»32=9
> likewise log; 9 = 2
—"The log to the base 3 of 9 is 2."

» The way to think about log is:

— "the log to the base x of y is the number you can
raise x toto gety."

— Say to yourself "The log is the exponent.”
it over and over until you believe it.)

—In CS we work with base 2 logs, a lot
» log,32=? log,8=? log,1024=? log,, 1000 =?

CS 314 Efficiency - Complexity 25

(and say

When Do Logarithms Occur
> Algorithms tend to have a logarithmic term when
they use a divide and conquer technique

> the size of the data set keeps getting divided by 2
public int foo(int n) {
// pre n > 0
int total = 0;
)

MY CLIENT COULDN'T HAVE
KILLED ANYONE. WITH THIS
ARROW, AND T CAN PROVE IT!

) T'D LKE T ERAMINE
while (n > O { YOUR PROOF, ZENO. YOU
MAY APPROACH THE BENCH.

n=mn/2;

total++ Bmemman

} 14
return total;
} &ﬂ%@

» Clicker 9, What is the order of the above code?

A. O(1) B. O(logN) C. O(N)
D. O(Nlog N) E. O(N?)
The base of the log is typically not included as we can switch from 26

one base to another by multiplying by a constant factor.

Significant Improvement — Algorithm
with Smaller Big O function

» Problem: Given an array of ints replace any
element equal to 0 with the maximum
positive value to the right of that element. (if
no positive value to the right, leave
unchanged.)

Given:

[Or 9/ OI 131 OI OI 7/ ll _11 OI 1/ O]
Becomes:

[EI 91 EI 13! ZI ZI 71 1/ _11 ll ll O]
CS 314 Efficiency - Complexity 27

Replace Zeros — Typical Solution

public void replaceOs (int[] data) {
for(int 1 = 0; i1 < data.length; i++) {
if (datal[i] == 0) {
int max = 0;
for(int j = i+1; j<data.length; J++)
max = Math.max (max, datal[]]):
datal[i] = max;

}

}
}
Assume all values are zeros. (worst case)
Example of a dependent loops.
Clicker 10 - Number of times j < data.length evaluated?
A.0O(1) B. O(N) C. O(NlogN)
D. O(N?) E. O(N!)

Replace Zeros — Alternate Solution

public void replaceOs(int[] data) {
int max =
Math.max (0, data[data.length - 1]);
int start = data.length - 2;

for (int i = start; i >= 0; i--) {
if (datal[i] == 0)
datal[i] = max;
else

max = Math.max (max, datal[i]);

}
}
Clicker 11 - Big O of this approach?

A.O(1) B. O(N) C. O(NlogN)
D. O(N?) E. O(N!)
CS 314 Efficiency - Complexity 29

Clicker 12
» Is O(N) really that much faster than O(N2)?

A. never
B. always
C. typically

> Depends on the actual functions and the
value of N.

» 1000N + 250 compared to N2 + 10

» When do we use mechanized computation?
» N =100,000

» 100,000,250 < 10,000,000,010 (108 < 1019)

30

A VERY Useful Proportion

» Since F(N) is characterizes the running time
of an algorithm the following proportion
should hold true:

F(Ng) / F(N,) ~=time, / time,

» An algorithm that is O(N2) takes 3 seconds
to run given 10,000 pieces of data.

— How long do you expect it to take when there are
30,000 pieces of data?

— common mistake
— logarithms?

CS 314 Efficiency - Complexity 31

Why Use Big O?

» As we build data structures Big O is the tool we will
use to decide under what conditions one data
structure is better than another

» Think about performance when there is a lot of
data.

— "It worked so well with small data sets..."
— Joel Spolsky, Schlemiel the painter's Algorithm

» Lots of trade offs

— some data structures good for certain types of problems,
bad for other types

— often able to trade SPACE for TIME.
— Faster solution that uses more space
— Slower solution that uses less space

CS 314 Efficiency - Complexity 32

Big O Space
» Big O could be used to specify how much
space is needed for a particular algorithm
— in other words how many variables are needed

» Often there is a time — space tradeoff
— can often take less time if willing to use more
memory

— can often use less memory if willing to take
longer

— truly beautiful solutions take less time and space

The biggest difference between time and space is
that you can't reuse time. - Merrick Furst

CS 314 Efficiency - Complexity 33

Quantifiers on Big O

> It is often useful to discuss different cases for
an algorithm

» Best Case: what is the best we can hope for?
— least interesting, but a good exercise
— Don't assume no data. Amount of date is still
variable, possibly quite large
> Average Case (a.k.a. expected running time):
what usually happens with the algorithm?

» Worst Case: what is the worst we can expect

of the algorithm?

— very interesting to compare this to the average case
CS 314 Efficiency - Complexity 34

Best, Average, Worst Case

» To Determine the best, average, and worst
case Big O we must make assumptions
about the data set

> Best case -> what are the properties of the data set
that will lead to the fewest number of executable
statements (steps in the algorithm)

» Worst case -> what are the properties of the data
set that will lead to the largest number of
executable statements

> Average case -> Usually this means assuming the

data is randomly distributed

— orifl ran the algorithm a large number of times with different sets of
data what would the average amount of work be for those runs?

CS 314 Efficiency - Complexity 35

Another Example

public double minimum (double[] values) {
int n = values.length;
double minValue = values[0];

for (int i = 1; 1 < n; 1i++)
if (values[i] < minValue)
minValue = values[i];

return minValue;

}

» T(N)? F(N)? Big O? Best case? Worst Case?
Average Case?

> If no other information, assume asking average case

CS 314 Efficiency - Complexity 36

Example of Dominance

» Look at an extreme example. Assume the
actual number as a function of the amount of
data is:

N2/10000 + 2Nlog,, N+ 100000

> Is it plausible to say the N2 term dominates
even though it is divided by 10000 and that
the algorithm is O(N?)?

» What if we separate the equation into
(N2/10000) and (2N log,, N + 100000) and
graph the results.

CS 314 Efficiency - Complexity 37

Summing Execution Times

red line is
2Nlog10 N + 100000

nnnnnnn

DDDDDDD
DDDDDDD

blue line is

s N2/10000

nnnnnnn

DDDDDD

nnnnnn

» For large values of N the N2 term dominates so the
algorithm is O(N?)
» When does it make sense to use a computer?

CS 314 Efficiency - Complexity 38

Comparing Grades

> Assume we have a problem

» Algorithm A solves the problem correctly and
is O(N?)

» Algorithm B solves the same problem
correctly and is O(N log,N)

» Which algorithm is faster?

> One of the assumptions of Big O is that the
data set is large.

» The "grades" should be accurate tools if this
holds true.

CS 314 Efficiency - Complexity 39

Running Times

» Assume N = 100,000 and processor speed
is 1,000,000,000 operations per second

Function Running Time

2N 3.2 x 1030.086 years

N4 3171 years

N3 11.6 days

N2 10 seconds

N/ N 0.032 seconds

N log N 0.0017 seconds

N 0.0001 seconds

J N 3.2x 107 seconds

log N 1.2 x 10-® seconds
cs 314 Efficiency - Complexity 40

Theory to Practice OR
Dykstra says: "Pictures are for the Weak."

Change between Data Points

1000| 2000 | 4000 | 8000 | 16000 | 3200064000 | 128K | 256k | 512k
1000 | 2000 | 4000 | 8000 | 16000 | 32000 | 64000 | 128K
O(N) _ 121 202|078 | 162 | 1.76 | 1.89 | 224 | 211 | 1.62
O(N) 2.2x10%|2.7x10% |5.4x105(4.2x10% |6.8x10-5 |1.2x10* [2.3x10* |5.1x10*
O(NlogN) 218 |1.99| 127 | 213 | 215 | 215 | 2.71 | 1.64 | 2.40
O(NlogN) |8.5x10-5(1.9x10* [3.7x104(4.7x10* |1.0x103 |2.1x10° |4.6x10% [1.2x10-2
O(N¥2) |~ 1.98 | 248 | 2.87 | 279 | 276 | 2.85 | 2.79 | 2.82 | 2.81
O(N?372) 3.5x10%(6.9x10* |1.7x103|5.0x103 [1.4x102 [3.8x102 |0.11 0.30
O(N2) ind. |3.4x103|1.4x10% |4.4x10[0.22 |0.86 [345 [1379 |(®9) O(N?) ind 406 13.98)| 3.94 | 3.99 | 400 | 3.99 | - i i
2 N2 - - - -
Ségl) 1.8x103|7.1x103 |2.7x102[0.11 043 |173 690 |(276) doép) 4.00 1 3.82| 3.97 | 4.00 | 4.01 | 3.98
(1745) [(13,957) |(112k) [(896k) |(7.2m) i
O(N?) 340 |2726 @18 login |233min [31hrs |10days [g0 days O(N?) 8.03 | - - - - - - - -
Times in Seconds. Red indicates predicated value. Value obtained by Tlmex / Tlmex-‘l
CS 314 Efficiency - Complexity 41 CS 314 Efficiency - Complexity 42
Okay, Pictures Put a Cap on Time
Results on a 2GhZ laptop Results on a 2GhZ laptop
4.0 0.20
3.5 0.18 //
0.16
3.0 /
0.14
2.5 ——N 0.12 / ——N
[—=— NlogN @ f —=— NlogN
E 2.0 NsqrtN E 0.10 / NsqrtN
NA2 NI\2
1.5 — = NA2 0.08 / == N2
0.06
1.0 /
0.04
0.0 —M ; - ‘ 0.00 —45/ T — r T : :
0 5000 10000 15000 20000 25000 30000 35000 0 5000 10000 15000 20000 25000 30000 35000
Value of N Value of N
CS 314 Efficiency - Complexity 43 CS 314 Efficiency - Complexity 44

No O(N”2) Data

Results on a 2GhZ laptop

Just O(N) and O(NIogN)

Results on a 2GhZ laptop

3.00
0.06
2.50
0.05 e
2.00 0.04 /
£ 150 :n N g / —N
= 1. og £ 0.03
a NsgrtN F / —#- NiogN
1.00 0.02
0.01
0.50
0.00 —0 : * : - =9
0.00 7Y a— — — T T .! 0 100000 200000 300000 400000 500000 600000
0 100000 200000 300000 400000 500000 600000 Value of N
Value of N
CS 314 Efficiency - Complexity 45 CS 314 Efficiency - Complexity 46
Just O(N) 10° instructions/sec, runtimes
N O(log N) O(N) O(N log N) O(N?)
N
10(0.000000003 0.00000001 | 0.000000033 0.0000001
0.0020
0.0018 100 0.000000007 0.00000010 | 0.000000664 0.0001000
0.0016 // 1,000 (0.000000010 0.00000100 [0.000010000 0.001
0.0014 .
/ 10,000 | 0.000000013 0.00001000 | 0.000132900 0.1 min
0.0012 /
0.0010 / 100,000 | 0.000000017 0.00010000 | 0.001661000 10 seconds
0.0008 / 1,000,000 | 0.000000020 0.001 0.0199 16.7 minutes
0.0006
/ 1,000,000,000 [0.000000030 1.0 second |30 seconds 31.7 years
0.0004
0.0002 +
0.0000 T T T T T
0 100000 200000 300000 400000 500000 600000
CS 314 Efficiency - Complexity 47 CS 314 Efficiency - Complexity 48

Formal Definition of Big O (repeated)

» T(N) is O(F(N)) if there are positive
constants ¢ and N, such that T(N) < cF(N)
when N > N,

— N is the size of the data set the algorithm works on

— T(N) is a function that characterizes the actual
running time of the algorithm

— F(N) is a function that characterizes an upper
bounds on T(N). It is a limit on the running time of
the algorithm

—c and N, are constants

CS 314 Efficiency - Complexity 49

More on the Formal Definition

» There is a point N, such that for all values of N that
are past this point, T(N) is bounded by some
multiple of F(N)

» Thus if T(N) of the algorithm is O(N*2) then,
ignoring constants, at some point we can bound the
running time by a quadratic function.

> given a linear algorithm it is technically correct to
say the running time is O(N #* 2). O(N) is a more
precise answer as to the Big O of the linear
algorithm
— thus the caveat “pick the most restrictive function” in Big
O type questions.

CS 314 Efficiency - Complexity 50

What it All Means

» T(N) is the actual growth rate of the
algorithm

— can be equated to the number of executable
statements in a program or chunk of code

> F(N) is the function that bounds the growth
rate

— may be upper or lower bound
» T(N) may not necessarily equal F(N)

— constants and lesser terms ignored because it is
a bounding function

CS 314 Efficiency - Complexity 51

Other Algorithmic Analysis Tools

» Big Omega T(N) is Q(F(N)) if there are
positive constants ¢ and N, such that
T(N)>cF(N))when N >N,

— Big O is similar to less than or equal, an upper
bounds

— Big Omega is similar to greater than or equal, a
lower bound

» Big Theta T(N) is 6(F(N)) if and only if T(N)
is O(F(N))and T(N) is Q(F(N)).
— Big Theta is similar to equals

CS 314 Efficiency - Complexity 52

Relative Rates of Growth

Analysis | Mathematical Relative
Type Expression Rates of
Growth
BigO | T(N)=O(F(N))| T(N)<F(N)
BigQ | T(N)=Q(F(N))| T(N)>F(N)
Bigb | T(N)=06(F(N))| T(N)=F(N)

CS 314

"In spite of the additional precision offered by Big Theta,

Big O is more commonly used, except by researchers
in the algorithms analysis field" - Mark Weiss

Efficiency - Complexity

53

Topic 3

Encapsulation - Implementing Classes

“And so, from Europe, we get things such
as ... object-oriented analysis and design
(a clever way of breaking up software
programming instructions and data into
small, reusable objects, based on certain
abstraction principles and design
hierarchies.)”
-Michael A. Cusumano,
The Business Of Software

Object Oriented Programming

> Creating large programs that work turns out
to be very difficult
— DIA Automated baggage handling system
— Ariane 5 Flight 501
— More

» Object oriented programming is one way of
managing the complexity of programming
and software projects

> Break up big problems into smaller, more
manageable problems

CS 314 Encapsulation - Implementing Classes 2

Object Oriented Programming

» "Object-oriented programming is a method of
programming based on a hierarchy of classes, and
well-defined and cooperating objects. "

» What is a class?

» "A class is a structure that defines the data and the
methods to work on that data. When you write
programs in the Java language, all program data is
wrapped in a class, whether it is a class you write
or a class you use from the Java platform API
libraries."

— a new data type

CS 314 Encapsulation - Implementing Classes 3

Object Oriented Programming

> In other words break the problem up based
on the things / data types that are part of the
problem

» Not the only way
» One of many different kinds of strategies or

paradigms for software development

— functional, procedural, event driven, data flow,
formal methods, agile or extreme, ...

» In 314 we will do a lot of object based
programming

CS 314 Encapsulation - Implementing Classes 4

Example - Monopoly

If we had to start
from scratch what
classes would we
need to create?

CS 314 Encapsulation - Implementing Classes 5

Encapsulation
> One of the features of object oriented
languages
» Allows programmers to define
new data types
» Hide the data of an object (variable)

» Group operations and data together into a
new data type

> Usually easier to use something than
understand exactly how it works
— microwave, car, computer, software, mp3 player

CS 314 Encapsulation - Implementing Classes 6

Data Structures
» A data structure is a variable that stores

other variables. (overly simplified definition)
— aka Collection, Container

> May be ordered or unordered (from client’s
perspective)
— Order a first element, second element,...
— Lists are ordered, sets are typically unordered
> May allow duplicate values or not
— Lists allow duplicates, sets typically do not

CS 314 Encapsulation - Implementing Classes 7

The IntList Class

» We will develop a class that models a list of ints
— initially a pale imitation of the Java ArrayList class

> Improvement on an array of ints
— resize automatically
— insert easily
— remove easily

» A list - our first data structure
— a variable that stores other variables

» Lists maintain elements in a definite order and
duplicates are allowed
0 1 2 3 4
[5, 12, 5, 17, -5] <- elements

CS 314 Encapsulation - Implementing Classes 8

<- indices / positions

Clicker 1

Our IntList class has an array of ints instance
variable (int [] container). What should the
length of this internal array be?

A. less than or equal to the size of the list

B. greater than or equal to the size of the list
C. equal to the size of the list

D. some fixed amount that never changes
E.O

CS 314 Encapsulation - Implementing Classes 9

Array length less than
the number of elements
in the list?1?

» What if most elements are all
the same value? Only store the
elements (and their position) not
equal to the default? Sparse List

Clicker 2

When adding a new element to a list,

where should the new element be
added by default?

A. The beginning

B. The end

C. The middle

D. A random location

E. Don’t bother to actually add

CS 314 Encapsulation - Implementing Classes 11

IntList Design

» Create a new, empty IntList
new IntList -> []

» The above is not code. It is a notation that shows
what the results of operations. [] is an empty list.

» add to a list.

[].add (1) -> [1]

[1].add(5) -> [1, 5]

[1, 5].add((4) -> [1, 5, 4]

» elements in a list have a definite order and a
position.

— zero based position or 1 based positioning?
CS 314 Encapsulation - Implementing Classes 12

IntList alist = new IntList();
alist.add (42);
alList.add (12);

alList.add (37);

Abstract view of IntList
list of integers size 3
O 1 2 con
The Wa” Of 42112 | 37| 0 0 010 0 010
abstraction.
u 0 1 2 3 4 5 6 7 8 9
CS 314 Encapsulation - Implementing Classes 13

Instance Variables

» Internal data

— also called instance variables because every
instance (object) of this class has its own copy of
these

— something to store the elements of the list
— size of internal storage container?
— if not what else is needed

» Must be clear on the difference between the
internal data of an IntList object and the
IntList that is being represented

» Why make internal data private?

CS 314 Encapsulation - Implementing Classes 14

Constructors

> For initialization of objects

> IntList constructors
— default
— initial capacity?

> redirecting to another constructor
this (10) ;

» class constants
—what static means

CS 314 Encapsulation - Implementing Classes 15

Default add method

> where to add?

» what if not enough space?
[].add(3) -> [3]

[3] .add (5) -> [3, 5]

[3, b5].add(3) -> [3, 5, 3]

» Testing, testing, testing!
—a toString method would be useful

CS 314 Encapsulation - Implementing Classes 16

The IntList Class

» instance variables

> constructors
— default
— initial capacity
 preconditions, exceptions, postconditions, assert
— meaning of static

» add method
» get method
» size method

CS 314 Encapsulation - Implementing Classes 17

toString method
> return a Java String of list
> empty list -> []
> one element -> [12]
» multiple elements -> [12, 0, 5, 4]

CS 314 Encapsulation - Implementing Classes

18

Clicker 3 - Timing Experiment
> Add N elements to an initially empty IntList then call
toString. Time both events. How does the time to add
compare to the time to complete toString?

IntList list = new IntList();
for (int i = 0; i < N; i++)
list.add(i); // resize, cap * 2

String s = list.toString()

time to add << time for toString()

time to add < time for toString()

time to add ~= time for toString()

time to add > time for toString()

time to add >> time for toString()

moowy

The IntList Class
> testing!!!
> toString

— “beware the performance of String
concatenation” — Joshua Bloch

» insert method (int pos, int wvalue)
> remove method (int pos)

» insertAll method
(int pos, IntList other)

— queens and kings of all the IntLists!!!

CS 314 Encapsulation - Implementing Classes

20

Clicker Question 4

What is output by the following code?
IntList list

list = new IntList (25);
System.out.println(list.size());

A. 25

B.0

C. -1

D. unknown

E. No output due to runtime error.

CS 314 Encapsulation - Implementing Classes 21

get and size methods

> get

— access element from list

— preconditions?
[3, 5, 2].get(0) returns 3
[3, 5, 2].get(1l) returns 5
> size

— number of elements in the list

— Do not confuse with the capacity of the internal
storage container

— The array is not the list!
[4, 5, 2].size() returns 3

CS 314 Encapsulation - Implementing Classes 22

Insert method

» add at someplace besides the end
[3, 5].insert (1, 4) -> [3, 4, 5]

where what
[3, 4, 5].insert (0, 4) -> [4, 3, 4, 5]
> preconditions?

» overload add?
» chance for internal loose coupling

CS 314 Encapsulation - Implementing Classes 23

Clicker 5
What is output by the following code?

IntList list = new IntList();
list.add (3);

list.insert (0, 4);
list.insert (1, 1);
list.add(5);

list.insert (2, 9);
System.out.println(list);

// position, wvalue

A. 14, 1, 3, 9, 5]
B. [3 4, 1, 5, 9]
C.[4, 1, 9, 3, 5]
D. (3, 1, 4, 9, 5]
E. Something else

CS 314 Encapsulation - Implementing Classes 24

remove method

> remove an element from the list based on
location
[3, 4, 5].remove(0) -> [4, 5]
[3, 5, 6, 1, 2].remove(2) ->
[3, 5, 1, 2]
> preconditions?
> return value?

— accessor methods, mutator methods, and
mutator methods that return a value

CS 314 Encapsulation - Implementing Classes 25

Clicker Question 6
What is output by the following code?

IntList list = new IntList():;
list.add(12);

list.add(15)
list.add(12)
list.add(17)
list.remove (1) ;
System.out.println(list);

. [15, 17]
.[12, 17]

14

.
r

.
14

12, 12, 171
.[15, 12, 17]

A

B. [

C.[12, 0, 12, 17]
D. [

E. [

CS 314 Encapsulation - Implementing Classes 26

iInsertAll method
> add all elements of one list to another
starting at a specified location
[5, 3, 7].insertAll (2, [2, 3]1) —->
[5, 3, 2, 3, 7]

The parameter [2, 3] would be unchanged.

» Working with other objects of the same type
- this?
— where is private private?
— loose coupling vs. performance
— queens and kings of all the IntLists!!!

CS 314 Encapsulation - Implementing Classes 27

Clicker 7 - InsertAll First Version

» What is the order of the first version of
InsertAll? Assume both lists have N elements
and that the insert position is halfway through
the calling list.

A. O(1)

B. O(logN)
C. O(NO-5)
D. O(N)

E. O(N?)

CS 314 Encapsulation - Implementing Classes 28

Class Design and Implementation —
Another Example

This example will not be covered
in class.

The Die Class

» Consider a class used
to model a die

» What is the interface? What
actions should a die be able
to perform?

» The methods or behaviors can be broken up
into constructors, mutators, accessors

CS 314 Encapsulation - Implementing Classes 30

The Die Class Interface

» Constructors (used in creation of objects)

— default, single int parameter to specify the
number of sides, int and boolean to determine if
should roll

» Mutators (change state of objects)
—roll

» Accessors (do not change state of objects)
— getResult, getNumSides, toString

> Public constants
— DEFAULT_SIDES

CS 314 Encapsulation - Implementing Classes 31

Visibility Modifiers
> All parts of a class have visibility modifiers

— Java keywords

— public, protected, private, (no modifier means package
access)

— do not use these modifiers on local variables (syntax error)
> public means that constructor, method, or field may
be accessed outside of the class.
— part of the interface
— constructors and methods are generally public
> private means that part of the class is hidden and
inaccessible by code outside of the class
— part of the implementation
— data fields are generally private

CS 314 Encapsulation - Implementing Classes 32

The Die Class Implementation

» Implementation is made up of constructor code,
method code, and private data members of the
class.

» scope of data members / instance variables
— private data members may be used in any of the
constructors or methods of a class

» Implementation is hidden from users of a class and
can be changed without changing the interface or

affecting clients (other classes that use this class)
— Example: Previous version of Die class,
DieVersion1.java

» Once Die class completed can be used in anything
requiring a Die or situation requiring random

numbers between 1 and N
— DieTester class. What does it do?

CS 314 Encapsulation - Implementing Classes 33

DieTester method

public static void main(String[] args) {
final int NUM ROLLS
final int TEN_SIDED
Die dl = new Die();
Die d2 = new Die();
Die d3 = new Die(TEN_ SIDED);
final int MAX ROLL = dl.getNumSides () +
d2.getNumSides () + d3.getNumSides();

50;
10;

for(int i = 0; i < NUM _ROLLS; i++)
{ dl.roll();
d2.roll();
System.out.println("dl: " + dl.getResult ()
+ " d2: " 4+ d2.getResult() + " Total: "
+ (dl.getResult () + d2.getResult()));

CS 314 Encapsulation - Implementing Classes 34

DieTester continued

int total = 0;

int numRolls = 0;

do

{ dl.roll();
d2.roll();
d3.roll();

total = dl.getResult() + d2.getResult()
+ d3.getResult();
numRolls++;
}
while (total != MAX ROLL) ;

System.out.println ("\n\nNumber of rolls to get "
+ MAX ROLL + " was " + numRolls);

CS 314 Encapsulation - Implementing Classes 35

Correctness Sidetrack

» When creating the public interface of a class give
careful thought and consideration to the contract
you are creating between yourself and users (other
programmers) of your class

» Use preconditions to state what you assume to be
true before a method is called
— caller of the method is responsible for making sure these
are true
» Use postconditions to state what you guarantee to
be true after the method is done if the preconditions
are met

— implementer of the method is responsible for making
sure these are true

CS 314 Encapsulation - Implementing Classes 36

Precondition and
Postcondition Example

[* pre: numSides > 1
post: getResult() = 1, getNumSides() = sides
*/
public Die(int numSides)
{ assert (numSides > 1) : “Violation of precondition: Die(int)”;
iMyNumSides = numSides;
iMyResult = 1;
assert getResult() == 1 && getNumSides() == numSides;
}

CS 314 Encapsulation - Implementing Classes 37

Object Behavior - Instantiation

» Consider the DieTester class

Die dl = new Die();
Die d2 = new Die();
Die d3 = new Die(10);

» When the new operator is invoked control is
transferred to the Die class and the specified
constructor is executed, based on parameter matching

» Space(memory) is set aside for the new object's fields

» The memory address of the new object is passed
back and stored in the object variable (pointer)

> After creating the object, methods may be called on it.

CS 314 Encapsulation - Implementing Classes 38

Creating Dice Objects

memory o, a Die object
address g " S
0 1
al y | y |
DieTester class. Sees iMySides iMyResult{ b cgss.

interface of Die class Sees

a Die object . .
implementation.
4 4
memory (of Die class.)
6 1
address - -
7 . . .
a2 iMySides iMyResult
a Die object
10 1
2EEEERS A ===
d3 iMySides iMyResult

CS 314 Encapsulation - Implementing Classes 39

Objects

» Every Die object created has its own
instance of the variables declared in the
class blueprint

private int 1MySides;
private int i1MyResult;

» thus the term instance variable

> the instance vars are part of the hidden
implementation and may be of any data type

— unless they are public, which is almost always a
bad idea if you follow the tenets of information
hiding and encapsulation

CS 314 Encapsulation - Implementing Classes 40

Complex Objects
» What if one of the instance variables is itself

an object?

> add to the Die class
private String myName;

memory a Die object

ey > 4 > 4
address 6 1 memory
— ammn smmm | address

dl iMySides iMyResult myName \\

d1 can hold the memory address \
of a Die object. The instance variable a String object

myName inside a Die object can hold

the memory address of a String object implementation

details not shown

CS 314 Encapsulation - Implementing Classes 41

The Implicit Parameter

» Consider this code from the Die class

public void roll ()
{ iMyResult =
ourRandomNumGen.nextInt (iMySides) + 1;

}
» Taken in isolation this code is rather confusing.

» what is this iMyResult thing?
— It's not a parameter or local variable
— why does it exist?
— it belongs to the Die object that called this method
— if there are numerous Die objects in existence

— Which one is used depends on which object called
the method.

CS 314 Encapsulation - Implementing Classes 42

The this Keyword

» When a method is called it may be necessary
for the calling object to be able to refer to itself

— most likely so it can pass itself somewhere as a
parameter

> when an object calls a method an implicit
reference is assigned to the calling object

» the name of this implicit reference is this

» this is a reference to the current calling object

and may be used as an object variable (may not
declare it)

CS 314 Encapsulation - Implementing Classes 43

this Visually[ory
// in some class other than Die address
Die d3 = new Die();
d3.roll(); d3
// in the Die class
public void roll ()
{ iMyResult =
ourRandomNumGen.nextInt (iMySides) + 1;
/* OR
this.iMyResult.. A4
* a Die object
} memory > 4 y 4
address 6 1
7 AN y.
this iMySides iMyResult

CS 314 Encapsulation - Implementing Classes 44

An equals method

> working with objects of the same type in a
class can be confusing

> write an equals method for the Die class.
assume every Die has a myName instance
variable as well as iMyNumber and iMySides

CS 314 Encapsulation - Implementing Classes 45

A Possible Equals Method

public boolean equals (Object otherObject)
{ Die other = (Die)otherObject;
return iMySides == other.iMySides
&& iMyResult== other.iMyResult
&& myName.equals(other.myName) ;

’} Declared Type of Parameter is Object not Die

> override (replace) the equals method instead of
overload (present an alternate version)
— easier to create generic code

> we will see the equals method is inherited from
the Object class

» access to another object's private instance
variables?

CS 314 Encapsulation - Implementing Classes 46

Another equals Methods

public boolean equals (Object otherObject)

{ // dangerous! Not checking for null or type.

Die other = (Die)otherObject;
return this.iMySides == other.iMySides
&& this.iMyNumber == other.iMyNumber
&& this.myName.equals(other.myName);
}

Using the this keyword / reference to access the implicit parameters
instance variables is unnecessary.

If a method within the same class is called within a method, the
original calling object is still the calling object

CS 314 Encapsulation - Implementing Classes 47

A "Perfect" Equals Method

» From Cay Horstmann's Core Java

public boolean equals (Object otherObject)
{ // check if objects identical
if(this == otherObject)
return true;
// must return false if explicit parameter null
if (otherObject == null)
return false;
// 1if objects not of same type they cannot be equal
if (getClass () != otherObject.getClass())
return false;
// we know otherObject is a non null Die
Die other = (Die)otherObject;
return iMySides == other.iMySides
&& iMyNumber == other.iMyNumber
&& myName.equals (other.myName) ;

CS 314 Encapsulation - Implementing Classes 48

the instanceof Operator
» instanceof is a Java keyword.

» part of a boolean statement

public boolean equals (Object otherObj)
{ 1f otherObj instanceof Die
{ //now go and cast
// rest of equals method

}

» Should not use instanceof in equals methods.

» instanceof has its uses but not in equals
because of the contract of the equals method

CS 314 Encapsulation - Implementing Classes 49

Class Variables and Class Methods

> Sometimes every object of a class does not
need its own copy of a variable or constant

» The keyword static is used to specify
class variables, constants, and methods

private static Random ourRandNumGen
= new Random{() ;
public static final int DEFAULT SIDES = 6;

» The most prevalent use of static is for class
constants.

— if the value can't be changed why should every
object have a copy of this non changing value

CS 314 Encapsulation - Implementing Classes 50

Class Variables and Constants

the Die class

4
6 memory
address
N

DEFAULT_ SIDES ourRandNumGen

~.

a Random object

All objects of type Die have
access to the class variables
and constants.

implementation
details not shown

A public class variable or constant
may be referred to via the class name.

CS 314 Encapsulation - Implementing Classes 51

Syntax for Accessing Class Variables

public class UseDieStatic
{ public static void main (String[] args)
{ System.out.println("Die.DEFAULT SIDES "
+ Die.DEFAULT SIDES);
// Any attempt to access Die.ourRandNumGen
// would generate a syntax error

Die dl = new Die(10);

System.out.println("Die.DEFAULT SIDES "
+ Die.DEFAULT SIDES);

System.out.println("dl1.DEFAULT SIDES "
+ d1.DEFAULT SIDES);

// regardless of the number of Die objects in
// existence, there is only one copy of DEFAULT SIDES
// in the Die class

} // end of main method

} // end of UseDieStatic class
CS 314 Encapsulation - Implementing Classes 52

Static Methods

» static has a somewhat different
meaning when used in a method
declaration

» static methods may not manipulate any
instance variables

> in non static methods, some object
invokes the method

d3.roll () ;

> the object that makes the method call is
an implicit parameter to the method

CS 314 Encapsulation - Implementing Classes 53

Static Methods Continued

» Since there is no implicit object parameter
sent to the static method it does not have
access to a copy of any objects instance
variables
— unless of course that object is sent as an

explicit parameter

> Static methods are normally utility methods
or used to manipulate static variables
(class variables)

» The Math and System classes are nothing
but static methods

CS 314 Encapsulation - Implementing Classes 54

static and this
» Why does this work (added to Die class)

public class Die

{
public void outputSelf ()

{ System.out.println(this);

}
}

» but this doesn't?

public class StaticThis
{

public static void main(String[] args)
{ System.out.println(this);

}

CS 314 Encapsulation - Implementing Classes 55

Topic 4
Inheritance

"Question: What is the object oriented way of
getting rich?

Answer: Inheritance.”

Features of OO Programming

> Encapsulation

— abstraction, creating new data types

— information hiding

— breaking problem up based on data types
» Inheritance

— code reuse

— specialization

—"New code using old code."

CS 314 Inheritance 2

Encapsulation

> Create a program to allow people to play the
game Monopoly

— Create classes for money, dice, players, the
bank, the board, chance cards, community chest
cards, pieces, etc.

» Some classes use other classes. Are clients
— the board consists of spaces
— a player has properties they own
— a piece has a position

» Also referred to as composition

CS 314 Inheritance 3

Inheritance

» Another kind of relationship exists between
things in the world and data types in programs

» There are properties in Monopoly
— a street is a kind of property
—a railroad is a kind of property
— a utility is a kind of property

a

B. &. O. RAILROAD

gt $ 25
f2RR soreowned 50,
Ka+= =s e qpp,
L B i e 200

Mortgage Value — § 100,

CS 314 Inheritance 4

Inheritance

> In Monopoly there is the concept of a
Property

» All properties have some common traits
—they have a name
—they have a position on the board
—they can be owned by players
— they have a purchase price

> But some things are different for each of the
three kinds of property

— How to determine rent when another player
lands on the Property

CS 314 Inheritance 5

What to Do?

> If we have a separate class for Street,
Railroad, and Utility there is going to be a lot
of code copied
— hard to maintain
— an anti-pattern

> Inheritance is a programming feature to
allow data types to build on pre-existing data
types without repeating code

CS 314 Inheritance 6

Mechanics of Inheritance

extends keyword

inheritance of instance methods

inheritance of instance variables

object initialization and constructors

calling a parent constructor with super ()
overriding methods

partial overriding, super.parentMethod ()
inheritance requirement in Java

the Object class

10. inheritance hierarchies

© X NO Ok~ Wb~

CS 314 Inheritance 7

»

Inheritance in Java

Java is designed to encourage object
oriented programming

all classes, except one, must inherit from
exactly one other class

The Object class is the cosmic super class
— The Object class does not inherit from any other class
— The Object class has several important methods:
toString, equals, hashCode, clone, getClass
implications:
— all classes are descendants of Object

— all classes and thus all objects have a toString,
equals, hashCode, clone, and getClass method
toString, equals, hashCode, clone normally overridden

CS 314 Inheritance 8

Nomenclature of Inheritance

» In Java the extends keyword is used in the
class header to specify which preexisting class
a new class is inheriting from

public class Student extends Person

» Person is said to be
— the parent class of Student
— the super class of Student
— the base class of Student
— an ancestor of Student

» Student is said to be
— a child class of Person
— asub class of Person
— aderived class of Person
— a descendant of Person

CS 314 Inheritance 9

Clicker 1

What is the primary reason for using
inheritance when programming?

A. To make a program more complicated

B. To copy and paste code between classes
C. To reuse pre-existing code

D. To hide implementation details of a class
E. To ensure pre conditions of methods are met.

CS 314 Inheritance 10

Clicker 2

What is output when the main method is run?
public class Foo {

public static void main(String[] args) {
Foo f1 = new Foo();

System.out.println(f1l.toString());

}
A. 0

B. null
C. Unknown until code is actually run.
D. No output due to a syntax error.

E. No output due to a runtime error. “

Overriding methods

» any method that is not final may be
overridden by a descendant class

> same signature as method in ancestor
> may not reduce visibility

» may use the original method if simply want to
add more behavior to existing

— super.originalMethod()

CS 314 Inheritance 12

Constructors

> Constructors handle initialization of objects
> When creating an object with one or more ancestors (every
type except Object) a chain of constructor calls takes place
> The reserved word super may be used in a constructor to
call a one of the parent's constructors
— must be first line of constructor
> if no parent constructor is explicitly called the default, 0
parameter constructor of the parent is called
— if no default constructor exists a syntax error results
> If a parent constructor is called another constructor in the
same class may no be called
— no super () ;this(); allowed. One or the other, not both
— good place for an initialization method

CS 314 Inheritance 13

The Keyword super

> super is used to access something (any protected or
public field or method) from the super class that has
been overridden

> Rectangle's toString makes use of the toStringin
ClosedShape my calling super.toString ()

> without the super calling toString would result in
infinite recursive calls

» Java does not allow nested supers
super.super.toString ()

results in a syntax error even though technically this
refers to a valid method, Object's toString

> Rectangle partially overrides ClosedShapes toString

CS 314 Inheritance 14

Creating a SortedIntList
- A Cautionary Tale
of Inheritance

A New Class

> Assume we want to have a list of ints, but
that the ints must always be maintained in
ascending order
(-7, 12, 37, 212, 212, 313, 313, 500]
sortedList.get (0) returns the min

sortedList.get(list.size() — 1)
returns the max

CS 314 Inheritance 16

Implementing SortedIntList

» Do we have to write a whole new class?

» Assume we have an IntList class.

> Clicker 3 - Which of the following methods
have to be changed?

add (int value)

int get(int location)

String toString/()

int remove (int location)

Mo Q w >

. More than one of A - D.

CS 314 Inheritance 17

Overriding the add Method

> First attempt
» Problem?

» solving with insert method
— double edged sort
> solving with protected
— What protected really means

CS 314 Inheritance 18

Clicker 4

public class IntList {
private int size
private int[] con

}

public class SortedIntList extends IntList {
public SortedIntList () {
System.out.println(size); // Output?

}
}

A.0

B. null

C. unknown until code is run

D. no output due to a compile error

E. no output due to a runtime error 19

Problems
» What about this method?

vold insert (int location, int wval)
» What about this method?

vold 1insertAll (int location,
IntList otherlist)

» SortedIntList is not a good application

of inheritance given all the behaviors
IntList provides.

CS 314 Inheritance 20

More Example Code

ClosedShape and Rectangle classes

CS 314 Inheritance 21

Simple Code Example

» Create a class named Shape
— what class does Shape inherit from
— what methods can we call on Shape objects?
— add instance variables for a position
— override the toString method

> Create a Circle class that extends Shape
— add instance variable for radius
— debug and look at contents
— try to access instance var from Shape
— constructor calls
— use of key word super

CS 314 Inheritance

22

Shape Classes

» Declare a class called ClosedShape
— assume all shapes have x and y coordinates
—override Object's version of toString

» Possible sub classes of ClosedShape

— Rectangle

—Circle

—Ellipse

— Square

Possible hierarchy

ClosedShape <- Rectangle <- Square

v

CS 314 Inheritance 23

A ClosedShape class

public class ClosedShape {

private double myX;
private double myY;

public ClosedShape () {

this (0,0);
}

myX X7

public ClosedShape (double x, double y) {
myY = y;

}

public String toString() {

return "x: " + getX() + " y: " + get¥Y();

public double getX () { return myX; }
public double getY () { return myY; }
}
// Other methods not shown

CS 314 Inheritance

24

A Rectangle Constructor

public class Rectangle extends ClosedShape {
private double myWidth;
private double myHeight;

public Rectangle(double x, double vy,
double width, double height) {
super (x,VY);
// calls the 2 double constructor in
// ClosedShape
myWidth = width;
myHeight = height;

A Rectangle Class

public class Rectangle extends ClosedShape {
private double myWidth;
private double myHeight;

public Rectangle () {
this (0, 0);
}

public Rectangle (double width, double height) ({
myWidth = width;
myHeight = height;

}

public Rectangle (double x, double vy,
double width, double height) {
super(x, y);
myWidth = width;
myHeight = height;
}

} public String toString() {
return super.tostring(? + " width " + myWidth
// other methods not shown } * " height + myfieight;
})
CS 314 Inheritance 25 CS 314 Inheritance 26
Initialization method Result of Inheritance
bli 1 ngl xtend 1 dsh
P rivate double mymidcns o orere ! Do any of these cause a syntax error?

private double myHeight; What |S the output'?
mmi;ﬁﬁtgfm(>{ Rectangle r = new Rectangle(l, 2, 3, 4);

}

public Rectangle (double width, double height) {
init (width, height);
}

public Rectangle (double x, double vy,
double width, double height) {
super (x, Vy);
init (width, height);
}

private void init (double width, double height) {
myWidth = width;
myHeight = height;

}

CS 314 Inheritance 27

ClosedShape s = new CloseShape (2, 3)
System.out.println(s.getX());
System.out.println(s.get¥());

System.out.println(s.toString());
System.out.println(r.getX());
System.out.println(r.get¥());

System.out.println(r.toString());
System.out.println (r.getWidth());

o~ o~ o~ o~ o~ o~

CS 314 Inheritance

28

Fields from Object class
[Instance variables
declared in Object

A Fields from ClosedShape class
Rectangle 3 Instance Variables declared in
object ClosedShape
Available Fields from Rectangle class
methods
are all methods)]
from Object, Instance Variables declared in
ClosedShape,
and Rectangle ReCtangle

The Real Picture

CS 314 Inheritance 29

Access Modifiers and

| Inheritance
> public
— accessible to all classes
> private
— accessible only within that class. Hidden from all sub
classes.
> protected
— accessible by classes within the same package and all
descendant classes
» Instance variables are typically private

» protected methods are used to allow descendant
classes to modify instance variables in ways other

classes can't

CS 314 Inheritance 30

Why private Vars and not protected?

> In general it is good practice to make
instance variables private
— hide them from your descendants

— if you think descendants will need to access
them or modify them provide protected methods
to do this

» Why?
> Consider the following example

CS 314 Inheritance 31

Required update

public class GamePiece {
private Board myBoard;

private Position myPos;

/l whenever my position changes | must
// update the board so it knows about the change

protected void alterPos(Position newPos) {
Position oldPos = myPos;
myPos = newPos;
myBoard.update(oldPos, myPos);

CS 314 Inheritance 32

Topic 5
Polymorphism

"“Inheritance is new code that reuses old code.
Polymorphism is old code that reuses new code.”
- OOP Koan

Polymorphism
> Another feature of OOP
> literally “having many forms”
> object variables in Java are polymorphic

> object variables can refer to objects of their
declared type AND any objects that are
descendants of the declared type

Property p = new Property();
p = new Railroad(); // legal!
p = new Utility(); //legal!

p = new Street();

Object objl; // = what?

CS314 Polymorphism 2

Data Type

> object variables have:
— a declared type. Also called the static type.

— a dynamic type. What is the actual type of the
pointee at run time or when a particular
statement is executed.

» Method calls are syntactically legal if the
method is in the declared type or any
ancestor of the declared type

» The actual method that is executed at
runtime is based on the dynamic type
— dynamic dispatch

CS314 Polymorphism

Clicker Question 1

Consider the following class declarations:

public class BoardSpace

public class Property extends BoardSpace
public class Street extends Property
public class Railroad extends Property

Which of the following statements would cause a syntax
error? (Assume all classes have a zero argument
constructor.)

A.Object obj = new Railroad();
B. Street s = new BoardSpace () ;
C. BoardSpace b = new Street();
D.Railroad r = new Street();
E. More than one of these

CS314 Polymorphism 4

Method LookUp

> To determine if a method is legal the compiler looks in the
class of the declared type
— if it finds it great, if not go to the super class and look there
— continue until the method is found, or the Object class is reached
and the method was never found. (Compile error)
> To determine which method is actually executed the run
time system (abstractly):

— starts with the actual run time class of the object that is calling the
method

— search the class for that method
— if found, execute it, otherwise go to the super class and keep looking
— repeat until a version is found

> Is it possible the runtime system won’t find a method?

CS314 Polymorphism 5

Clicker Question 2

What is output by the

public class Animal {

Code to the nght When public String bt(){ return "!"; }
run? }
! ! l.j_‘763 public class Mammal extends Animal {
public String bt (){ return "live"; }
'eggegqg |
| eggl ive public class Platypus extends Mammal {

public String bt(){ return "egg";}

11 }

moowx

. Something else |znina1 o

Animal a2

new Animal ()
new Platypus();

Mammal ml new Platypus () ;
System.out.print (al.bt ());
System.out.print(a2.bt());

System.out.print (ml.bt ());

CS314 Polymorphism 6

Clicker Question 3

public class Animal {
public void show() {
System.out.print (this.speak()) ;

What is output by
the code to the

right when run? }ubl_ sers . N
Thlnk Carer”y , P ic ring speak() { return m' ;

about the dynamic

type public class Dog extends Animal ({
) public String speak() { return "Woof";

A. MeowWoof }

E3_ Dqéac)vvfﬂrn public class Cat extends Animal {
public void show(int x) {

C. EmWO O f System.out.print ("Meow") ;
}

D. EmEm)

E. Something else Cat patches = new Cat();

Dog velvet = new Dog() ;
patches.show() ;
velvet.show () ;

Why Bother?

> Inheritance allows programs to model
relationships in the real world

— if the program follows the model it may be easier
to write

» Inheritance allows code reuse

— complete programs faster (especially
large programs)

> Polymorphism allows code reuse
in another way

> Inheritance and polymorphism allow
programmers to create generic algorithms

CS314 Polymorphism 8

Genericity

> One of the goals of OOP is the support of
code reuse to allow more efficient program
development

> If a algorithm is essentially the same, but the
code would vary based on the data type
genericity allows only a single version of that

code to exist
> in Java, there are 2 ways of doing this
1. polymorphism and the inheritance requirement

2. generics

CS314 Polymorphism 9

A Generic List Class

CS314 Polymorphism

10

Backto IntlList

» We may find IntList useful, but what if we
want a List of Strings? Rectangles?
Lists?

— What if | am not sure?

> Are the List algorithms different if | am

storing Strings instead of ints?

» How can we make a generic List class?

CS314 Polymorphism 11

Generic List Class

> required changes
» How does toString have to change?
— why?1?!
— A good example of why keyword this is
necessary from toString

» What can a List hold now?
» How many List classes do | need?

CS314 Polymorphism

12

Clicker 4

> After altering the data type of the elements to
Object in our list class, how many lines of
code in the toString method, originally from
the IntList class, need to be changed?

A0
B. 1
C.2
D.3
E.>=4

CS314 Polymorphism 13

Writing an equals Method

» How to check if two objects are equal?
if (objA == objA)

// does this work?
» Why not this

public boolean equals(List other)

> Because
public void foo(List a, Object b)

if(a.equals (b))
System.out.println(same)

—whatifbisreallya List?

CS314 Polymorphism 14

equals method

> read the javadoc carefully!

> Must handle null

» Parameter must be Object
— otherwise overloading instead of overriding
— causes

» must handle cases when parameter is not
same data type as calling object
—instanceof OorgetClass ()

» don't rely on toString and then String's
equals (efficiency)

CS314 Polymorphism 15

the createASet example

public Object[] createASet (Object[] items)
{ /*
pre: items != null, no elements
of items = null
post: return an array of Objects
that represents a set of the elements
in items. (all duplicates removed)

*/

{5, 1, 2, 3, 2, 3, 1, 5} -> {5, 1, 2, 3}

CS314 Polymorphism 16

createASet examples

String[] sList = {"Texas", "texas", "Texas",
"Texas", "UT", "texas"};

Object[] sSet = createASet (sList);
for(int 1 = 0; 1 < sSet.length; i++)
System.out.println(sSet[i])

Object[] list = {"Hi", 1, 4, 3.3, true,
new ArrayList(), "Hi", 3.3,
Object[] set = createASet(list);
for(int i = 0; i < set.length; i++)
System.out.println(set[i]);

CS314 Polymorphism

4};

17

Topic 6

Generic Type Parameters

"Get your data structures correct
first, and the rest of the program will
write itself."

- David Jones

Back to our Array Based List

» Started with a list of ints

» Don't want to have to write a new list class
for every data type we want to store in lists
> Moved to an array of Objects to store the

elements of the list
// from array based list
private Object[] con;

CS314 Generics 2

Using Object
» In Java, all classes inherit from exactly one
other class except Object which is at the top
of the class hierarchy
— therefore all classes are descendants of Object

> object variables can refer to objects of their
declared type and any descendants
— polymorphism

» Thus, if the internal storage container is of
type Object it can hold anything

— primitives handled by wrapping them in objects.
int — Integer, char - Character

CS314 Generics 3

Difficulties with Object

> Creating generic data structures using the
Object data type and polymorphism is
relatively straight forward

» Using these generic data structrues leads to
some difficulties
— Casting
— Type checking

» Code examples on the following slides

CS314 Generics 4

Clicker 1

» What is output by the following code?

// 1
Street s = new Street ("Boardwalk", 400,
Color.BLUE) ;

Genericlist list = new GenericList () :

list.add(s); // 2
System.out.print (list.get (0) .getPrice());// 3

A. 400

B. No output due to syntax error at line // 1
C. No output due to syntax error at line // 2
D. No output due to syntax error at line // 3

E. No output due to runtime error.

Code Example - Casting

> Assume a list class
GenericList 1i = new GenericList();
li.add("Hi");
System.out.println(li.get (0) .charAt (0));
// previous line has syntax error
// return type of get is Object
// Object does not have a charAt method
// compiler relies on declared type
System.out.println (

li.get (0)) .charAt (0));

// must cast to a String

((String)

CS314 Generics 5 CS314 Generics 6
Code Example — type checking "Fixing" the Method
//pre: all elements of 1i are Monopoly Properties

//pre: all elements of 1i are Monopoly Properties
public void printPrices (GenericList 1i) {
(int 1 = 0; i++) |

for i < li.size():;

Property temp = (Property) li.get(i);

System.out.println (temp.getPrice())

}

// what happens if pre condition not met?

CS314 Generics 7

public void printPrices (GenericList 1i) {

for(int 1 = 0; 1 < li.size(); i++) {

// GACK!!!!

if (li.get(i) instanceof Property) {
Property temp =

(Property) li.get(i);

System.out.println (temp.getPrice());

CS314 Generics 8

Clicker 2 - Too Generic?
» Does this code compile?

Genericlist list = new GenericList () :
list.add ("Olivia");
list.add (Integer.valueOf (12));

(
list.add(12); // autobox aka autowrap
list.add (new Rectangle (1, 2, 3, 4));
list.add (new GenericList());
A. No
B. Yes
CS314 Generics 9

Is this a bug or a feature?

Y /2700 7“/ w2 05
- anam S { 9. 01 ryc'\rr crh
B4 G o) 7015 72505700
3y PRO.> 2.130¢y 0y$
2./3%067¢w
33 MWV‘J spod Aol
™ gt -

Generic Types

» Java has syntax for parameterized data types

» Referred to as Generic Types in most of the
literature

» A traditional parameter has a data type and can
store various values just like a variable

public void foo(int x)

» Generic Types are like parameters, but the data
type for the parameter is data type
— like a variable that stores a data type

— this is an abstraction. Actually, all data type info is
erased at compile time and replaced with casts and,
typically, variables of type Object

CS314 Generics 11

Making our Array List Generic

» Data type variables declared in class header
public class GenericList<E> {
» The <E> is the declaration of a data type

parameter for the class

—any legal identifier: Foo, AnyType, Element,
DataTypeThisListStores

— Java style guide recommends terse identifiers

» The value E stores will be filled in whenever
a programmer creates a new GenericList
GenericList<String> 1li =
new GenericList<>();

CS314 Generics 12

Modifications to GenericList
» instance variable

private E[] myCon;
> Parameters on
—add, insert, remove, insertAll
> Return type on
—get
» Changes to creation of internal storage

container
myCon = (E[]) new Object [DEFAULT SIZE];

» Constructor header does not change

CS314 Generics 13

Modifications to GenericList

> Careful with the equals method

> Recall type information is actually erased at
compile time.

— At runtime not sure what data type of elements
are. (Unless we get into reflection.)

> use of wildcard
> rely on the elements equals methods

CS314 Generics 14

Using Generic Types

» Back to Java's ArrayList
ArrayList listl = new ArrayList();

— still allowed, a "raw" ArrayList
— works just like our first pass at GenericList
— casting, lack of type safety

CS314 Generics 15

Using Generic Types

ArrayList<String> list2 =
new ArrayList<String>();
— for list2 E stores Sstring

list2.add("Isabelle");

System.out.println(
list2.get (0) .charAt(2)); //ok

list2.add(new Rectangle());

// syntax error

CS314 Generics 16

Parameters and Generic Types

> Old version
//pre: all elements of 1i are Strings

public void printFirstChar (ArrayList 11i) {

» New version

//pre: none
public void printFirstChar (ArrayList<String> 11i) {

» Elsewhere
ArrayList<String> 1list3 = new ArrayList<String>();
printFirstChar(list3); // ok

ArraylList<Integer> list4 = new ArraylList<Integer>();
printFirstChar(list4); // syntax error

CS314 Generics 17

Generic Types and Subclasses

ArrayList<Shape> 1listb =

new ArrayList<Shape> ()
list5.add (new Rectangle());
list5.add (new Square());
listb.add (new Circle());
// all okay

» 1ist5 can store Shape objects and any
descendants of Shape

CS314 Generics

18

Topic 7

Interfaces

| once attended a Java user group meeting where James Gosling (one
of Java's creators) was the featured speaker. During the memorable
Q&A session, someone asked him: "If you could do Java over again,
what would you change?" "I'd leave out classes," he replied. After
the laughter died down, he explained that the real problem wasn't
classes per se, but rather implementation inheritance (the extends

Clicker 1

> How many sorts do you want to have to write?
public static void selSort (double[] data) {
for (int 1 = 0; 1 < data.length; i++) {
int small = i;
for(int j = i + 1; j < data.length; j++) {
if (datal[]j] < data[smalll])
small = J;

}

relationship). Interface inheritance (the implements relationship) double temp = datalil]; A O
is preferable. data[i] = datalsmall]; B- 1
- Allen Holub data[small] = temp; :
} C.2
) D.3
Ccs314 Interfaces E.>=4
Why interfaces? Interfaces
> Interfaces allow the creation of abstract types public interface List<E> {
— "A set of data values and associated operations that are » No constructors
precisely specified independent of any particular
implementation. " » No instance variables
— multiple implementations allowed » abstract instance methods
» Interfaces allow a data type to be specified without
> .
worrying about the implementation default instance methods
— do design first > static methods
— What will this data type do? » class constants (prefer enums)
— Don’t worry about implementation until design is done. public static final int DEFAULT CAP = 10;
— separation of concerns. public void add(E val); B
— allow us to create generic algorithms
CS314 Interfaces 3 CS314 Interfaces 4

Implementing Interfaces
» In Java, a class inherits (extends) exactly
one other class, but ...

> A class can implement as many interfaces
as it likes

public class ArrayList implements List

> A class that implements an interface must
provide implementations of all non default
method declared in the interface
or the class must be abstract

» interfaces can extend other interfaces

— multiple in fact, unlike Java classes
CS314 Interfaces 5

The Comparable Interface

» The Java Standard Library
contains a number of interfaces
— names are italicized in the

class listing

> One of the most important
interfaces is the Comparable
interface

ComboPopiun
COMM_FAILURE

Cormiment

Co jcationException
: Comparable S

CompiationMXBean
Compiler
CompletionService

CompletionStatus
| CompletionStatusHeloer
| <

>

CS314 Interfaces 6

L

Comparable Interface

package java.lang;

public interface Comparable<T> ({
public int compareTo (T other);

}
» compareTo must return
— an int <0 if the calling object is less than the parameter,
— 0 if they are equal
— an int >0 if the calling object is greater than the
parameter other
» compareTo should be consistent with equals
but this isn't required.

CS314 Interfaces 7

Interfaces

» "Use interfaces to ensure a class has
methods that other classes or methods will
use." (In other words, clients of your class.)

— Anthony, Spring 2013

» The other classes or methods may already be

written.

» The other methods or classes use interface
type for the parameters of methods.

» POLYMORPHISM

— old code using new code

CS314 Interfaces 8

Clicker Question 2
> What is output by the following code?

Comparable cl = new Comparable();
Comparable c2 = new Comparable();
System.out.println(cl.compareTo (c2));

A. Avalue <0

B.0

C.Avalue>0

D. Unknown until program run
E. Compile error

CS314 Interfaces 9

Example compareTo

» Suppose we have a class to
model playing cards

— Ace of Spades, King of Hearts,
Two of Clubs

» each card has a suit and a
value, represented by ints
> this version of compareTo will

compare values first and then
break ties with suits

CS314 Interfaces 10

compareTo In a Card class

public class Card implements Comparable<Card> {

public int compareTo (Card otherCard) {
return this.rank - other.rank;
}

// other methods not shown

Assume ints for ranks (2, 3, 4, 5, 6,...) and suits (0 is
clubs, 1 is diamonds, 2 is hearts, 3 is spades).

CS314 Interfaces 11

Interfaces and Polymorphism

> Interfaces may be used as the data type
for object variables
» Can’t simply create objects of that type

» Can refer to any objects that implement the
interface or descendants

» Assume Card implements Comparable
Card ¢ = new Card();
Comparable compl = new Card():;
Comparable comp2 = c;

CS314 Interfaces 12

Clicker Question 3

» Which of the following lines of code causes a
syntax error?

Comparable cl; // A

cl = "Ann"; // B
Comparable c2 = "Kelly"; // C
int x = c2.compareTo(cl); // D

// E No syntax errors.

// what 1s x after statement?

CS314 Interfaces 13

Why Make More Work?

» Why bother implementing an interface such
as Comparable
— objects can use method that expect an interface type

» Example if | implement Comparable:
Arrays.sort(Object[] a)
public static void sort(Object[] a)

All elements in the array must implement the
Comparable interface. Furthermore, all elements in
the array must be mutually comparable

> objects of my type can be stored in data
structures that accept Comparables

CS314 Interfaces 14

A List Interface

» What if we wanted to specify the operations
for a List, but no implementation?

> Allow for multiple, different implementations.

» Provides a way of creating abstractions.
— a central idea of computer science and
programming.
— specify "what" without specifying "how"
— "Abstraction is a mechanism and practice to

reduce and factor out details so that one can
focus on a few concepts at a time. "

CS314 Interfaces 15

List Interface

public interface List <E> {
public void add(E wval);
public int size();
public E get(int location);

public void insert (int location, E wval);
public E remove (int location);

CS314 Interfaces 16

One Sort

public static void sort (Comparable[] data) {

final int LIMIT = data.length - 1;
for(int 1 = 0; 1 < LIMIT,; i++) {

int small = i;
for(int 3 = i + 1; j < data.length; j++) {
int d = datal[]j].compareTo(datal[small]);
if (d < 0)
small = J;

}
Comparable temp = datal[i];

data[i] = datal[small];
data([small] = temp;
} // end of i loop

CS314 Interfaces 17

Topic 8
lterators

"First things first, but not necessarily
in that order "

-Dr. Who

lterators

> ArrayList is part of the Java Collections
Framework

» Collection is an interface that specifies the
basic operations every collection (data
structure) shall have

» Some Collections don’t have a definite order
— Sets, Maps, Graphs

» How to access all the items in a Collection
with no specified order?

CS314 2
lterators

lterator Interface

> An iterator object is a "one shot" object

— it is designed to go through all the
elements of a Collection once

— if you want to go through the
elements of a Collection again you
have to get another iterator object

> lterators are obtained by calling
a method from the Collection

CS314 3
lterators

lterator Iterface Methods

» The Iterator interface 3 methods we will use:
boolean hasNext ()
/Ireturns true if this iteration has more elements

E next ()
/Ireturns the next element in this iteration
/lpre: hastNext()

volid remove ()

/*Removes from the underlying collection the last element
returned by the iterator.

pre: This method can be called only once per call to next.
After calling, must call next again before calling remove
again.
*/
CS314 4
Iterators

Clicker 1

> Which of the following produces a syntax error?
ArrayList<String> list = new ArrayList<>();

Iterator<String> itl = new Iterator(); // I
Iterator<String> it2 = new Iterator(list); // II
Iterator<String> it3 = list.iterator(); // III
A I
B.II
C.I1I
D.I and II
E.II and III

CS314 5

lterators

lterator

» Imagine a fence made up of fence posts and

rail sections
rmb

WWM

fenceposts

CS314 6
lterators

Fence Analogy

> The iterator lives on the fence posts
» The data in the collection are the rails
> lterator created at the far left post

» As long as a rail exists to the right of the

Iterator, hasNext() is true
|terator object

PP

CS314 7
lterators

Fence Analogy

ArrayList<String> names = new ArrayList<>();
names.add ("Jan") ;

names.add ("Levi") ;

names.add ("Tom") ;

names.add ("Jose") ;

Iterator<String> it = names.iterator();

int 1 = 0;

®

"Jose"

CS314 8
lterators

Fence Analogy

while (it.hasNext ()) {
i++;
System.out.println(it.next());
}

// when 1 == 1, prints out Jan
first call to next moves iterator to
‘ next post and returns "Jan"

"Jose"

Cs314 9

lterators

Fence Analogy
while (it.hasNext ()) {
i++;
System.out.println(it.next());
}

// when 1 == 2, prints out Levi

®

"Jose"

CS314 10
lterators

Fence Analogy
while (it.hasNext ()) {
i++;
System.out.println(it.next());
}

// when 1 == 3, prints out Tom

@-

"Jose"

CS314 1
lterators

Fence Analogy
while (it.hasNext ()) {
i++;
System.out.println(it.next());
}

// when 1 == 4, prints out Jose

@

"Jose"

CS314 12
lterators

Fence Analogy
while (it.hasNext ()) {
i++;
System.out.println(it.next());
}

// call to hasNext returns false

@

"Jose"

// while loop stops

CS314 13
lterators

Typical lterator Pattern

public void printAll (Collection<String> col) {

Iterator<String> it = col.iterator();
while (it.hasNext()) {

String temp = it.next();
System.out.println (temp) ;

for (String temp : col) {
System.out.println (temp) ;

CS314 14
lterators

Clicker Question 2
» What is output by the following code?

ArrayList<Integer> list = new ArrayList<>();
list.add (3);
list.add(3);
list.add (5);

Iterator<Integer> it = list.iterator();
System.out.print (it.next () + " ");
System.out.print (it.next () + " ");
System.out.print (it.next());

A. 3 B.3 5 C.3 35
D.3 3 E. 3 3 then a runtime error

15

remove method

» An Iterator can be used to remove things from
the Collection

» Can only be called once per call to next ()
public void removeWordsOfLength (int len) {
Iterator<String> it = myList.iterator
while (it.hasNext ()) {
String temp = it.next();
if (temp.length() == len) {
it.remove() ;
}
}
}
// original list = ["dog", "cat", "hat", "sat"]
// resulting list after removeWordsOfLength (3) *?

CS314 16
lterators

Clicker 3

public void printTarget (Collection<String>
names, int len) {

Iterator<String> it = names.iterator();
while (it.hasNext ())
if(it.next () .length() == len)
System.out.println(it.next ());
}

Given names = ["Jan", "lvan”, "Tom", "George"] and len = 3 what is output
by the printTarget method?

Jan Ivan Tom George

Jan Tom

Ivan George

No output due to syntax error

No output due to runtime error 17

moow»

The lterable Interface
» A related interface is Tterable

» The method of interest to us in the interface:
public Iterator<T> iterator ()
» Why?
» Anything that implements the Iterable
interface can be used in the for each loop.
ArrayList<Integer> list;
//code to create and fill list
int total = 0;
for (int x : list) {
total += x;

CS314 18
lterators

lterable

> If you simply want to go through all the
elements of a Collection (or Iterable thing)
use the for each loop

— hides creation of the lterator

public void printAllOfLength (ArrayList<String> names,
int len) {
//pre: names != null, names only contains Strings
//post: print out all elements of names equal in
// length to len
for (String s : names)
if (s.length() == len)
System.out.println(s);

CS314 19
lterators

Implementing an lterator

> Implement an Iterator for our GenericList
class

— Nested Classes

— Inner Classes

— Example of encapsulation

— checking precondition on remove

— does our GenricList need an lterator?

CS314 /

lterators

mej§>ng

Comodification

»IfaCollection (ArrayList)is changed
while an iteration via an iterator is in progress
an Exception will be thrown the next time the
next () or remove () methods are called
via the iterator

ArrayList<String> names = new ArrayList<>();
names.add ("Jan") ;
Iterator<String> it = names.iterator();

names.add ("Andy") ;

it.next(); // exception occurs here

CS314 21

lterators

Topic 9
Using Maps

"He's off the map!"

-Stan (Mark Ruffalo) Eternal Sunshine of the
Spotless Mind

Data Structures

> More than arrays and lists

> Write a program to determine the frequency
of all the "words" in a file.

CS 314 Maps 2

Performance using ArrayList

Title Size |Total Distinct | Time
kb) Words Words (sec)

small sample 0.001
2BR02B 34 5,638 1 ,975 0.051
Alice in 120 29,460 6,017 0.741
Wonderland

Adventures of 581 107,533 15,213 4144

Sherlock Holmes

2008 ClA Factbook 10,030 1,330,100 74,042 173.000

CS 314 Maps 3

Order?

» Express change of value as factor of previous file

Title Total Distinct| Time
Words Words

small sample 0.001
2BR02B 57x 63X 79x 51x
Alice in 3.5x 5.2x 3.0x 14.5x
Wonderland

Adventures of 4.8x 3.7x 2.5x 6.0x
Sherlock Holmes

2008 CIA Factbook 17x 12.3x Bx 42x

O(Total Words * Distinct Words) ?7?

CS 314 Maps 4

Clicker 1

» Given 3 minutes for the 2008 CIA Factbook
with 1,330,100 total words and 74,042
distinct words, how long for 1,000x total
words and 100x distinct words?

an hour

a day

a week

a month
half a year

moow»

CS 314 Maps 5

Why So Slow??

» Write a contains method for an array based list

public boolean indexOf (Object o) {

A Faster Way - Maps

» Also known as:

— table, search table, dictionary, associative array, or
associative container

» A data structure optimized for a very specific kind
of search / access

» In a map we access by asking "give me the value
associated with this key."

CS 314 Maps 7

Keys and Values

CS 314 Maps 6
» Dictionary Analogy:
— The key in a dictionary is a word:

foo

— The value in a dictionary is the definition:
First on the standard list of metasyntactic
variables used in syntax examples

> A key and its associated value form a pair
that is stored in a map

» To retrieve a value the key for that value
must be supplied

— A List can be viewed as a Map with integer keys

CS 314 Maps 8

More on Keys and Values

» Keys must be unique, meaning a given key
can only represent one value
— but one value may be represented by multiple
keys
— like synonyms in the dictionary.

Example:
factor: n.See coefficient of X

— factor is a key associated with the same value
(definition) as the key coefficient of X

CS 314 Maps 9

Clicker 2
> Is it required that the keys and values of a
map be the same data type?
A. No
B. Yes
C. It Depends

CS 314 Maps 10

Map <String, List<String>>

Wizard of Oz Dorothy, Toto, Scarecrow, Tin
Man, Cowardly Lion

Iron Man Tony Stark, Pepper Potts, Phil
Coulson, Obadiah Stane

Pride and Elizabeth Bennet, Jane Bennet,

Prejudice Mr. Darcy, Mr. Bingley

The Avengers Tony Stark, Pepper Potts, Steve
Rogers, Bruce Banner, Phil Coulson

Elinor Dashwood, Marianne
Dashwood, Edward Ferrars, John
Willoughby, Colonel Brandon

Sense and
Sensibility

The Map<K, V> Interface in Java

» void clear ()
— Removes all mappings from this map (optional operation).
» boolean containsKey (Object key)

— Returns true if this map contains a mapping for the
specified key.

» boolean containsValue (Object value)

— Returns true if this map maps one or more keys to the
specified value.

> Set<K> keySet ()
— Returns a Set view of the keys contained in this map.

CS 314 Maps 12

The Map Interface Continued
> V get (Object key)

— Returns the value to which this map maps the
specified key. Returns null if key not present.

> boolean isEmpty ()

— Returns true if this map contains no key-value
mappings.

>V put (K key, V value)

— Associates the specified value with the specified
key in this map

CS 314 Maps 13

The Map Interface Continued

» V remove (Object key)

if it is present

» int size ()

this map.
» Collection<V> values ()

in this map.

CS 314 Maps

— Removes the mapping for this key from this map

— Returns the number of key-value mappings in

— Returns a collection view of the values contained

14

Results with HashMap

Title Size |Total |Distinct [Time|Time
kb Words Words L|st Map

small sample 0.001 0.0008
2BR02B 5,638 1,975 0.051 0.0140
Alice in 120 29,460 6,017 0.741 0.0720
Wonderland

Adventures of 581 107,533 15,213 4144 0.2500
Sherlock Holmes

2008 CIA Factbook 10,030 1,330,100 74,042 173.000 4.0000

CS 314 Maps 15

Order?

Title Total |Distinct|Time [Time
Words Words List |[Map

small sample 0.001 0.0008
2BR02B 57x 63x 79x 51x 18x
Alice in 3.5x 5.2x 3.0x 14.5x 5x
Wonderland

Adventures of 4.8x 3.7x 2.5x 5.6x 3.5x
Sherlock Holmes

2008 CIA 17x 12.3x 5x 42x 16x

Factbook

O(Total Words)?

CS 314 Maps

16

Topic 10

Abstract Classes

‘| prefer Agassiz in the
abstract, rather than in
the concrete.”

- Statue of Biologist

Louis Agassiz that fell from
a ledge on the Stanford
Quad during the 1906

San Francisco earthquake.

Back to the Monopoly Property Example

> There are properties on a

monopoly board

» Railroads, Utilities, and Streets are
kinds of properties

Property
/' ’ \

Railroad| | Utility

A getRent Behavior

> One behavior we want in Property
is the getRent method

> problem: How do | get the rent of
something that is “just a Property”?

CS314 Abstract Classes 3

The Property class
public class Property {

private int cost;
private String name;

public 1nt getRent () {

}

Doesn’t seem like we have enough information to
get the rent if all we know is it is a Property.

CS314 Abstract Classes 4

Potential Solutions

1. Just leave it for the sub classes.
» Have each sub class define getRent()

2. Define getRent() in Property and simply

return -1.
» Sub classes override the method with more
meaningful behavior.

CS314 Abstract Classes 5

Leave it to the Sub - Classes

// no getRent () in Property
// Railroad and Utility DO have getRent () methods

public void printRents (Property[] props) {
for (Property p : props)
System.out.println (p.getRent ());

}

Property[] props = new Propertyl[2];

props[0] = new Railroad("NP", 200, 1);

props[l] = new Utility("Electric", 150, false);
printRents (props) ;

Clicker 1 - What is result of above code?
A. 200150 B. different every time
C. Syntax error D. Class Cast Exception

E. Null Pointer Exception

CS314 Abstract Classes

"Fix" by Casting
// no getRent () in Property
public void printRents (Property[] props) {
for (Property p : props) {
if (p instanceof Railroad)

System.out.println(((Railroad) p).getRent());

else if (p instanceof Utility)
System.out.println (((Utility) p).getRent());
else 1if (p instanceof Street)
System.out.println(((Street) p).getRent())

} // GACK!!!!
}
Property[] props= new Propertyl[2];
props[0] = new Railroad("NP", 200, 1);
props[l] = new Utility("Electric", 150, false);

printRents (props);
What happens as we add more sub classes of Property?

What happens if one of the objects is just a Property?
CS314 Abstract Classes

Fix with Placeholder Return

// getRent () in Property returns -1

public void printRents (Property[] props) {
for (Property p : props)
System.out.println(p.getRent ());

}

Property[] props= new Propertyl[2];
props[0] = new Railroad("NP", 200, 1);
props([l] = new Utility("Electric", 150, false);

printRents (props);

What happens if sub classes don’t override
getRent()?

Is that a good answer?

CS314 Abstract Classes

A Better Fix

> We know we want to be able to get the rent
of objects that are instances of Property

» The problem is we don’t know how to do that
if all we know is it a Property

» Make getRent an abstract method
» Java keyword

CS314 Abstract Classes 9

Making getRent Abstract

public class Property {

private int cost;
private String name;

publicint getRent () ;
// I know want it.

// Just don’t know how, vyet..

}
Methods that are declared abstract have no body

an undefined behavior.

All non-default methods in a Java interface are
abstract.

CS314 Abstract Classes 10

Problems with Abstract Methods

Given getRent () is how an abstract method
what is wrong with the following code?

Property p = new Property();
System.out.println (p.getRent())

If things can go wrong with a tool, provide
safeguards to prevent that from happening.

Undefined Behavior = Bad

> Not good to have undefined behaviors

> If a class has 1 or more abstract methods,
the class must also be declared abstract.
— version of Property shown would cause a
compile error
» Even if a class has zero abstract methods a
programmer can still choose to make it
abstract
— if it models some abstract thing
— is there anything that is just a “Mammal”?

CS314 Abstract Classes 12

3.

Abstract Classes Safety

. A class with one or more abstract methods must be

declared abstract.

- Syntax error if not done.

- Can still decide to make class abstract even if no
abstract methods.

Objects of an abstract type cannot be instantiated.
- Just like interfaces
- Can still declare variables of this type

A subclass must implement all inherited abstract
methods or be abstract itself.

CS314 Abstract Classes 13

Abstract Classes

publi lass Property {

private int cost;
private String name;

public abstract double getRent();
// I know I want it.

// Just don’t know how, vyet..

}
// Other methods not shown

if a class is abstract the compiler will not allow
constructors of that class to be called
Property s = new Property(l, 2);

//syntax error

CS314 Abstract Classes 14

Abstract Classes

» In other words you can’t create instances of
objects where the lowest or most specific
class type is an abstract class

> Prevents having an object with an undefined
behavior

» Why would you still want to have
constructors in an abstract class?

» Object variables of classes that are abstract
types may still be declared
//okay

Abstract Classes 15

Property p;

CS314

Sub Classes of Abstract Classes

» Classes that extend an abstract class must
provided a working version of any and all
abstract methods from the parent class
— or they must be declared to be abstract as well

— could still decide to keep a class abstract
regardless of status of abstract methods

CS314 Abstract Classes 16

Implementing getRent()

public class Railroad extends Property {

private static int[] rents
= {25, 50, 100, 200};

private int numOtherRailroadsOwned;

public double getRent () {
return rents|[numOtherRailroadsOwned]; }

// other methods not shown

CS314 Abstract Classes 17

A Utility Class

public class Utility extends Property {

private static final int ONE UTILITY RENT
private static final int TWO UTILITY RENT

o
.
~

107
private boolean ownOtherUtility;

publiec Utility(String n, int ¢, boolean other) {
super (n, c);

}

publiec String toString() {
return "Utility. own other utility? " + ownOtherUtility;
}

public int getRent (int roll) {

return ownOtherUtility ? roll * TWO UTILITY RENT
roll * TWO UTILITY RENT;

CS314 Abstract Classes 18

Polymorphism in Action
// getRent () in Property is abstract

public void printRents (Property[] props) {
for (Property p props)
System.out.println(p.getRent ())

+ Add the Street class. What needs to change in
printRents method?

* Inheritance is can be described as new code using
old code.

* Koan of Polymorphism: Polymorphism can be
described as old code reusing new code.

CS314 Abstract Classes 19

Comparable in Property

public abstract class Property

implements Comparable<Property> ({
private int cost;
private String name;

public abstract int getRent () ;
public int compareTo (Property other) {

return this.getRent ()
— otherProperty.getRent () ;

CS314 Abstract Classes 20

Back to Lists

> We suggested having a list interface

public interface IList<E> extends Iterable<E> {

public
public
public
public
public
public
public

CS314

void add(E value);

int size();

E get (int location);

E remove (int location);

boolean contains (E value);

void addAll (IList<E> other);
boolean containsAll (IList<E> other);

Abstract Classes

21

Data Structures
When implementing data structures:

- Specify an interface

- Create an abstract class that is skeletal
implementation interface

- Create classes that extend the skeletal
interface
public boolean contains(E val) {
for (E e : this)
if val.equals(e)
return true;
Cgsc?“turn false

Abstract Classes

22

Topic 11
Linked Lists

"All the kids who did great in high school writing
pong games in BASIC for their Apple Il would get to
college, take CompSci 101, a data structures
course, and when they hit the pointers business their
brains would just totally explode, and the next thing
you knew, they were majoring in Political Science
because law school seemed like a better idea."

-Joel Spolsky

Thanks to Don Slater of CMU for use of his slides.

Clicker 1
> What is output by the following code?

ArrayList<Integer> al = new ArrayList<>();
ArrayList<Integer> a2 = new ArrayList<>();
al.add(12);

a2.add(12);

System.out.println(al == a2);

A. false
B. true

C. No output due to syntax error
D. No output due to runtime error
E. Varies from one run of the program to the next

CS314 2
Linked Lists

Dynamic Data Structures

» Dynamic data structures

— They grow and shrink one element at a time,
normally without some of the inefficiencies of
arrays

— as opposed to a static container such as an array
» Big O of Array Manipulations
— Access the kth element

— Add or delete an element in the middle of the
array while maintaining relative order

— adding element at the end of array? space
avail? no space avail?

— add element at beginning of an array

CS314
Linked Lists

Object References

» Recall that an object reference is a variable
that stores the address of an object

> A reference can also be called a pointer

» They are often depicted graphically:

student

John Smith

40725
3.57

CS314 4
Linked Lists

References as Links

> Object references can be used to create
links between objects

» Suppose a Student class contained a
reference to another Student object

John Smith Jane Jones
40725 58821
3.57 3.72
CS314 5

Linked Lists

References as Links

> References can be used to create a variety
of linked structures, such as a linked list:

studentList

T

L H—| [L [e]

CS314 6
Linked Lists

Linked Lists

» A linear collection of self-referential objects,
typically called nodes, connected by other links

— linear: for every node in the list, there is one and only one node
that precedes it (except for possibly the first node, which may
have no predecessor,) and there is one and only one node that
succeeds it, (except for possibly the last node, which may have
Nno successor)

— self-referential: a node that has the ability to refer to another
node of the same type, or even to refer to itself

— node: contains data of any type, including a reference to another
node of the same data type, or to nodes of different data types

— Usually a list will have a beginning and an end; the first element
in the list is accessed by a reference to that class, and the last
node in the list will have a reference that is set to nul1l

CS314 7
Linked Lists

Advantages of linked lists

» Linked lists are dynamic, they can grow or shrink
as necessary

» Linked lists are non-contiguous; the logical
sequence of items in the structure is decoupled
from any physical ordering in memory

CS314 8
Linked Lists

Nodes and Lists

> A different way of implementing a list

» Each element of a Linked List is a separate
Node object.

» Each Node tracks a single piece of data plus
a reference (pointer) to the next

» Create a new Node very time we add
something to the List

> Remove nodes when item removed from list
and allow garbage collector to reclaim that
memory

CS314 9
Linked Lists

A Node Class

public class Node<E> {
private E myData;
private Node<E> myNext;

public Node ()
{ myData = null; myNext = null; }

public Node (E data, Node<E> next)
{ myData = data; myNext = next; }

public E getData ()
{ return myData; }

public Node<E> getNext ()
{ return myNext; }

public void setData (E data)
{ myData = data; }

public void setNext (Node<E> next)
{ myNext = next; }

CS314 10
Linked Lists

One Implementation of a Linked List

» The Nodes show on the previous slide are
singly linked
— a node refers only to the next node in the
structure
— it is also possible to have doubly linked nodes.

— The node has a reference to the next node in the
structure and the previous node in the structure
as well

» How is the end of the list indicated
— myNext = null for last node
— a separate dummy node class / object

CS314 11
Linked Lists

A Linked List Implementation

public class LinkedList<E> implements IList<E>
private Node<E> head;
private Node<E> tail;
private int size;

public LinkedList () {
head null;
tail null;
size 0;

}
}
LinkedList<String> list = new LinkedList<String>();

LinkedList

myHead |null| iMySize [:

myTail null

CS314 12
Linked Lists

Writing Methods

» When trying to code methods for Linked
Lists draw pictures!

— If you don't draw pictures of what you are trying
to do it is very easy to make mistakes!

g%"%w

Linked Lists

CS314

add method

> add to the end of list

» special case if empty

> steps on following slides
> public void add(E obj)

CS314 14
Linked Lists

Add Element - List Empty (Before)

head tail size

nul nul o

Object

item |

CS314 15
Linked Lists

Add Element - List Empty (After)

head tail size
\\ 1
Node
String
\ {nyData myNext
N null
CS314 16

Linked Lists

Add Element - List Not Empty (Before)

Add Element - List Not Empty (After)

head tail size head tail size
N 1 N \\2‘
Node Node Node
myData myNext myData myNext myData myNext
null > \ null

v v \\

String item R String String String
CS314 17 Cs314 18

Linked Lists Linked Lists
Code for default add Clicker 2

> public void add(E obj)

CS314 19
Linked Lists

> What is the worst case Big O for adding to
the end of an array based list and our
LinkedList314 class? The lists already
contain N items.

Array based Linked
A. O(1) O(1)
B. O(N) O(N)
C. O(logN) O(1)
D. O(1) O(N)
E. O(N) O(1)

20

Contains method

> Implement a contains method for our Linked
List class

public boolean contains(E val) // val != null

CS314 21
Linked Lists

Code for addFront

> add to front of list
> public void addFront(E obj)

» How does this compare to adding at the front
of an array based list?

CS314 22
Linked Lists

Clicker 3

> What is the Big O for adding to the front of
an array based list and a linked list? The lists
already contain N items.

Array based Linked
A. O(1) O(1)
B. O(N) O(1)
C. O(logN) O(1)
D. O(1) O(N)
E. O(N) O(N)

CS314 23
Linked Lists

Code for Insert
> public void insert(int pos, E obj)
» Must be careful not to break the chain!
» Where do we need to go?
» Special cases?

Cs314 24

Linked Lists

Clicker 4

> What is the Big O for inserting an element
into the middle of an array based list and into
the middle of a linked list? Each list already
contains N items.

Clicker Question 5

» What is the Big O for getting an element
based on position from an array based list
and from a linked list? Each list contains N
items. In other words E get (int pos)

Array based Linked Array based Linked
A. O(1) O(1) A. O(1) O(1)
B. O(1) O(N) B. O(1) O(N)
C. O(N) O(1) C. O(N) O(1)
D. O(N) O(N) D. O(logN) O(N)
EésSQ(N) O(logN) N E. O(N) O(N) s
Code for get Code for remove

> public E get(int pos)
» The downside of Linked Lists

CS314
Linked Lists

> public E remove(int pos)

CS314 28
Linked Lists

Clicker 6 Why Use Linked List

» What is the order to remove the last element » What operations with a Linked List faster
of a singly linked list with references to the than the version from ArrayList?
first and last nodes of the linked structure of
nodes?
The list contains N elements
A. O(1)
B. O(logN)
C. O(N"0.5)
D. O(N)
E. O(NlogN))
cosn Linked Lists 29 con Linked Lists 30
Clicker 7 - Getting All Elements in Iterators to the Rescue

Order From a Linked List
» What is the Order (Big O) of the following code?
LinkedList314<Integer> list;

list = new LinkedList314<Integer>();

// code to fill list with N elements
int total = 0;

//Big O of following code?

for(int 1 = 0; 1 < list.size(); 1i++)
total += list.get (1)
A. O(N) B. O(2N) C. O(NlogN)
D. O(N?) E. O(N3)

CS314 31 CS314

32
Linked Lists

Linked Lists

Other Possible Features of
Linked Lists

» Doubly Linked
» Circular
» Dummy Nodes for first and last node in list

public class DLNode<E> {
private E myData;
private DLNode<E> myNext;
private DLNode<E> myPrevious;

CS314 33
Linked Lists

Dummy Nodes
> Use of Dummy Nodes for a Doubly Linked
List removes most special cases

» Also could make the Double Linked List
circular

CS314 34
Linked Lists

Doubly Linked List add

v

public void add(E obj)

CS314 35
Linked Lists

Insert for Doubly Linked List
> public void insert(int pos, E obj)

CS314 36
Linked Lists

Topic 12
Introduction to Recursion

"To a man with a hammer,
everything looks like a nail"

-Mark Twain

Underneath the Hood.

IntegratediMembory Controllér -13iCh DDR3:

l : Co're 0 Core 1

Core 2 ®¢3§

Shared L3 Cache
Cs314 Recurs -

The Program Stack

» When you invoke a method in your code
what happens when that method is done?

public class Mice {
public static void main (String[]

int x = 37;
int y = 12;
methodl (x, vy);
int z = 73;
int ml = methodl(z, x);
method2 (x, x):;

args)

}

// methodl and method?2
// on next slide

CS314 Recursion

{

method1 and method2

// in class Mice
public static int methodl (int a, int b) {
int r = 0;
if (b !'= 0) {
int x =
int y =
r = x + vy,

b;
b:

r

o

a
a

}

return r;

}
public static void method2 (int x, int y) {

X++;

Y==rs

int z = methodl (y, x);
System.out.print (z);

0}5314 Recursion 4

The Program Stack

» When your program is run on a processor, the
commands are converted into another set of
instructions and assigned memory locations.

—normally a great deal of expansion takes place

public static void main (String[] args) {
int x = 37; // O
int y = 12; // 1
methodl (x, vy); // 2
int z = 73; // 3
int ml = methodl(z, x); // 4
method2 (x, x); // 7

CS314 Recursion 5

Basic CPU Operations

> A CPU works via a fetch
command / execute command
loop and a program counter B

> Instructions stored in memory
(Instructions are data!)

int x = 37; // O G
int y = 12; // 1

methodl (x, y); // 2

int z = 73; // 3

int ml = methodl(z, x); // 4
method2 (x, x); // 5

» What if the first instruction of the method1 is
stored at memory location 507 6

// in class Mice
public static int methodl (int a, int b) {
int r = 0; // 51
if (b !'=0) { // 52
int x = a / b; // 53
int vy a % b; // 54
r =x +vy; // 55

}

return r; // 56

}
public static void method2 (int x, int y) {

x++; // 60

y--; // 61

int z = methodl(y, x); // 62
System.out.print(z); // 63

C£314 Recursion 7

Clicker 1 - The Program Stack

int x = 37; // 1

int vy = 12; // 2

methodl (x, vy); // 3

int z = 73; // 4

int ml = methodl(z, x); // 5
method2 (x, x); // 6

> Instruction 3 is really saying jump to instruction
50 with parameters x and y
» In general what happens when method1 finishes?

A. program ends B. goes to instruction 4
C. goes back to whatever method called it

CS314 Recursion

Activation Records and the

Program Stack

» When a method is invoked all the relevant
information about the current method
(variables, values of variables, next line of
code to be executed) is placed in an
activation record

» The activation record is pushed onto the
program stack

» A stack is a data structure with a single
access point, the top.

CS314 Recursion

The Program Stack

> Data may either be
added (pushed) or
removed (popped) from
a stack but it is always
from the top.
— A stack of dishes

— which dish do we have
easy access to?

top —»’t” !

CS314 Recursion 10

Using Recursion

A Problem

> Write a method that determines how much
space is take up by the files in a directory

> A directory can contain files and
directories

» How many directories does our code have
to examine?

» How would you add up the space taken
up by the files in a single directory

— Hint: don't worry about any sub directories at
first

CS314 Recursion 12

Clicker 2

> How many levels of directories have to be
visited?

A. 0

B. 1

C.8

D. Infinite

E. Unknown

CS314 Recursion 13

Sample Directory Structure

‘ scottm

‘ cs314 AP
ml.txt m2.txt
A.pdf
AB.pdf
‘ hw
al.htm a2.htm a3.htm ad4.htm
CS314 Recursion 14

Java File Class

» File (String pathname) Creates a new
File instance by converting the given
pathname.

» boolean isDirectory () Tests whether
the file denoted by this abstract pathname is
a directory.

»File[] listFiles () Returns an array
of abstract pathnames denoting the files in

the directory denoted by this abstract
pathname.

CS314 Recursion 15

Code for getDirectorySpace ()

// pre: dir is a directory and dir != null
public static long spaceUsed(File dir) {
if(dir == null ||

throw new IllegalArgumentException();

!dir.isDirectory())

long spaceUsed = 0;
File[] subFilesAndDirs = dir.listFiles({();
if (subFilesAndDirs != null)
for(File sub : subFilesAndDirs)
if (sub !'= null)
if (sub.isFile())
spaceUsed += sub.length();

else if (sub.isDirectory())
// else sub is a directory

spaceUsed += spaceUsed (sub) ;

return spaceUsed;

// sub is a plain old file

16

Clicker 3

> Is it possible to write a non recursive method
to determine space taken up by files in a
directory, including its subdirectories, and
their subdirectories, and their subdirectories,
and so forth?

A. No
B. Yes
C. It Depends

CS314 Recursion 17

lterative getDirectorySpace ()

public long getDirectorySpace (File d) {
ArrayList<File> dirs = new ArrayList<>();
dirs.add(d) ;
long total = 0;
while (dirs.size() > 0) {
File temp = dirs.remove (dirs.size() - 1);
File[] filesAndSubs = temp.listFiles();
if (filesAndSubs != null) {
for (File f : filesAndSubs) {
if (£ !'= null) {
if (f.isFile())
total += f.length();
else if (f.isDirectory())
dirs.add (f);

}
}
return total;
}
CS314 Recursion 18

Wisdom for Writing Recursive
Methods

The 3 plus 1 rules of Recursion

1. Know when to stop
2. Decide how to take one step
3. Break the journey down into that step and a

C o M M (o] N

smaller journey
4. Have faith

From Common Lisp: A Gentle
Introduction to
Symbolic Computation
by David Touretzky

CS314 Recursion 20

Writing Recursive Methods

» Rules of Recursion
1. Base Case: Always have at least one case that
can be solved without using recursion
2. Make Progress: Any recursive call must
progress toward a base case.

3. "You gotta believe." Always assume that the
recursive call works. (Of course you will have to
design it and test it to see if it works or prove
that it always works.)

A recursive solution solves a small part of
the problem and leaves the rest of the
problem in the same form as the original

CS314 Recursion 21

N!
> the classic first recursion problem / example
> N!
S5!'=5*4*3*2*1=120
int res = 1;
for(int 1 = 2; 1 <= n; 1i++)
res *= 1i;

CS314 Recursion 22

Factorial Recursively

» Mathematical Definition of Factorial

» for N >= 0, N! is:
o =1
N!' =N * (N - 1)! (for N > 0)
The definition is recursive.

// pre n >= 0
public int fact(int n) {

if(n == 0)
return 1;
else
return n * fact(n-1);
} // return (n == 0) 2 1 : n * fact(n - 1);

CS314 Recursion 23

Tracing Fact With the
Program Stack

System.out.printin(fact(4));

top —— System.out.printin(fact(4));
CS314 Recursion 24

Calling fact with 4

n | 4 | in method fact

Calling fact with 3

n | 3 | in method fact

partial result = n * fact(n-1)

n |4 | in method fact

to >
partial result = n * fact(n-1) P partial result = n * fact(n-1)
top ——{ System.out.printin(fact(4)); System.out.printin(fact(4));
CS314 Recursion 25 CS314 Recursion 26

Calling fact with 2 Calling fact with 1

n | 1 | in method fact
partial result = n * fact(n-1)

n | 2 | in method fact top ,J) n|2 |inmethod fact

top

CS314

v

partial result = n * fact(n-1)

n | 3 | in method fact

partial result = n * fact(n-1)

n | 4 | in method fact

partial result = n * fact(n-1)

System.out.printin(fact(4));

Recursion 27

CS314

partial result = n * fact(n-1)

n | 3 | in method fact

partial result = n * fact(n-1)

n | 4 | in method fact

partial result = n * fact(n-1)

System.out.printin(fact(4));

Recursion

28

Calling fact with 0 and returning 1 Returning 1 from fact(1)

n | O | in method fact

returning 1 to whatever method called me

N1 | in method fact

1 |in method fact partial result=n * 1,
top ——— n return 1 to whatever method called me
partial result = n * fact(n-1))
_ top ——{ n 2 | in method fact
n | 2 | in method fact)
partial result = n * fact(n-1)

partial result = n * fact(n-1)

3 | in method fact n | 3 | in method fact
r:,artia| result = n * fact(n-1) partial result = n * fact(n-1)

4 | in method fact n | 4 | in method fact
r:,artia| result = n * fact(n-1) partial result = n * fact(n-1)

System.out.printin(fact(4));

oSt *@ystem.out.printin(fact(4)); 29 oss Rectrsion 30
Returning 2 from fact(2) Returning 6 from fact(3)
n | 2 | in method fact
partial result =2 * 1,
return 2 to whatever method called me n | 3 | in method fact
n | 3 | in method fact _
top > : . partial result = 3 * 2,
partial result = n * fact(n-1) return 6 to whatever method called me
n | 4 | in method fact top J N 4 | in method fact

partial result = n * fact(n-1) partial result = n * fact(n-1)

System.out.printin(fact(4)); System.out.printin(fact(4));

CS314 Recursion 31 CS314 Recursion 32

Returning 24 from fact(4)

n | 4 | in method fact

partial result =4 * 6,
return 24 to whatever method called me

top =—— System.out.printin(fact(4));

CS314 Recursion 33

Calling System.out.printin

System.out.printin(24);

top — 2?

CS314 Recursion 34

Evaluating Recursive Methods

Evaluating Recursive Methods

> you must be able to evaluate recursive
methods

public static int mystery (int n) {
if(n == 0)

return 2;
else

return 3 * mystery(n-1);

}
// what 1s returned by mystery (3)

CS314 Recursion 36

Evaluating Recursive Methods
> Draw the program stack!
m3)=3*m(2)->3*18 =54
m@2)=3*m(1)->3*6=18
m(1)=3*m(0)->3*2=6
m(0) = 2
> 54

> with practice you can see the result

CS314 Recursion 37

Clicker 4

» What is returned by fact (-3) ?
A.0

B. 1

C. Infinite loop

D. Syntax error

E. Runtime error
public static int fact(int n) {
if (n==0){
return 1;
} else {
return n * fact(n - 1);

}
} 38

Evaluating Recursive Methods

» What about multiple recursive calls?
public static int bar (int n) {
if (n <= 0)
return 2;
else
return 3 + bar(n-1) + bar(n-2);
}
» Clicker 5 - What does bar(4) return?

A 2 B.3 C.12 D. 22 E. 37

CS314 Recursion 39

Evaluating Recursive Methods
» What is returned by bar (4) ?

b(4) =3 + b(3) + b(2)
b(3) =3 + b(2) + b(1)
b(2) = 3 + b(1) + b(0)
b(1) = 3 + b(0) + b(-1)
b(0)=2

b(-1) =

CS314 Recursion 40

Evaluating Recursive Methods
» What is returned by bar (4) ?

CS314 Recursion 4

Evaluating Recursive Methods
» What is returned by bar (4) ?

CS314 Recursion 42

Evaluating Recursive Methods
» What is returned by bar (4) ?

CS314 Recursion 43

Evaluating Recursive Methods
» What is returned by bar (4) ?

CS314 Recursion 44

Recursion Practice

» Write a method raiseToPower(int base,
int power)
> [[pre: power >= 0

» Simple recursion (also called tail recursion)

CS314 Recursion 45

Finding the Maximum in an Array

> public int max(int[] data) {

» Helper method or create smaller arrays each
time

CS314 Recursion 46

Clicker 6

» When writing recursive methods what should
be done first?

A. Determine recursive case
B. Determine recursive step
C. Make a recursive call

D. Determine base case(s)
E. Determine the Big O

CS314 Recursion 47

Your Meta Cognitive State

> Remember we are learning to use a tool.

> It is not a good tool for all problems.

— In fact we will immplement several algorithms and
methods where an iterative (looping without
recursion) solution would work just fine

> After learning the mechanics and basics of
recursion the real skill is knowing what
problems or class of problems to apply it to

CS314 Recursion 48

Big O and Recursion
> Determining the Big O of recursive methods
can be tricky.

» A recurrence relation exits if the function is
defined recursively.

» The T(N), actual running time, for N! is
recursive

» T(N)gaet = T(N-1)gaet + O(1)
> This turns out to be O(N)
— There are N steps involved

CS314 Recursion 49

Common Recurrence Relations
» T(N) = T(N/2) + O(1) -> O(logN)

— binary search
» T(N) = T(N-1) + O(1) -> O(N)
— sequential search, factorial
» T(N) = T(N/2) + T(N/2) + O(1) -> O(N),
— tree traversal
» T(N) = T(N-1) + O(N) -> O(N”2)
— selection sort
» T(N) = T(N/2) + T(N/2) + O(N) -> O(NlogN)

— merge sort
» T(N) = T(N-1) + T(N-1) + O(1) -> O(2"N)
— Fibonacci
CS314 Recursion 50

Topic 13
Recursive Backtracking

MIKE DOES NOT'SIMPLY,

A

RLAY A BOARD GAME
WITHOUT' RECURSIVE BACKTRACKING

Devon: 2022 - 2023

Backtracking

Start

Success!
{]

Success!
o

Problem space consists of states (nodes) and actions
(paths that lead to new states). When in a node can
can only see paths to connected nodes

If a node only leads to failure go back to its "parent”
node. Try other alternatives. If these all lead to failure

then more backtracking may be necessary.
CS314
Recursive Backtracking

Escaping a Maze

» Which door should we take?

» A view from above Doors

Current
Room

©

Exit out there,
some where ...
we hope

CS314 3

Recursive Backtracking

Escaping a Maze
> Try door to the east

Current
Room
Exit out there,
some where ... A dead end!
we hope

CS314
Recursive Backtracking

Escaping a Maze

» Back we go

_— Doors

Current
Room

A dead end!

Exit out there,

some where ...
we hope

CS314
Recursive Backtracking

Escaping a Maze

» What if we knew the exit was to the south?

Doors

Current
Room

Exit out there,
some where
to the south!

CS314 6
Recursive Backtracking

Escaping a Maze

» Start over. What if we knew the exit was to

the south?
Doors

Exit out there,
some where urrent

to the south! Room | A dead end!

Recursive Backtracking

CS314

Escaping a Maze

» What if we knew the exit was to the south?

Doors

Current
Room

Exit out there,
some where
to the south!

A dead end!

CS314 8
Recursive Backtracking

Escaping a Maze
» What if we knew the exit was to the south?

_— Doors

O,

Escaping a Maze
» What if we knew the exit was to the south?

_ Doors
>
~

~
~~ Current

Exit out there, Exit out there, Room
some where some where
to the south! to the south!

A dead end! A dead end!
CS314 9 Cs314 10

Recursive Backtracking Recursive Backtracking
Escaping a Maze Escaping a Maze
_ Doors - Doors
Curre A dead end!

CS314

Roo

A dead end!

A dead end!

Recursive Backtracking

Exit out there,
some where

to the south!
11

CS314

A dead end!

Recursive Backtracking

Exit out there,
some where
to the south! "

Escaping a Maze

- Doors

A dead end!

Exit out there,
some where
to the south!

CS314 13
Recursive Backtracking

A dead end!

Escaping a Maze
—

————

- Doors

i

A dead end!

OUT! | Adeadend! | Exitoutthere,
some where
CS314 to the south! 14

Recursive Backtracking

Recursive Backtracking

Pseudo code for recursive backtracking
algorithms — looking for a solution

If at a solution, report success

for (every possible choice from current state)
Make that choice and take one step along path
Use recursion to try to solve the problem for the new state
If the recursive call succeeds, report the success to the

previous level
Otherwise Back out of the current choice to restore the

state at the start of the loop.
Report failure

CS314 15
Recursive Backtracking

Another Concrete Example

» Sudoku

> 9 by 9 matrix with some =15
numbers filled in 6 195

» all numbers must be between - L - : -
1and 9 3 o I]

» Goal: Each row, each column, |7 2 8
and each mini matrix must ° - 218 }
contain the numbers between 5 714

1 and 9 once each

— no duplicates in rows, columns,
or mini matrices

CS314 16
Recursive Backtracking

Solving Sudoku — Brute Force
> A brute force algorithm is a

simple but generally A -
inefficient approach 6 1]9]s
> Try all combinations until : = - ﬁ
you find one that works 4 8] |3 1
7 2 6
» This approach isn’t clever, 5 2] 8
but computers are fast 4 ; - : :

» Then try and improve on
the brute force results

CS314
Recursive Backtracking

17

Solving Sudoku

» Brute force Sudoku Soluton

— if not open cells, solved 51311 =

— scan cells from left to right, 6 1195
top to bottom for first open - L - :
cell i =T 13

— When an open cell is found ! 2
start cycling through digits 1 S EAVIEETI AR
to 9. ” =

— When a digit is placed check
that the set up is legal

— now solve the board

CS314 18
Recursive Backtracking

Clicker 1

> After placing a number in a cell is the

remaining problem very similar to the original

problem?
A. No
B. Yes

CS314
Recursive Backtracking

19

Solving Sudoku — Later Steps

5031 7 503127 sl3[1]2]7]4
6 1]9]s 6 1]9]s 6 1|95
9|8 6 9|8 6 N 6
8 6 3 8 6 3 8 6
4 8 3 117" 4 8 3 1], 8 3
7 2 6 7 2 6 7 2
6 2|8 6 2|8 6 2]8
al1]o9 5 al1]o9 5 al1]9
8 7|9 3 7|9 8 7
5/3(1]12|714|8 s(3(1(2(7]4|8]9
6 195 5 m
9]8 6 il5 5
6 3 8 6 3
4 8 3 1 4 8 3 uh oh!
2 6 7 2 6
6 2]8 . =15
41|09 5 w118 "
8 7|9 2 =T
cs314 20

Recursive Backtracking

Sudoku — A Dead End

» We have reached a dead end in our search

51311{2(7]14]8 |9

6 1(9]5
918 6

» With the current set up none of the nine
digits work in the top right corner

CS314 21
Recursive Backtracking

Backing Up

o
“w
-
N
~
1N
oo
({=}

» When the search reaches a dead

end in backs up to the previous D 6

cell it was trying to fill and goes : 6 3

onto to the next digit 7 2 6

» We would back up to the cell with

a 9 and that turns out to be a dead 8 719

end as well so we back up again

— so the algorithm needs to remember | 195

what digit to try next 0|8 6

> Now in the cell with the 8. We try [a| | |51 || | |

and 9 and move forward again.

CS314 ZZ
Recursive Backtracking

Characteristics of Brute Force
and Backtracking

» Brute force algorithms are slow

» The first pass attempts typically don't employ
a lot of logic

» But, brute force algorithms are fairly easy to
implement as a first pass solution

— many backtracking algorithms are brute force
algorithms

CS314 23
Recursive Backtracking

Key Insights

» After trying placing a digit in a cell we want to solve
the new sudoku board
— Isn't that a smaller (or simpler version) of the same

> After placing a number in a cell the we need to
remember the next number to try in case things
don't work out.

» We need to know if things worked out (found a
solution) or they didn't, and if they didn't try the next
number

> If we try all numbers and none of them work in our
cell we need to report back that things didn't work

CS314 24
Recursive Backtracking

Clicker 2

> Grace 2019 Asked: When we reach the base
case in the solveSudoku method (9 x 9
board) and before we return true, how many
stack frames are on the program stack of the
solveSudoku method? Pick the closest
answer.

A. <=9

B. 82

C. 81°

D. 98

E. cannot determine 25

Recursive Backtracking

» Problems such as Suduko can be solved
using recursive backtracking

» recursive because later versions of the
problem are just slightly simpler versions of
the original

> backtracking because we may have to try
different alternatives

CS314 26
Recursive Backtracking

Recursive Backtracking - Repeated

Pseudo code for recursive backtracking
algorithms — looking for a solution

If at a solution, report success

for (every possible choice from current state)
Make that choice and take one step along path
Use recursion to try to solve the problem for the new state
If the recursive call succeeds, report the success to the
previous level
Otherwise Back out of the current choice to restore the
state at the start of the loop.

Report failure

CS314 27
Recursive Backtracking

Goals of Backtracking
» Possible goals
— Find a path to success
— Find all paths to success
— Find the best path to success

» Not all problems are exactly alike, and
finding one success node may not be the
end of the search

Start
°\'\ \ /o\&ggess!
¢ T\ Success!

@ [J
Y [J
[
CS314 28
Recursive Backtracking

CsS314 29
Recursive Backtracking

The 8 Queens Problem

> A classic chess puzzle

— Place 8 queen pieces on a chess board so that
none of them can attack one another

a h o d e £ o h

g -
7 7
el H_N-
NN -
- m !
s =
= .wl W E

¥ .0 H mel -

a b o d e £ o h

F 3
7o)

CS314
Recursive Backtracking

The N Queens Problem

» Place N Queens on an N by N chessboard so that
none of them can attack each other

» Number of possible placements?

»In8x38
64 * 63 *62*61*60* 59 * 58 * 57
= 178,462, 987, 637, 760 / 8!
= 4,426,165,368
(n)=n-(n—l)---(ﬂ—k+1) n!

kD). 1 Hin_fy r0skse (1)

n choose k
— How many ways can you choose k things from a
set of n items?

— In this case there are 64 squares and we want to choose
8 of them to put queens on

CS314 31
Recursive Backtracking

Clicker 3

» For a safe solution, how many queens can
be placed in a given column?

A.0
B. 1
C.2
D.3
E. Any number

CS314 32
Recursive Backtracking

Reducing the Search Space

» The previous calculation includes set ups like this
one

Q

» Includes lots of set ups with Q
multiple queens in the same
column

» How many queens can there be a
in one column? H BHENR
> Number of set ups

8*8*8*8*8*8*8*8=16,777,216
> We have reduced search space by two orders of
magnitude by applying some logic

Q

CS314 33
Recursive Backtracking

Solving N Queens Approach

Recursive Backtracking

A Solution to 8 Queens

> If number of queens is fixed and | realize there can't be
more than one queen per column | can iterate through the

rows for each column
for(int r0 = 0; r0 < 8; rO0++){
board[r0] [0] = "g';
for(int rl = 0; rl < 8; rl++){
board[rl][1l] = 'g';
for(int r2 = 0; r2 < 8; r2++){
board[r2][2] = "g';
// a little later
for(int r7 = 0; r7 < 8; r7++){
board[r7][7] = 'g';
if (queensAreSafe (board))
printSolution (board) ;

board[r7][7] = ' '; //pick up queen

}
board[r6][6] = ' '; // pick up queen
CS314 35
Recursive Backtracking

N Queens
» The problem with N queens is you don't
know how many for loops to write.
» Do the problem recursively

» Write recursive code with class and demo

— show backtracking with breakpoint and
debugging option

CS314 36
Recursive Backtracking

Recursive Backtracking

» You must practice!!!

» Learn to recognize problems that fit the
pattern

» |Is a kickoff method needed?
» All solutions or a solution?
» Reporting results and acting on results

Cs314 37
Recursive Backtracking

Minesweeper

@ Minesweeper foe)
& Mi 5 'E‘ Game Help
Game Help
—
211 1
\ 2
k= 2
| 1/12(2/4
1
1/1{1] [1
JEIE
1/1(3
(& . @
(= @
CS314 38

Recursive Backtracking

Minesweeper Reveal
Algorithm

» Minesweeper

> click a cell
— if bomb game over

— if cell that has 1 or more bombs on border
then reveal the number of bombs that border cell

— if a cell that has 0 bombs on border
then reveal that cell as a blank and click on the 8
surrounding cells

CS314 39
Recursive Backtracking

Another Backtracking Problem
A Simple Maze

Search maze until way
out is found. If no way
out possible report that.

CS314 40
Recursive Backtracking

The Local View

Which way do
| go to get
out?

North

West
East

Behind me, to the South

is a door leading South
CS314 41
Recursive Backtracking

Modified Backtracking
Algorithm for Maze

» If the current square is outside, return TRUE to indicate that a solution has been
found.
If the current square is marked, return FALSE to indicate that this path has been
tried.
Mark the current square.
for (each of the four compass directions)
{ if (this direction is not blocked by a wall)
{ Move one step in the indicated direction from the current square.
Try to solve the maze from there by making a recursive call.
If this call shows the maze to be solvable, return TRUE to indicate that
fact.

}
}

Unmark the current square.
Return FALSE to indicate that none of the four directions led to a solution.

CS314 42
Recursive Backtracking

Backtracking in Action

The crucial part of the

algorithm is the for loop
e that takes us through the
2 alternatives from the current
square. Here we have moved
to the North.

for (dir = North; dir <= West; dir++)
{ if ('WallExists(pt, dir))
{if (SolveMaze (AdjacentPoint (pt, dir)))
return (TRUE) ;

CS314 43
Recursive Backtracking

Backtracking in Action

Here we have moved
North again, but there is
a wall to the North .

East is also

blocked, so we try South.
That call discovers that
the square is marked, so
it just returns.

| E‘-ﬁv‘:*

A
.|

P

CS314 44
Recursive Backtracking

7 So the next move we - This path reaches
@ <X can make is West.
p e a dead end.
¥ ‘.
5 Where is this leading? s (e .
'y Time to backtrack!
Remember the
program stack!
CS314 45 Cs314 46
Recursive Backtracking Recursive Backtracking
And now we try
) South
The recursive calls
end and return until
s we find ¥
ourselves back here. r
(=)
Cs314 47 Cs314 48

Recursive Backtracking

Recursive Backtracking

Path Eventually Found

2

Bl

CS314 I 49

INCLUIDIVG waunuauniily

More Backtracking Problems

CS314 50
Recursive Backtracking

Other Backtracking Problems

> Knight's Tour
Regular Expressions

Knapsack problem / Exhaustive Search

— Filling a knapsack. Given a choice of items with
various weights and a limited carrying capacity
find the optimal load out. 50 Ib. knapsack. items
are 1401b,1321b.2221bs,1151b,151b. A
greedy algorithm would choose the 40 Ib item
first. Then the 5 Ib. Load out = 45Ib. Exhaustive
search 22 + 22 + 5 =49.

v v

CS314 51
Recursive Backtracking

The CD problem

> We want to put songs on a Compact Disc.
650MB CD and a bunch of songs of various
sizes.

If there are no more songs to consider return result

else{
Consider the next song in the list.
Try not adding it to the CD so far and use recursion to evaluate best
without it.
Try adding it to the CD, and use recursion to evaluate best with it
Whichever is better is returned as absolute best from here

CS314 52
Recursive Backtracking

Another Backtracking Problem

» Airlines give out frequent flier miles as a way to get
people to always fly on their airline.

» Airlines also have partner airlines. Assume if you
have miles on one airline you can redeem those
miles on any of its partners.

» Further assume if you can redeem miles on a
partner airline you can redeem miles on any of its
partners and so forth...

— Airlines don't usually allow this sort of thing.

> Given a list of airlines and each airlines partners
determine if it is possible to redeem miles on a
given airline A on another airline B.

Airline List — Part 1

> Delta

— partners: Air Canada, Aero Mexico, OceanAir
» United

— partners: Aria, Lufthansa, OceanAir, Quantas, British Airways
> Northwest

— partners: Air Alaska, BMI, Avolar, EVA Air
> Canjet

— partners: Girjet
> Air Canda

— partners: Areo Mexico, Delta, Air Alaska
> Aero Mexico

— partners: Delta, Air Canda, British Airways

CS314 53 CS314 54
Recursive Backtracking Recursive Backtracking
Airline List - Part 2 Airline List - Part 3
» Ocean Air > Girjet
— partners: Delta, United, Quantas, Avolar — partners: Southwest, Canjet, Maxair
» 1 o . ’ ’
AlohaAir - » British Airways
— partners: Quantas i)
> Aria — partners: United, Aero Mexico
— partners: United, Lufthansa > Air Alaska
» Lufthansa — partners: Northwest, Air Canada
— partners: United, Aria, EVA Air » Avolar
» .
Quan’tas United. OoeanAir. Algha — partners: Northwest, Ocean Air, BMI
— partners: United, OceanAir, AlohaAir > .
— partners: Northwest, Avolar — partners: Northwest, Luftansa
> Maxair » Southwest
— partners: Southwest, Girjet — partners: Girjet, Maxair
CS314 55 CS314 56

Recursive Backtracking

Recursive Backtracking

Problem Example

*» If | have miles on Northwest can | redeem them on Aria?
> Partial graph: /

—
@
Air Alaska

Ocean Air

Avolar

CS314

Recursive Backtracking

57

Topic 14

Searching and Simple Sorts

ought to be."

and the Sorcerer's Stone

"There's nothing in your head the
sorting hat can't see. So try me
on and | will tell you where you

-The Sorting Hat, Harry Potter

Sorting and Searching
» Fundamental problems in computer science
and programming
» Sorting done to make searching easier

» Multiple different algorithms to solve the
same problem
— How do we know which algorithm is "better"?

» Look at searching first

» Examples use arrays of ints to illustrate
algorithms

CS314 Searching and Simple Sorts 2

iTunes =@X

G

Grep in Project

chchchchchchchch

Google

Adwanced Search

[recursive backtrackim;ﬂ Advanced Search

- _ - 1 B
[Google Search J[I'm Feeling Lucky] Language Tools

Searching

» Given an array or list of data find the location
of a particular value or report that value is not
present

> linear search
— intuitive approach?
— start at first item

7,;7)@110w/{agef

N , o = =
!s it the one | am looking for” B /
— if not go to next item vical

— repeat until found or all items checked

> If items not sorted or unsortable this
approach is necessary

CS314 Searching and Simple Sorts 4

Linear Search

/* pre: data != null
post: return the index of the first occurrence
of target in data or -1 if target not present in

data
*/
public int linearSearch(int[] data, int target) {
for (int i = 0; i < data.length; i++) {
if (data[i] == target) {
return 1i;
}
}
return -1;
}
CS314 Searching and Simple Sorts 5

Linear Search, Generic

/* pre: data != null, no elements of data == null
target != null
post: return the index of the first occurrence
of target in data or -1 if target not present in
data
*/
public int linearSearch(Object[] data, Object target) {
for (int i = 0; 1 < data.length; i++)
if (target.equals(datal[i]))
return 1i;
return -1;

}

T(N)? Big O? Best case, worst case, average case?

CS314 Searching and Simple Sorts 6

Clicker 1

» What is the average case Big O of linear
search in an array with N items, if an item is
present once?

A. O(1)

B. O(logN)
C. O(N)

D. O(NlogN)
E. O(N?)

CS314 Searching and Simple Sorts 7

Searching in a Sorted Array or List

> If items are sorted then we can divide and
conquer

» dividing your work in half with each step
— generally a good thing

> The Binary Search with array in ascending order
— Start at middle of list
—is that the item?
— If not is it less than or greater than the item?
— less than, move to second half of list
— greater than, move to first half of list
— repeat until found or sub list size =0

CS314 Searching and Simple Sorts 8

Binary Search

datal | | |]

T T T

low item middle item high item
Is middle item what we are looking for? If not is it
more or less than the target item? (Assume lower)

datal | | | Bl | |
T I T
low middle high
item item item
and so forth...
CS314 Searching and Simple Sorts 9

Binary Search in Action

01234567 89101112131415
12 [3 |5 |7 [11]13|17]|19]|23]29|31[37|41]43 47|53

public static int bsearch(int[] data, int target) {
int indexOfTarget = -1;
int low = 0;
int high = data.length - 1;

while (indexOfTarget == -1 && low <= high) {
int mid = low + ((high - low) / 2);
if(datalmid] == target)

indexOfTarget = mid;
else if (data[mid] < target)
low = mid + 1;
else.
high = mid - 1;
}
return indexOfTarget;

}
// mid = (low + high) / 2; // may overflow!!!
// or mid = (low + high) >>> 1; using bitwise op

CS314 Searching and Simple Sorts 10

Trace When Key ==
Trace When Key == 30

Variables of Interest?

CS314 Searching and Simple Sorts 11

Clicker 2

What is the worst case Big O of binary search in
an array with N items, if an item is present?

A.O(1)
B.O(logN)
C.O(N)
D.O(NlogN)
E.O(N?)

CS314 Searching and Simple Sorts 12

Generic Binary Search

public static <T extends Comparable<? super T>> int
bsearch (T[] data, T target) {

int result = -1;
int low = 0;
int high = data.length - 1;
while(result == -1 && low <= high) {
int mid = low + ((high - low) / 2);
int compareResult = target.compareTo (data[mid]);
if (compareResult == 0)
result = mid;
else if (compareResult > 0)
low = mid + 1;
else
high = mid - 1; // compareResult < 0
}

return result;

CS314 Searching and Simple Sorts 13

Recursive Binary Search

public static int bsearch(int[] data, int target) {
return bsearch(data, target, 0, data.length - 1);
}

public static int bsearch(int[] data, int target,
int low, int high) {
if (low <= high) {
int mid = low + ((high - low) / 2);
if(data[mid] == target)
return mid;
else if(data[mid] > target)
return bsearch(data, target, low, mid - 1);
else
return bsearch(data, target, mid + 1, high);
}
return -1;
}
// Clicker 3 Is this a recursive backtracking algorithm?
A. NO
B. YES

CS314 Searching and Simple Sorts 14

Other Searching Algorithms

> Interpolation Search

— more like what people really do
> Indexed Searching
» Binary Search Trees
» Hash Table Searching
> best-first
4 A*

CS314 Searching and Simple Sorts 15

= -
Ll @ 5 of 4/24/08
Phone Book
e wanan
All Entries 1 |1 [2:19:36 |D=ena Kaster nas

[<Add Contact> [
Alberto Juarez
Joseph Lyles

Letitia Jackson
Sarah Vernor

[] Drassin
z 2:21116 |Drossin (2)
3 |2 [2:21:21 [Joan Benoit Samuelson

4 2121125 |Kastor (3)

5 21221433 | Benoit (2)
5 2:24:522 | Benait (3)
7 2:26:11 |Benait (4)
]
9

g
g

3 [2:26:26a |Julie Brown

4 |2:26:408 |Kirm Janss

Tasks apabc |||

Enter new task here New Task
I BeamTask [
Delete Task *

| .
@ Priority

Subject
Start Date | Options...

|
|
|
|
|
|
|
|
|
!
| v nd Happiness
-m: Due Date M ‘ s i
4 D E enu ‘ u When | Get Ther
eels Like
)
|
i

Filter

Letter Days
110f 13 The Wallflowers © Red Letter Days
120f 13 The Wallflowers ~ © Red Letter Days
 Empire in My Mind (Bonus Track) ~~ © 3:31 130f 13 TheWallflowers © Red Letter Days

Sorting
» A fundamental application for computation
» Done to make finding data (searching) faster
> Many different algorithms for sorting

» One of the difficulties with sorting is working
with a fixed size storage container (array)
— if resize, that is expensive (slow)
» The simple sorts are slow
— bubble sort
— selection sort
— insertion sort

+ Algorithm Selection sort

— Search through the data and find the smallest element
— swap the smallest element with the first element

— repeat starting at second element and find the second

smallest element
public static void selectionSort(int[] data) {

for (int i = 0; 1 < data.length - 1; i++) {
int min = 1i;
for (int j =
if (datal[]j] < data[min])

min = j;

datal[i];

data[min];

= temp;

int temp =
data[i] =
data[min]

i+ 1; j < data.length; j++)

CS314 Searching and Simple Sorts 17 CS314 Searching and Simple Sorts 18
Insertion Sort in Practice Generic Selection Sort
44 68 191 119 119 37 83 82 191 45 158 130 76 153 39 25 public static <T extends Comparable<? super T>>
void selectionSort (T[] data) {
for(int i = 0; i < data.length - 1; i++) {
int min = i;
for(int j = 1 + 1; j < data.length; Jj++)
if(data[min].compareTo(datal[j]) > 0)
min = j;
T temp = datali];
data[i] = data[min];
What is the T(N), actual number of statements } datalmin] = temp;
executed, of the selection sort code, given an)
array of N elements? What is the Big O?
CS314 Searching and Simple Sorts 19 CS314 Searching and Simple Sorts 20

Insertion Sort

> Another of the O(N?2) sorts

> The first item is sorted

» Compare the second item to the first
— if smaller swap

» Third item, compare to item next to it
— need to swap
— after swap compare again

» And so forth...

CS314 Searching and Simple Sorts 21

Insertion Sort Code

public void insertionSort (int[] data) {
for (int i = 1; i < data.length; i++) {

int temp = datali];

int §J = 1i;

while (j > 0 && temp < datal[j - 11])
// swap elements
datal[j] = datalj - 11;
datal[]j - 1] = temp;
J——7

}
}

> Best case, worst case, average case Big O?

CS314 Searching and Simple Sorts 22

{

Clicker 4 - Comparing Algorithms

> Which algorithm do you think has a smaller
T(N) given random data, selection sort or
insertion sort?

A. Insertion Sort
B. Selection Sort
C. About the same

CS314 Searching and Simple Sorts 23

Topic 15
Implementing and Using Stacks

"stack n.

The set of things a person has to do in the future. "l haven't
done it yet because every time | pop my stack something new
gets pushed." If you are interrupted several times in the
middle of a conversation, "My stack overflowed" means

"l forget what we were talking about."

-The Hacker's Dictionary

Friedrich L. Bauer
German computer scientist |
who proposed "stack method ||
of expression evaluation™
in 1955.

Sharper Tools

CS314
Stacks

Stacks

» Access is allowed only at one point of the structure,
normally termed the fop of the stack
— access to the most recently added item only

> Operations are limited:
— push (add item to stack)
— pop (remove top item from stack)
— top (get top item without removing it)
— isEmpty

» Described as a "Last In First Out"
(LIFO) data structure

CS314 3
Stacks

Implementing a stack

» need an underlying collection to hold the elements

of the stack
» 3 obvious choices?
— native array
— linked structure of nodes
— a list!!!
» Adding a layer of abstraction.
A HUGE idea.
> array implementation
> linked list implementation

ALL MODERN DIGITAL
INFRASTRUCTURE

A PROTECT SOME
RANDOM PERSON
IN NEBRASKA HAS

BEEN THANKLESSLY
MANTAINING
SINCE 2003

https://xkcd.com/2347/
4

CS314
Stacks

Uses of Stacks

» The runtime stack used by aw.. .
process (running program) to ——
keep track of methods in =

tenp for fectondal 1 -

temp for rbom ey

pannetr n 2

progress v
> Search problems oy e .
» Undo, redo, back, forward ot

tenp for fctorial & -+

n 3

File Edit Miew History

File Edit Wiew Hi e ! = |,ﬂ .
@ - @) & e
% = B LIndu:u_Mov_e Chiject

e e = =N E .

CS314 5
Stacks

Stack Operations

Assume a simple stack for integers.
Stack<Integer> s = new Stack<>();
s.push(12);

s.push(4);

s.push(s.top() + 2);

s.pop();

s.push(s.top());

/lwhat are contents of stack?

CS314 6
Stacks

Clicker 1 - What is Output?

Stack<Integer> s = new Stack<>();

// put stuff in stack

for (int 1 = 0; 1 < 5; 1i++)
s.push (i)

// Print out contents of stack.

// Assume there is a size method.

for (int 1 = 0; 1 < s.size(); 1i++)
System.out.print(s.pop() + " "),

A 012314 D 2 3 4

B 43210 E No output due

C 432 to runtime error

CS314 7

Stacks

Corrected Version

Stack<Integer> s = new Stack<Integer>();
// put stuff in stack
for (int i = 0; 1 < 5; 1i++)
s.push (i)
// print out contents of stack
// while emptying it
final int LIMIT = s.size();
for (int 1 = 0; 1 < LIMIT; i++)
System.out.print(s.pop() + " ");
//ox
// while (!s.isEmpty())
// System.out.println(s.pop());

CS314 8
Stacks

Stack Operations

Write a method to print out contents of stack
in reverse order.

CS314 9
Stacks

Applications of Stacks

Mathematical Calculations
» What does 3 + 2 * 4 equal?
2*4+3?7 3*2+47?
» The precedence of operators affects the
order of operations.

» A mathematical expression cannot simply be
evaluated left to right.

» A challenge when evaluating a program.

» Lexical analysis is the process of
interpreting a program.

What about1-2-425*3*6/7"2"3

CS314 11
Stacks

Infix and Postfix Expressions

» The way we are use to writing
expressions is known as infix
notation

> Postfix expression does not

> require any precedence rules

»32*1+ ispostfixof 3*2 + 1

» evaluate the following postfix
expressions and write out a
corresponding infix expression:
2324*+* 12347+
12-3223*6/+ 25M1 -

CS314
Stacks

12

Clicker Question 2

> What does the following postfix expression
evaluate to?

632+"
A. 11
B. 18
C.24
D. 30
E. 36

CS314 13
Stacks

Evaluation of Postfix Expressions
» Easy to do with a stack
» given a proper postfix expression:
— get the next token
—if it is an operand push it onto the stack
— else if it is an operator
* pop the stack for the right hand operand
* pop the stack for the left hand operand

« apply the operator to the two operands
* push the result onto the stack
— when the expression has been exhausted the
result is the top (and only element) of the stack

CS314 14
Stacks

Infix to Postfix
> Convert the following equations from infix to

postfix:
2A3723+5%1
11+2-1*3/3+2"2/3
Problems:

Negative numbers?
parentheses in expression

CS314 15
Stacks

Infix to Postfix Conversion

» Requires operator precedence parsing algorithm

— parse v. To determine the syntactic structure of a
sentence or other utterance

Operands: add to expression

Close parenthesis: pop stack symbols until an open
parenthesis appears

Operators:
Have an on stack and off stack precedence

Pop all stack symbols until a symbol of lower
precedence appears. Then push the operator

End of input: Pop all remaining stack symbols and
add to the expression

CS314 16
Stacks

Simple Example

Infix Expression: 3+2*4
PostFix Expression:
Operator Stack:

Precedence Table

Symbol Off Stack On Stack
Precedence| Precedence
+ 1 1
- 1 1
* 2 2
/ 2 2
A 10 9
(20 0
CS314 17

Stacks

Simple Example

Infix Expression: +2%4
PostFix Expression: 3
Operator Stack:
Precedence Table
Symbol Off Stack On Stack
Precedence| Precedence
+ 1 1
- 1 1
* 2 2
/ 2 2
A 10 9
(20 0

CS314
Stacks

18

Simple Example

Infix Expression: 2*4
PostFix Expression: 3
Operator Stack: +
Precedence Table
Symbol Off Stack On Stack
Precedence| Precedence
+ 1 1
- 1 1
* 2 2
/ 2 2
A 10 9
(20 0

CS314 19
Stacks

Simple Example

Infix Expression: *4
PostFix Expression: 32
Operator Stack: +
Precedence Table
Symbol Off Stack On Stack
Precedence| Precedence
+ 1 1
- 1 1
* 2 2
/ 2 2
A 10 9
(20 0

CS314
Stacks

20

Simple Example

Infix Expression: 4

PostFix Expression: 32

Operator Stack: +*

Precedence Table
Symbol Off Stack On Stack
Precedence| Precedence
+ 1 1
- 1 1
* 2 2
/ 2 2
A 10 9
(20 0
CS314 21

Stacks

Simple Example

Infix Expression:

PostFix Expression: 324

Operator Stack: +*
Precedence Table

Symbol Off Stack On Stack
Precedence| Precedence
+ 1 1
- 1 1
* 2 2
/ 2 2
A 10 9
(20 0

CS314
Stacks

22

Simple Example

Infix Expression:

PostFix Expression: 324*

Operator Stack: +
Precedence Table

Symbol Off Stack On Stack
Precedence| Precedence
+ 1 1
- 1 1
* 2 2
/ 2 2
A 10 9
(20 0

CS314 23
Stacks

Simple Example

Infix Expression:
PostFix Expression: 324 *+
Operator Stack:

Precedence Table

Symbol Off Stack On Stack
Precedence| Precedence
+ 1 1
- 1 1
* 2 2
/ 2 2
A 10 9
(20 0

CS314
Stacks

24

Example
11+2724723-(4+5)*6)"2
Show algorithm in action on above equation

CS314 25
Stacks

Balanced Symbol Checking

> In processing programs and working with
computer languages there are many
instances when symbols must be balanced

{010

A stack is useful for checking symbol balance.
When a closing symbol is found it must match
the most recent opening symbol of the same
type.

> Applicable to checking html and xml tags!

CS314 26
Stacks

Algorithm for Balanced
Symbol Checking

» Make an empty stack

» read symbols until end of file

— if the symbol is an opening symbol push it onto
the stack
—if it is a closing symbol do the following
« if the stack is empty report an error
+ otherwise pop the stack. If the symbol popped does
not match the closing symbol report an error
» At the end of the file if the stack is not empty
report an error

CS314 27
Stacks

Algorithm in practice

> list[i] = 3 * (44 - method(foo(list[2 * (i + 1) + foo(
listli-1]))/2*) - listf method(list[0])];

» Complications
— when is it not an error to have non matching symbols?

» Processing a file

— Tokenization: the process of scanning an input stream.
Each independent chunk is a token.

» Tokens may be made up of 1 or more characters

CS314 28
Stacks

Topic 16
Queues

"FISH queue: n.

flakiness."

[acronym, by analogy with FIFO (First In,
First Out)] ‘First In, Still Here’. A joking way of
pointing out that processing of a particular
sequence of events or requests has stopped
dead. Also FISH mode and FISHnet; the
latter may be applied to any network that is
running really slowly or exhibiting extreme

-The Jargon File 4.4.7

Queues
> A sharp tool, like stacks

» A line

—In England people don’t “get in line”
they “queue up”.

{{ﬁﬂﬁ v [! | ,‘(‘
(LTSNS . o)

CS314 2
Queues

Queue Properties
» Queues are a first in first out data

structure

— FIFO (or LILO, but | guess that sounds a

bit silly)

> Add items to the end of the queue

» Access and remove from the front

— Access to the element that has been in the
structure the longest amount of time

» Used extensively in operating systems
— Queues of processes, I/O requests, and

much more
CS314

Queues

Queues in Operating Systems

» On a computer with N cores on the CPU, but more
than N processes, how many processes can actually
be executing at one time?

> One job of OS, schedule the processes for the CPU

System Monl EER

Threads Real Memory
0.00 4 2L05MB 236.26 ME
0.00 6 2353M8 2

0.00 2 3.80ME 1
400 10 2203MB 2 M
.80 2 0aime 2

0.00 4 1298MB 2 M8
0.00 2 5.35MB 227.74 MB
0.00 z 6.43ME 20011 MB

SEEREEREE
333333333

360 4 SystemuiServer

¥ Dock

{(€PU | System Memory Disk Activity | Disk Usage Network |

wwwww

%System; 4,00 |m] Processes: 65

i w——

CS314 4
Queues

Queue operations

void enqueue (E item)
—a.k.a. add (E item)
»E front ()
— a.k.a.E peek ()
' E

— a.k.a.E remove ()

dequeue ()

» boolean isEmpty ()

» Specify methods in an interface, allow multiple
implementations.

CS314 5
Queues

Queue interface, version 1

public interface Queue3l4<E> ({
//place item at back of this queue
public void enqueue(E item);

//access item at front of this queue
//pre: !'isEmpty ()
public E front();

//remove item at front of this queue
//pre: !isEmpty ()
public E dequeue();

public boolean isEmpty():;

CS314 (]
Queues

Implementing a Queue

> Given the internal storage container and
choice for front and back of queue what are
the Big O of the queue operations?

ArrayList LinkedList LinkedList
(Singly Linked) (Doubly Linked)
enqueue
front
dequeue
iISEmpty
Cs314 7

Queues

Clicker 1

> If implementing a queue with a singly linked list
with references to the first and last nodes (head
and tail) which end of the list should be the front
of the queue in order to have all queue
operations O(1)?

A. The front of the list should be the front of the queue.

B. The back of the list should be the front of the queue.

C. Either end will work to make all ops O(1).

D. Neither end will allow all ops to be O(1).

CS314 8
Queues

Alternate Implementation

» How about implementing a Queue with a
native array?
— Seems like a step backwards
AWhack
| ontheSideofthe Head |

| How You Can Be More Creative ‘

\J i.';_ |
Rogervon Oech
k it

CS314 9

Queues

Application of Queues
» Radix Sort
—radix is a synonym for base. base 10, base 2

» Multi pass sorting algorithm that only looks
at individual digits during each pass

» Use queues as buckets to store elements
> Create an array of 10 queues

» Starting with the least significant digit place
value in queue that matches digit

» empty queues back into array
> repeat, moving to next least significant digit

CS314 10
Queues

Radix Sort in Action: 1s place
> original values in array
9,113, 70, 86, 12, 93, 37, 40, 252, 7,79, 12
» Look at ones place
9,113, 70, 86, 12, 93, 37,40, 252, 7,79, 12
> Array of Queues (all empty initially):

0 5
1 6
2 7
3 8
4 9

CS314 1
Queues

Radix Sort in Action: 1s
> original values in array
9,113, 70, 86, 12, 93, 37, 40, 252, 7,79, 12
» Look at ones place
9, 113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12

» Queues:
0 70,40 5
1 6 86
2 12,252,12 737,17
3 113, 93 8
4 99,79

CS314 12
Queues

Radix Sort in Action: 10s

» Empty queues in order from 0 to 9 back into
array
70, 40,12, 252, 12,113, 93, 86, 37, 7,9, 79

» Now look at 10's place

Radix Sort in Action: 100s

» Empty queues in order from 0 to 9 back into array
7,9,12,12, 113, 37, 40, 252, 70, 79, 86, 93

» Now look at 100's place
7,9, 12, 12,113, 37, 40,252, 70, 79, 86, 93

70, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9,79 > Queues:
> Queues: 0 7,9, 12,12, 37,40, 70, 79, 86, 93 5
0 7,9 5 252
- - = 1 113 6
112,12, 113 6 2 252 7
2 7 70,79 3 o
3 37 8 86 4 9
4 40 9 93
Cs314 13 Cs314 14
Queues Queues
Radix Sort in Action: Final Step Radix Sort Code
} Empty queueS |n Order from O tO 9 baCk IntO publiACrrsat;LtiisCt<VQOuieCLeS<OIrntt(eignetr[>J> J-qiusetu)e{s = new ArrayList<Queue<Integer>>();
for(int 1 = 0; 1 < 10; i++)
EirrEa}l queues.add(new LinkedList<Integer>());
int passes = numDigits(list[0]); // helper method
7, 9, 12’ 12, 40’ 70, 79’ 86’ 93, 113’ 252 // oi int passes =g(iné) Ma‘éhJ.;.oglO(liSE[O]);

CS314 15
Queues

for(int 1 = 1; i1 < list.length; i++){
int temp = numDigits(list[i]);
if(temp > passes)
passes = temp;
}
for(int i = 0; i < passes; 1i++){
for(int 7 = 0; j < list.length; J++)
queues.get (valueOfDigit (1list[j], 1)) .add(list[j]);:

int pos = 0;
for (Queue<Integer> g : queues) {
while (!qg.isEmpty())
list[pos++] = g.remove () ;

}

CS314 16
Queues

Topic 17
Faster Sorting

"The bubble sort seems to have
nothing to recommend it, except
a catchy name and the fact that it
leads to some interesting
theoretical problems."

- Don Knuth

Previous Sorts
» Insertion Sort and Selection Sort are both
average case O(N?)

» Today we will look at two faster sorting
algorithms.
— quicksort
— mergesort

CS314 Fast Sorting 2

Properties of Sorting Algorithms

> In place?
— Do we use another data structure or not?

— Program stack typically not considered another
data structure if only using O(log N) space

» Comparison?

— Works by comparing the items to be sorted to
each other?

— How could we not?

» Stable?
— Next slide!

CS314 Fast Sorting

Stable Sorting

> A property of sorts

> If a sort guarantees the relative order of
equal items stays the same then it is a stable
sort

» [74,6,7,,5,1,2, 74, -5] original data
— subscripts added for clarity

»[-5,1,2,5,6,7,,7,, 7] sorted data
— result of stable sort

» Real world example:

— sort a table in Wikipedia by one criteria, then another
— sort by country, then by major wins

CS314 Fast Sorting 4

CS314

Quicksort

Invented by C.A.R. (Tony) Hoare

A divide and conquer approach
that uses recursion

If the list has 0 or 1 elements it is sorted

otherwise, pick any element p in the list. This is
called the pivot value

Partition the list minus the pivot into two sub lists
according to values less than or greater than the
pivot. (equal values go to either)

return the quicksort of the first list followed by the
quicksort of the second list

Fast Sorting 5

CS314

Quicksort in Action
392317903372467911 5264571
Pick middle element as pivot: 46
Partition list
23175333911 46
quick sort the less than list
Pick middle element as pivot: 33

797252 64 90 71

2317511 33 39
quicksort the less than list, pivot now 5
{ 5 2317 11

quicksort the less than list, base case
quicksort the greater than list

Pick middle element as pivot: 17

and soon....
Fast Sorting

Quicksort on Another Data Set

012 3 4 56 7 8 910 1112 13 14 15

44168191/ 119|119 |37 |83 |95|191 |45 158 {130 |76 (153 |39|25
Big O of Quicksort?

CS314 Fast Sorting 7

private static void swapReferences (Object|[]

}

private void quicksort (Comparable[] data, int start,

CS314

}

a, int indexl, int index2)
Object tmp = alindexl];

al[indexl] = al[index2];

al[index2] = tmp;

int stop) {

if (start < stop) {
int pivotIndex = (start + stop) / 2;

// Place pivot at start position

swapReferences (data, pivotIndex, start);

Comparable pivot = data[start];

// Begin partitioning
int j = start;

// from first to j are elements less than or equal to pivot
// from j to i are elements greater than pivot
// elements beyond i have not been checked yet
for(int i = start + 1; 1 <= stop; i++) {
//is current element less than or equal to pivot
if (data[i].compareTo (pivot) <= 0) {
// if so move it to the less than or equal portion
J++;
swapReferences (data, i, Jj);
}
}

//restore pivot to correct spot
swapReferences (data, start, j);
quicksort (data, start, § - 1); // Sort small elements
quicksort(data, j + 1, stop); // Sort large elements
} // else start >= stop, 0 or 1 element, base case, do nothing

Fast Sorting

{

Clicker 1

» What are the best case and worst case
Orders (Big O) for quicksort?

Best
A. O(NlogN)
B. O(N?)
C. O(N?) @)
D. O(NlogN) O
E. O(N)

Worst
O(N?)

CS314 Fast Sorting 9

Clicker 2

> Is quicksort always stable?
A. No
B. Yes

CS314 Fast Sorting

10

Merge Sort Algorithm

Don Knuth cites John von Neumann as the creator
of this algorithm

1. Ifalisthas 1 elementor 0
elements it is sorted

2. If a list has more than 1 split
into 2 separate lists

3. Perform this algorithm on each
of those smaller lists

4. Take the 2 sorted lists and
merge them together

CS314 Fast Sorting 11

Merge Sort

|3S|27‘43‘3‘9‘82‘10‘

3127|3843 9|10 |82

|3|9‘10 27’33‘43‘82‘

CS314 Fast Sorting

When implementing
one temporary array
is used instead of
multiple temporary
arrays.

Why?

12

Merge Sort code

/**

* perform a merge sort on the elements of data

* @param data data != null, all elements of data
* are the same data type

*/

public static void mergeSort (Comparable[] data) {
Comparable[] temp = new Comparable[data.length];
sort (data, temp, 0, data.length - 1);

Merge Sort Code

private static void merge(Comparable[] data, Comparable[] temp,
int leftPos, int rightPos, int rightEnd) {

int leftEnd = rightPos - 1;
int tempPos = leftPos;
int numElements = rightEnd - leftPos + 1;
//main loop
while (leftPos <= leftEnd && rightPos <= rightEnd) {

if(data[leftPos].compareTo(data[rightPos]) <= 0) {

temp[tempPos] = data[leftPos];
leftPos++;

} else {
temp [tempPos] = datal[rightPos];
rightPos++;

}

tempPos++;

}
//copy rest of left half

private static void sort (Comparable[] data, Comparable[] temp, while (leftPos <= leftEnd)
il’lt lOW, int hlgh) { E:EE};[)EETEE’OS] = data[leftPos];
if (low < high) { } leftPos++;
int center = (low + high) / 2; (,gj;’zy(]ﬁ?;ﬁtg;riihiigiiénm .
sort (data, temp, low, center); Egﬁgégiff’os] = datalrightPos];
sort (data, temp, center + 1, high); : rightPost+;
merge(data’ temp’ lOW, center + l’ hlgh); ééiosznteriﬂp:bg?kiiztgurdn}?EZments' i++, rightEnd--)
}) datairightEnd] = tempirighéEnd];
}
CS314 Fast Sorting 13 CS314 Fast Sorting 14
Clicker 3 Clicker 4
» What are the best case and worst case > Is mergesort always stable?
Orders (Big O) for mergesort? A No
Best Worst
B. Yes
A. O(NlogN) O(N?)
B. O(N?) O(N?)
C. O(N?) O(N!)
D. O(NlogN) O(NlogN)
E. O(N) O(NlogN)
CS314 Fast Sorting 15 CS314 Fast Sorting 16

Clicker 5

» You have 1,000,000 distinct items in random
order that you will be searching. How many
searches need to be performed before the
data is changed to make it worthwhile to sort
the data before searching?

A. ~40

B. ~100

C. ~500

D. ~2,000
E. ~500,000

CS314 Fast Sorting

17

Comparison of Various Sorts (2001)

Num Items Selection Insertion Quicksort
1000 0.016 0.005 07??
2000 0.059 0.049 0.006
4000 0.271 0.175 0.005
8000 1.056 0.686 07??
16000 4.203 2.754 0.0M
32000 16.852 11.039 0.045
64000 expected? | expected? 0.068
128000 expected? | expected? 0.158
256000 expected? | expected? 0.335
512000 expected? | expected? 0.722
1024000 expected? | expected? 1.550
times in seconds
Fast Sorting

CS314

18

Comparison of Various Sorts (2011)

Num Items Selection Insertion Quicksort Merge Arrays.sort
1000 0.002 0.001 - - -
2000 0.002 0.001 - - -
4000 0.006 0.004 - - -
8000 0.022 0.018 - - -

16000 0.086 0.070 0.002 0.002 0.002
32000 0.341 0.280 0.004 0.005 0.003
64000 1.352 1.123 0.008 0.010 0.007
128000 5.394 4.499 0.017 0.022 0.015
256000 21.560 18.060 0.035 0.047 0.031
512000 86.083 72.303 0.072 0.099 0.066
1024000 7?7 ?7?? 0.152 0.206 0.138
2048000 0.317 0.434 0.287
4096000 0.663 0.91 0.601
8192000 1.375 1.885 1.246

Comparison of Various Sorts (2020)

Num Selection | Insertion | Quicksort | Mergesort | Arrays. | Arrays.so Arrays.
Items sort(int) | "(ntegen) | parallelSort
1,000 <0.001 | <0.001 - - - - -
2,000 0.001| <0.001 - - - - -
4,000 0.004 0.003 - - - - Speeds
8,000 0.017 0.010 - - - - up????
16,000 0.065 0.040 0.002 0.002 0.003 0.01 0.007
32,000 0.258 0.160 0.002 0.003 0.002| 0.008 0.003
64,000 1.110 0.696 0.005 0.008 0.004 0.01 0.001
128,000 4172 2.645 0.011 0.015 0.009| 0.024 0.002
256,000 16.48 10.76 0.024 0.034 0.018] 0.051 0.004
512,000 70.38 47.18 0.049 0.068 0.040 0.114 0.008
1,024,000 - - 0.098 0.143 0.082]| 0.259 0.017
2,048,000 - - 0.205 0.296 0.184| 0.637 0.035
4,096,000 - - 0.450 0.659 0.383 1.452 0.079
8,192,000 - - 0.941 1.372 0.786| 3.354 0.148

Concluding Thoughts

» Language libraries often have sorting
algorithms in them
— Java Arrays and Collections classes
— C++ Standard Template Library
— Python sort and sorted functions
» Hybrid sorts

— when size of unsorted list or portion of array is
small use insertion sort, otherwise use
O(N log N) sort like Quicksort or Mergesort

Fast Sorting 21

Concluding Thoughts

> Sorts still being created!

» Timsort (2002)
— created for python version 2.3
— now used in Java version 7.0+
— takes advantage of real world data

— real world data is usually partially sorted,
not totally random

» Library Sort (2006)

— Like insertion sort,
but leaves gaps for later elements

Fast Sorting 22

CS314 Fast Sorting 23

Topic 18 Definitions

Binaw Trees > A tree is an abstract data type - roo}mde
— one entry point, the root 'r?oire”sa
"A tree may grow a — Each node is either a leaforan \ N
th d feet tall. but internal node O
ousan eet tall, bu — An internal node has 1 or more
its leaves will return to children, nodes that can be
. " reached directly from that
its roots. internal node.
_Chinese Proverb — The internal node is said to be
the parent of its child nodes leaf nodes
CS314 Binary Trees 2
Properties of Trees Properties of Trees and Nodes
> Only access point is the root > siblings: two nodes that r}’Ot

> All nodes, except the root, have one parent have the same parent eqge
— like the inheritance hierarchy in Java > edge: the link from one

» Tradltlonally trees drawn upside down node to another

» path length: the number of N

, roo edges that must be Slbllngs
A Cj traversed to get from one
d node to another
@ Q % path length from root to this - °
% node is 3

CS314 Binary Trees O Ieaves 3 CS314 Binary Trees

More Properties of Trees

> depth: the path length from the root of the
tree to this node

> height of a node: The maximum distance
(path length) of any leaf from this node
— a leaf has a height of 0

— the height of a tree is the height of the root of that
tree

» descendants: any nodes that can be reached
via 1 or more edges from this node

» ancestors: any nodes for which this node is a
descendant

CS314 Binary Trees 5

Tree Visualization

CS314 Binary Trees

Clicker 1

» What is the depth of the node that contains
M on the previous slide?

A0
B. 1
C.2
D.3

E.4
Clicker 2 - Same tree, same choices
What is the height of the node
that contains D?

CS314 Binary Trees 7

Binary Trees

» There are many variations on trees but we
will start with binary trees

> binary tree: each node has at most two
children

— the possible children are usually referred to as
the left child and the right child

;)\parent

left child Q @right child

CS314 Binary Trees

Full Binary Tree

> full binary tree: a binary tree in which each
node has 2 or O children

N
STe
d%@

CS314 Binary Trees 9

Clicker 3

> What is the maximum height of a full binary
tree with 11 nodes?

A.3
B.5
C.7
D. 10

E. Not possible to have full binary tree with 11
nodes.

CS314 Binary Trees 10

Complete Binary Tree

> complete binary tree