
1

Topic 1

CS314 Course Introduction

Chapman: I didn't expect a kind of Spanish Inquisition.

Cardinal Ximinez: NOBODY expects the Spanish Inquisition!
Our chief weapon is surprise...surprise and fear...fear and
surprise.... Our two weapons are fear and surprise...and
ruthless efficiency.... Our three weapons are fear, surprise,
and ruthless efficiency...and an almost fanatical devotion to the
Pope.... Our four...no... Amongst our weapons.... Amongst

our weaponry...are such diverse elements as fear, surprise....

In class: please close laptops

and put away mobile devices.

Mike Scott, Gates 6.304

scottm@cs.utexas.edu

www.cs.utexas.edu/~scottm/cs314/

CS314 Course Overview 2

Who Am I?

Professor of Instruction (lecturer)

in CS department since 2000

Undergrad Stanford, MSCS RPI

US Navy for 8 years, submarines

2 years Round Rock High School

prior to coming to UT

CS314 Course Overview 3

Purpose of these Slides

Discuss

– course content

– procedures

– tools

For your TO DO list:

– complete items on the startup page

www.cs.utexas.edu/~scottm/cs314/handouts/startup.htm

Course Goals

Analyze algorithms and code for efficiency

Be able to create and use canonical data

structures: lists (array and linked), stacks, queues,

trees, binary search trees, balanced binary search

trees, maps, sets, graphs, hash tables, heaps, tries

Know and use the following programming tools and

techniques: object oriented programming

(encapsulation, inheritance, polymorphism), Java

Interfaces, iterators, sorting, searching, recursion,

dynamic programming, functional programming

CS314 Course Overview 4

Course Goals
After CS314 you can design and implement

medium size programs (several 100’s of lines

of code split between multiple classes) to

solve interesting problems

Recall, the three core areas of the UTCS

undergrad degree:

Programming, Theory, Systems

After this class your instructors shall expect

you can write complex programs given a

specification or problem statement.

– You have to design the algorithm in many cases.
CS314 Course Overview 5

Course Overview 6

Prerequisites
Formal: CS312 with a grade of C- or higher

Informal: Ability to design and implement

programs in Java using the following:

•variables and data types

•expressions, order of
operations

•Conditionals (if statements)
•including boolean logic and
boolean expressions

•iteration (loops)

•Methods (functions,
procedures)

•Parameters

•structures or records or
objects

•arrays (vectors, lists)

•top down design (breaking big
rocks into little rocks)

•algorithm and data design

•create and implement program of
at least 200 - 300 loc

•could you write a program to let
two people play connect 4?

CS314 Topics
1. Introduction

2. Algorithm Analysis

3. Encapsulation

4. Inheritance

5. Polymorphism

6. Generics

7. Interfaces

8. Iterators

9. Abstract Classes

10. Maps, Sets

11. Linked Lists

12. Recursion

13. Recursive

Backtracking

14. Searching, Simple Sorts

15. Stacks

16. Queues

17. Fast Sorting

18. Trees

19. Binary Search Trees

20. Graphs

21. Hash tables

22. Red-Black Trees

23. Huffman Code Trees

24. Heaps

25. Tries

26. Dynamic Programming

27. Functional Programming

Data Structures
simple definition:

– variables that store other

variables

We will learn a

toolbox full of

data structures …

… and how to

build them …

… and how to

use new ones.
CS314 Course Overview 8

Clicker Question 1

Which of the following is a data structure?

A. a method

B. a try / catch block

C. a double

D. an array

E. more than one of A - D

CS314 Course Overview 9

Resources

Class web site –

most course material

Class discussion

group – Piazza

Canvas -> Grades,

Program

Submissions, Access

Zoom Links,

Recorded Lectures,

Help Videos

Monday ->

Wednesday ->

Books

CS314 Course Overview 11Course Overview 11

• books are recommended, not required

• free alternatives on the web, see schedule

• BJP (CS312 book) strongly recommended

• Thinking Recursively in Java - recursion

CS314 Course Overview 12

Clicker Question 2

Which of these best describes you?

A. First year at UT and first year college student

B. First year at UT, transferring from another college

or university

C. Second year at UT

D. Third year at UT

E. Other

Graded Course Components
Syllabus Quiz, 10 points

Extra credit: Background survey 10 points

 Academic Integrity Quiz, 10 points (all correct or 0, multiple attempts)

 Section problems, 8 sections with problems, 4 points each. 4 * 8 = 32

Programming projects
– 11 projects, 20 points each, 220 points total

Exams: Outside of class
– Exam 1, Thursday 2/15, 6:45 – 9:15 pm, 250 points

– Exam 2, Thursday, 3/28, 6:45 - 9:15 pm, 250 points

– Exam 3, TBD, could be as late as 5/6, 250 points

 Course Instructor Evals 10 points

10 + 10 + 10 + 32 + 220 + 250 + 250 + 250 + 10 = 1042
 Non exam points capped at 250 pts

– 42 points of “slack” among those non exam components

No points added! Grades based on 1000 points, not 1042

 final points = min(250, sum of non exam)
+ e1 score + e2 score + e3 score

14

Grades and Performance
Final grade determined by final point total and a

900 – 800 – 700 – 600 scale

– plusses and minuses if within 25 points of cutoff:

A: 925 – 1000 A-: 900 – 924 B+: 875 – 899 B: 825 - 874

My CS314 Historical Grades

82% C- or higher:

– 28% A's, 34% B's, 20% C’s

8% D or F

10% Q or W (drop)

WORK LOAD EVALUATED AS HIGH (but not

EXCESSIVE) ON COURSE SURVEYS

Programming Assignments
Individual – do your own work (no copying

or use of LLMs / generative AIs)

Programs checked automatically with

plagiarism detection software (MOSS)

Turn in the right thing - correct name, correct

format or you will lose points / slip days

Graded on Correctness AND program hygiene

"Code is read more often than it is written."

- Guido Van Rossum, Creator of Python

Slip days: 8 for term, max 2 per assignment,

don’t use frivolously

16

Succeeding in the Course

Randy Pausch,
CS Professor at CMU said:

"When I got tenure a year
early at Virginia, other
Assistant Professors would come up to me and say, 'You
got tenure early!?!?! What's your secret?!?!?' and I
would tell them, 'Call me in my office at 10pm on Friday
night and I'll tell you.' "

 “A lot of people want a shortcut. I find the best
shortcut is the long way, which is basically two words:
work hard.”

Succeeding in the Course - Meta

“Be the first penguin”

– Ask questions!!!

– lecture, section, Ed Diss, lab hours

“It is impossible to be perfect”

– Mistakes are okay.

– That is how we learn.

– Trying to be perfect means not taking risks.

– no risks, no learning

“Find a Pack”

– Make friends.

– Study with them!
CS312 17

How to Get Help

Ed Discussion Post

Help Hours

Class examples

Examples from book

Discuss with other students at a high level

18

http://www.cs.utexas.edu/~scottm/cs314/labHours.htm

19

Succeeding in the Course - Concrete

Former student:

– "I really like the boot camp nature of

your course."
do the readings

start on assignments early

get help from the teaching staff when you get stuck on an
assignment

attend lecture and discussion sections

go to the extra study sessions

participate on the class discussion group

do extra problems - http://tinyurl.com/pnzp28f

study for tests using the old tests

study for tests in groups

ask questions and get help

http://tinyurl.com/pnzp28f

CS314 Course Overview 20

Software
Java - Oracle or OpenJDK, limit ourselves to Java 8

IDE such as IntelliJ or Eclipse

SSH into CS machines to test your programs

– CS department account

– SSH keys

– Ability to transfer files and login remotely

(WinSCP, Putty, Cyberduck, Filezilla, …)

A zip tool (create zip files to turn in)

Zoom, used occasionally

https://www.cs.utexas.edu/~slaberge/docs/lab_machines/

CS314 Course Overview 21

Clicker Question 3

Which computer programming language are

you most comfortable with?

A. Java

B. C or C++

C. Python

D. Javascript

E. Other

See: http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

and http://lang-index.sourceforge.net/

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://lang-index.sourceforge.net/

Topic Number 2

Efficiency – Complexity -

Algorithm Analysis

"bit twiddling: 1. (pejorative) An exercise in tuning

(see tune) in which incredible amounts of time and

effort go to produce little noticeable improvement,

often with the result that the code

becomes incomprehensible."

- The Hackers Dictionary, version 4.4.7

http://catb.org/~esr/jargon/html/T/tune.html

Clicker Question 1
“A program finds all the prime numbers

between 2 and 1,000,000,000 from scratch

in 0.37 seconds."

– Is this a fast solution?

A. no

B. yes

C. it depends

CS 314 Efficiency - Complexity 2

Efficiency

Computer Scientists don’t just write programs.

They also analyze them.

How efficient is a program?

– How much time does it take program to complete?

– How much memory does a program use?

– How do these change as the amount

of data changes?

– What is the difference between the average case

and worst case efficiency if any?

CS 314 Efficiency - Complexity 3

Technique
Informal approach for this class

– more formal techniques in theory classes, CS331

How many computations will this program

(method, algorithm) perform to get the answer?

Many simplifications

– view algorithms as Java programs

– determine by analysis the total number

executable statements (computations) in

program or method as a function of the amount

of data

– focus on the dominant term in the function

T(N) = 17.5N3 + 25N2 + 35N + 251 IS ORDER N3

Counting Statements
int x; // one statement

x = 12; // one statement

int y = z * x + 3 % 5 * x / i; // 1

x++; // one statement

boolean p = x < y && y % 2 == 0 ||

z >= y * x; // 1

int[] data = new int[100]; // 100

data[50] = x * x + y * y; // 1

CS 314 Efficiency - Complexity 5

CS 314 Efficiency - Complexity 6

Clicker 2
What is output by the following code?
int total = 0;

for (int i = 0; i < 13; i++)

for (int j = 0; j < 11; j++)

total += 2;

System.out.println(total);

A. 24

B. 120

C. 143

D. 286

E. 338

Clicker 3

What is output when method sample is called?

// pre: n >= 0, m >= 0

public static void sample(int n, int m) {

int total = 0;

for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)

total += 5;

System.out.println(total);

}

A. 5 D. nm

B. n * m E. (n * m)5

C. n * m * 5
CS 314 Efficiency - Complexity 7

CS 314 Efficiency - Complexity 8

Example

How many statements are executed by
method total as a function of

values.length

Let N = values.length

N is commonly used as a variable that denotes

the amount of data

public int total(int[] values) {

int result = 0;

for (int i = 0; i < values.length; i++)

result += values[i];

return result;

}

CS 314 Efficiency - Complexity 9

Counting Up Statements
int result = 0; 1

int i = 0; 1

i < values.length; N + 1

i++ N

result += values[i]; N

return total; 1

T(N) = 3N + 4

T(N) is the number of executable
statements in method total as function of

values.length

Another Simplification
When determining complexity of an

algorithm we want to simplify things

– ignore some details to make comparisons easier

Like assigning your grade for course

– At the end of CS314 your transcript won’t list all

the details of your performance in the course

– it won’t list scores on all assignments, quizzes,

and tests

– simply a letter grade, B- or A or D+

So we focus on the dominant term from the

function and ignore the coefficient
CS 314 Efficiency - Complexity 10

Big O
The most common method and notation for

discussing the execution time of algorithms is

Big O, also spoken Order

Big O is the asymptotic execution time

of the algorithm

– In other words, how does the running time of the

algorithm grow as a function of the amount of

input data?

Big O is an upper bounds

It is a mathematical tool

Hide a lot of unimportant details by assigning

a simple grade (function) to algorithms

CS 314 Efficiency - Complexity 12

Formal Definition of Big O
T(N) is O(F(N)) if there are positive

constants c and N0 such that T(N) < cF(N)

when N > N0

– N is the size of the data set the algorithm works on

– T(N) is a function that characterizes the actual

running time of the algorithm

– F(N) is a function that characterizes an upper

bounds on T(N). It is a limit on the running time of

the algorithm. (The typical Big functions table)

– c and N0 are constants

CS 314 Efficiency - Complexity 13

What it Means
T(N) is the actual growth rate of the

algorithm

– can be equated to the number of executable

statements in a program or chunk of code

F(N) is the function that bounds the growth

rate

– may be upper or lower bound

T(N) may not necessarily equal F(N)

– constants and lesser terms ignored because it is

a bounding function

CS 314 Efficiency - Complexity 14

Showing O(N) is Correct
Recall the formal definition of Big O

– T(N) is O(F(N)) if there are positive constants c

and N0 such that T(N) < cF(N) when N > N0

Recall method total, T(N) = 3N + 4

– show method total is O(N).

– F(N) is N

We need to choose constants c and N0

how about c = 4, N0 = 5 ?

CS 314 Efficiency - Complexity 15

horizontal axis: N, number of elements in data set

vertical axis: time for algorithm to complete. (simplified to

number of executable statements)

T(N), actual function of number of computations.

In this case 3N + 4

F(N), approximate function

of computations. In this case N

No = 5

c * F(N), in this case,

c = 4, c * F(N) = 4N

CS 314 Efficiency - Complexity 16

Typical Big O Functions – "Grades"

Function Common Name

N! factorial

2N Exponential

Nd, d > 3 Polynomial

N3 Cubic

N2 Quadratic

N N N Square root N

N log N N log N

N Linear

N Root - n

log N Logarithmic

1 Constant

Running

time grows

'slowly' with

more input.

Running

time grows

'quickly' with

more input.

Clicker 4
Which of the following is true?

Recall T(N)total = 3N + 4

A. Method total is O(N1/2)

B. Method total is O(N)

C. Method total is O(N2)

D. Two of A – C are correct

E. All of three of A – C are correct

CS 314 Efficiency - Complexity 17

Showing Order More Formally …
Show 10N2 + 15N is O(N2)

Break into terms.

10N2 < 10N2

15N < 15N2 for N > 1 (Now add)

10N2 + 15N < 10N2 + 15N2 for N > 1

10N2 + 15N < 25N2 for N > 1

c = 25, N0 = 1

Note, the choices for c and N0 are not unique.

CS 314 Efficiency - Complexity 18

CS 314 Efficiency - Complexity 19

Dealing with other methods
What do I do about method calls?
double sum = 0.0;

for (int i = 0; i < n; i++)

sum += Math.sqrt(i);

Long way

– go to that method or constructor and
count statements

Short way

– substitute the simplified Big O function for
that method.

– if Math.sqrt is constant time, O(1), simply count
sum += Math.sqrt(i); as one statement.

CS 314 Efficiency - Complexity 20

Dealing With Other Methods
public int foo(int[] data) {

int total = 0;

for (int i = 0; i < data.length; i++)

total += countDups(data[i], data);

return total;

}

// method countDups is O(N) where N is the

// length of the array it is passed

Clicker 5, What is the Big O of foo?

A. O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

Independent Loops
// from the Matrix class

public void scale(int factor) {

for (int r = 0; r < numRows(); r++)

for (int c = 0; c < numCols(); c++)

iCells[r][c] *= factor;

}

numRows() returns number of rows in the matrix iCells

numCols() returns number of columns in the matrix iCells

Assume iCells is an N by N square matrix.

Assume numRows and numCols are O(1)

What is the T(N)? Clicker 6, What is the Order?

A. O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

Bonus question. What if numRows is O(N)?

CS 314 Efficiency - Complexity 22

Just Count Loops, Right?

// Assume mat is a 2d array of booleans.

// Assume mat is square with N rows,

// and N columns.

public static void count(boolean[][] mat,

int row, int col) {

int numThings = 0;

for (int r = row - 1; r <= row + 1; r++)

for (int c = col - 1; c <= col + 1; c++)

if (mat[r][c])

numThings++;

Clicker 7, What is the order of the method count?

A. O(1) B. O(N0.5) C. O(N) D. O(N2) E. O(N3)

CS 314 Efficiency - Complexity 23

It is Not Just Counting Loops
// "Unroll" the loop of method count:

int numThings = 0;

if (mat[r-1][c-1]) numThings++;

if (mat[r-1][c]) numThings++;

if (mat[r-1][c+1]) numThings++;

if (mat[r][c-1]) numThings++;

if (mat[r][c]) numThings++;

if (mat[r][c+1]) numThings++;

if (mat[r+1][c-1]) numThings++;

if (mat[r+1][c]) numThings++;

if (mat[r+1][c+1]) numThings++;

Just Count Loops, Right?

Clicker 8, What is the order of method mystery?

A. O(1) B. O(N0.5) C. O(N) D. O(N2) E. O(N3)

private static void mystery(int[] data) {

stopIndex = data.length – 1;

int j = 1;

while (stopIndex > 0) {

if (data[j – 1] > data[j]) {

int t = data[j];

data[j] = data[j – 1];

data[j – 1] = t;

}

if (j == stopIndex) {

stopIndex--;

j = 1;

} else {

j++;

}

} N = data.length

CS 314 Efficiency - Complexity 25

Sidetrack, the logarithm
Thanks to Dr. Math

32 = 9

likewise log3 9 = 2

– "The log to the base 3 of 9 is 2."

The way to think about log is:

– "the log to the base x of y is the number you can
raise x to to get y."

– Say to yourself "The log is the exponent." (and say
it over and over until you believe it.)

– In CS we work with base 2 logs, a lot

 log2 32 = ? log2 8 = ? log2 1024 = ? log10 1000 = ?

The base of the log is typically not included as we can switch from

one base to another by multiplying by a constant factor.

26

When Do Logarithms Occur
Algorithms tend to have a logarithmic term when

they use a divide and conquer technique

the size of the data set keeps getting divided by 2
public int foo(int n) {

// pre n > 0

int total = 0;

while (n > 0) {

n = n / 2;

total++;

}

return total;

}

Clicker 9, What is the order of the above code?

A. O(1) B. O(logN) C. O(N)

D. O(Nlog N) E. O(N2)

CS 314 Efficiency - Complexity 27

Significant Improvement – Algorithm

with Smaller Big O function

Problem: Given an array of ints replace any

element equal to 0 with the maximum

positive value to the right of that element. (if

no positive value to the right, leave

unchanged.)

Given:
[0, 9, 0, 13, 0, 0, 7, 1, -1, 0, 1, 0]

Becomes:
[13, 9, 13, 13, 7, 7, 7, 1, -1, 1, 1, 0]

Replace Zeros – Typical Solution
public void replace0s(int[] data){

for(int i = 0; i < data.length; i++){

if (data[i] == 0) {

int max = 0;

for(int j = i+1; j<data.length; j++)

max = Math.max(max, data[j]);

data[i] = max;

}

}

}

Assume all values are zeros. (worst case)

Example of a dependent loops.
Clicker 10 - Number of times j < data.length evaluated?

A.O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

CS 314 Efficiency - Complexity 29

Replace Zeros – Alternate Solution
public void replace0s(int[] data){

int max =

Math.max(0, data[data.length – 1]);

int start = data.length – 2;

for (int i = start; i >= 0; i--) {

if (data[i] == 0)

data[i] = max;

else

max = Math.max(max, data[i]);

}

}

Clicker 11 - Big O of this approach?

A.O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

Clicker 12
Is O(N) really that much faster than O(N2)?

A. never

B. always

C. typically

Depends on the actual functions and the

value of N.

1000N + 250 compared to N2 + 10

When do we use mechanized computation?

N = 100,000

100,000,250 < 10,000,000,010 (108 < 1010)
30

CS 314 Efficiency - Complexity 31

A VERY Useful Proportion
Since F(N) is characterizes the running time

of an algorithm the following proportion

should hold true:

F(N0) / F(N1) ~= time0 / time1

An algorithm that is O(N2) takes 3 seconds

to run given 10,000 pieces of data.

– How long do you expect it to take when there are

30,000 pieces of data?

– common mistake

– logarithms?

CS 314 Efficiency - Complexity 32

Why Use Big O?
As we build data structures Big O is the tool we will

use to decide under what conditions one data
structure is better than another

Think about performance when there is a lot of
data.
– "It worked so well with small data sets..."

– Joel Spolsky, Schlemiel the painter's Algorithm

Lots of trade offs
– some data structures good for certain types of problems,

bad for other types

– often able to trade SPACE for TIME.

– Faster solution that uses more space

– Slower solution that uses less space

http://en.wikipedia.org/wiki/Schlemiel_the_painter's_Algorithm

CS 314 Efficiency - Complexity 33

Big O Space
Big O could be used to specify how much

space is needed for a particular algorithm

– in other words how many variables are needed

Often there is a time – space tradeoff

– can often take less time if willing to use more

memory

– can often use less memory if willing to take

longer

– truly beautiful solutions take less time and space

The biggest difference between time and space is

that you can't reuse time. - Merrick Furst

CS 314 Efficiency - Complexity 34

Quantifiers on Big O
It is often useful to discuss different cases for

an algorithm

Best Case: what is the best we can hope for?

– least interesting, but a good exercise

– Don't assume no data. Amount of date is still

variable, possibly quite large

Average Case (a.k.a. expected running time):

what usually happens with the algorithm?

Worst Case: what is the worst we can expect

of the algorithm?

– very interesting to compare this to the average case

CS 314 Efficiency - Complexity 35

Best, Average, Worst Case
To Determine the best, average, and worst

case Big O we must make assumptions
about the data set

Best case -> what are the properties of the data set
that will lead to the fewest number of executable
statements (steps in the algorithm)

Worst case -> what are the properties of the data
set that will lead to the largest number of
executable statements

Average case -> Usually this means assuming the
data is randomly distributed
– or if I ran the algorithm a large number of times with different sets of

data what would the average amount of work be for those runs?

CS 314 Efficiency - Complexity 36

public double minimum(double[] values) {

int n = values.length;

double minValue = values[0];

for (int i = 1; i < n; i++)

if (values[i] < minValue)

minValue = values[i];

return minValue;

}

Another Example

T(N)? F(N)? Big O? Best case? Worst Case?

Average Case?

If no other information, assume asking average case

CS 314 Efficiency - Complexity 37

Example of Dominance
Look at an extreme example. Assume the

actual number as a function of the amount of

data is:

N2/10000 + 2Nlog10 N+ 100000

Is it plausible to say the N2 term dominates

even though it is divided by 10000 and that

the algorithm is O(N2)?

What if we separate the equation into

(N2/10000) and (2N log10 N + 100000) and

graph the results.

CS 314 Efficiency - Complexity 38

Summing Execution Times

For large values of N the N2 term dominates so the
algorithm is O(N2)

When does it make sense to use a computer?

red line is
2Nlog10 N + 100000

blue line is
N2/10000

CS 314 Efficiency - Complexity 39

Comparing Grades
Assume we have a problem

Algorithm A solves the problem correctly and

is O(N2)

Algorithm B solves the same problem

correctly and is O(N log2N)

Which algorithm is faster?

One of the assumptions of Big O is that the

data set is large.

The "grades" should be accurate tools if this

holds true.

CS 314 Efficiency - Complexity 40

Running Times
Assume N = 100,000 and processor speed

is 1,000,000,000 operations per second

Function Running Time

2N 3.2 x 1030,086 years

N4 3171 years

N3 11.6 days

N2 10 seconds

N N 0.032 seconds

N log N 0.0017 seconds

N 0.0001 seconds

N 3.2 x 10-7 seconds

log N 1.2 x 10-8 seconds

CS 314 Efficiency - Complexity 41

Theory to Practice OR

Dykstra says: "Pictures are for the Weak."

1000 2000 4000 8000 16000 32000 64000 128K

O(N) 2.2x10-5 2.7x10-5 5.4x10-5 4.2x10-5 6.8x10-5 1.2x10-4 2.3x10-4 5.1x10-4

O(NlogN) 8.5x10-5 1.9x10-4 3.7x10-4 4.7x10-4 1.0x10-3 2.1x10-3 4.6x10-3 1.2x10-2

O(N3/2) 3.5x10-5 6.9x10-4 1.7x10-3 5.0x10-3 1.4x10-2 3.8x10-2 0.11 0.30

O(N2) ind. 3.4x10-3 1.4x10-3 4.4x10-3 0.22 0.86 3.45 13.79 (55)

O(N2)

dep.
1.8x10-3 7.1x10-3 2.7x10-2 0.11 0.43 1.73 6.90 (27.6)

O(N3) 3.40 27.26 (218)
(1745)

29 min.

(13,957)

233 min

(112k)

31 hrs

(896k)

10 days

(7.2m)

80 days

Times in Seconds. Red indicates predicated value.

CS 314 Efficiency - Complexity 42

Change between Data Points

1000 2000 4000 8000 16000 32000 64000 128K 256k 512k

O(N) - 1.21 2.02 0.78 1.62 1.76 1.89 2.24 2.11 1.62

O(NlogN) - 2.18 1.99 1.27 2.13 2.15 2.15 2.71 1.64 2.40

O(N3/2) - 1.98 2.48 2.87 2.79 2.76 2.85 2.79 2.82 2.81

O(N2) ind - 4.06 3.98 3.94 3.99 4.00 3.99 - - -

O(N2)

dep
- 4.00 3.82 3.97 4.00 4.01 3.98 - - -

O(N3) - 8.03 - - - - - - - -

Value obtained by Timex / Timex-1

CS 314 Efficiency - Complexity 43

Okay, Pictures

Results on a 2GhZ laptop

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5000 10000 15000 20000 25000 30000 35000

Value of N

T
im

e

N

NlogN

NsqrtN

N^2

N^2

CS 314 Efficiency - Complexity 44

Put a Cap on Time

Results on a 2GhZ laptop

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 5000 10000 15000 20000 25000 30000 35000

Value of N

T
im

e

N

NlogN

NsqrtN

N^2

N^2

CS 314 Efficiency - Complexity 45

No O(N^2) Data

Results on a 2GhZ laptop

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 100000 200000 300000 400000 500000 600000

Value of N

T
im

e N

NlogN

NsqrtN

CS 314 Efficiency - Complexity 46

Just O(N) and O(NlogN)

Results on a 2GhZ laptop

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 100000 200000 300000 400000 500000 600000

Value of N

T
im

e N

NlogN

CS 314 Efficiency - Complexity 47

Just O(N)

N

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

0 100000 200000 300000 400000 500000 600000

N

CS 314 Efficiency - Complexity 48

109 instructions/sec, runtimes
N O(log N) O(N) O(N log N) O(N2)

10 0.000000003 0.00000001 0.000000033 0.0000001

100 0.000000007 0.00000010 0.000000664 0.0001000

1,000 0.000000010 0.00000100 0.000010000 0.001

10,000 0.000000013 0.00001000 0.000132900 0.1 min

100,000 0.000000017 0.00010000 0.001661000 10 seconds

1,000,000 0.000000020 0.001 0.0199 16.7 minutes

1,000,000,000 0.000000030 1.0 second 30 seconds 31.7 years

CS 314 Efficiency - Complexity 49

Formal Definition of Big O (repeated)

T(N) is O(F(N)) if there are positive

constants c and N0 such that T(N) < cF(N)

when N > N0

– N is the size of the data set the algorithm works on

– T(N) is a function that characterizes the actual

running time of the algorithm

– F(N) is a function that characterizes an upper

bounds on T(N). It is a limit on the running time of

the algorithm

– c and N0 are constants

CS 314 Efficiency - Complexity 50

More on the Formal Definition

There is a point N0 such that for all values of N that

are past this point, T(N) is bounded by some

multiple of F(N)

Thus if T(N) of the algorithm is O(N^2) then,

ignoring constants, at some point we can bound the

running time by a quadratic function.

given a linear algorithm it is technically correct to

say the running time is O(N ^ 2). O(N) is a more

precise answer as to the Big O of the linear

algorithm

– thus the caveat “pick the most restrictive function” in Big

O type questions.

CS 314 Efficiency - Complexity 51

What it All Means
T(N) is the actual growth rate of the

algorithm

– can be equated to the number of executable

statements in a program or chunk of code

F(N) is the function that bounds the growth

rate

– may be upper or lower bound

T(N) may not necessarily equal F(N)

– constants and lesser terms ignored because it is

a bounding function

CS 314 Efficiency - Complexity 52

Other Algorithmic Analysis Tools
Big Omega T(N) is (F(N)) if there are

positive constants c and N0 such that

T(N) > cF(N)) when N > N0

– Big O is similar to less than or equal, an upper

bounds

– Big Omega is similar to greater than or equal, a

lower bound

Big Theta T(N) is (F(N)) if and only if T(N)

is O(F(N))and T(N) is (F(N)).

– Big Theta is similar to equals

CS 314 Efficiency - Complexity 53

Relative Rates of Growth
Analysis

Type

Mathematical

Expression

Relative

Rates of

Growth

Big O T(N) = O(F(N)) T(N) < F(N)

Big  T(N) = (F(N)) T(N) > F(N)

Big  T(N) = (F(N)) T(N) = F(N)

"In spite of the additional precision offered by Big Theta,

Big O is more commonly used, except by researchers

in the algorithms analysis field" - Mark Weiss

Topic 3
Encapsulation - Implementing Classes

“And so, from Europe, we get things such
as ... object-oriented analysis and design
(a clever way of breaking up software
programming instructions and data into
small, reusable objects, based on certain
abstraction principles and design
hierarchies.)”

-Michael A. Cusumano,
The Business Of Software

Object Oriented Programming
Creating large programs that work turns out

to be very difficult

– DIA Automated baggage handling system

– Ariane 5 Flight 501

– More

Object oriented programming is one way of

managing the complexity of programming

and software projects

Break up big problems into smaller, more

manageable problems

CS 314 Encapsulation - Implementing Classes 2

http://www.nytimes.com/2005/08/26/world/americas/26iht-denver.html
http://homepages.inf.ed.ac.uk/perdita/Book/ariane5rep.html
http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=2

CS 314 Encapsulation - Implementing Classes 3

Object Oriented Programming
"Object-oriented programming is a method of

programming based on a hierarchy of classes, and

well-defined and cooperating objects. "

What is a class?

"A class is a structure that defines the data and the

methods to work on that data. When you write

programs in the Java language, all program data is

wrapped in a class, whether it is a class you write

or a class you use from the Java platform API

libraries."

– a new data type

Object Oriented Programming
In other words break the problem up based

on the things / data types that are part of the

problem

Not the only way

One of many different kinds of strategies or

paradigms for software development

– functional, procedural, event driven, data flow,

formal methods, agile or extreme, ...

In 314 we will do a lot of object based

programming

CS 314 Encapsulation - Implementing Classes 4

CS 314 Encapsulation - Implementing Classes 5

Example - Monopoly
If we had to start

from scratch what

classes would we

need to create?

CS 314 Encapsulation - Implementing Classes 6

Encapsulation
One of the features of object oriented

languages

Allows programmers to define

new data types

Hide the data of an object (variable)

Group operations and data together into a

new data type

Usually easier to use something than

understand exactly how it works

– microwave, car, computer, software, mp3 player

Data Structures
A data structure is a variable that stores

other variables. (overly simplified definition)

– aka Collection, Container

May be ordered or unordered (from client’s

perspective)

– Order a first element, second element,…

– Lists are ordered, sets are typically unordered

May allow duplicate values or not

– Lists allow duplicates, sets typically do not

CS 314 Encapsulation - Implementing Classes 7

The IntList Class
We will develop a class that models a list of ints

– initially a pale imitation of the Java ArrayList class

Improvement on an array of ints

– resize automatically

– insert easily

– remove easily

A list - our first data structure

– a variable that stores other variables

Lists maintain elements in a definite order and

duplicates are allowed
0 1 2 3 4 <- indices / positions

[5, 12, 5, 17, -5] <- elements

CS 314 Encapsulation - Implementing Classes 8

CS 314 Encapsulation - Implementing Classes 9

Clicker 1

Our IntList class has an array of ints instance

variable (int[] container). What should the

length of this internal array be?

A. less than or equal to the size of the list

B. greater than or equal to the size of the list

C. equal to the size of the list

D. some fixed amount that never changes

E. 0

Array length less than

the number of elements

in the list?!?

What if most elements are all

the same value? Only store the

elements (and their position) not

equal to the default? Sparse List 10

CS 314 Encapsulation - Implementing Classes 11

Clicker 2

When adding a new element to a list,

where should the new element be

added by default?

A. The beginning

B. The end

C. The middle

D. A random location

E. Don’t bother to actually add

CS 314 Encapsulation - Implementing Classes 12

IntList Design
Create a new, empty IntList

new IntList -> []

The above is not code. It is a notation that shows
what the results of operations. [] is an empty list.

add to a list.

[].add(1) -> [1]

[1].add(5) -> [1, 5]

[1, 5].add(4) -> [1, 5, 4]

elements in a list have a definite order and a

position.

– zero based position or 1 based positioning?

CS 314 Encapsulation - Implementing Classes 13

0 1 2

[42, 12, 37]

Abstract view of

list of integers

The wall of

abstraction.

IntList aList = new IntList();

aList.add(42);

aList.add(12);

aList.add(37); aList

IntList

size

con

3

42 12 37 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

CS 314 Encapsulation - Implementing Classes 14

Instance Variables
Internal data

– also called instance variables because every
instance (object) of this class has its own copy of
these

– something to store the elements of the list

– size of internal storage container?

– if not what else is needed

Must be clear on the difference between the
internal data of an IntList object and the
IntList that is being represented

Why make internal data private?

CS 314 Encapsulation - Implementing Classes 15

Constructors
For initialization of objects

IntList constructors

– default

– initial capacity?

redirecting to another constructor

this(10);

class constants

– what static means

CS 314 Encapsulation - Implementing Classes 16

Default add method
where to add?

what if not enough space?

[].add(3) -> [3]

[3].add(5) -> [3, 5]

[3, 5].add(3) -> [3, 5, 3]

Testing, testing, testing!

– a toString method would be useful

The IntList Class
instance variables

constructors

– default

– initial capacity

• preconditions, exceptions, postconditions, assert

– meaning of static

add method

get method

size method

CS 314 Encapsulation - Implementing Classes 17

CS 314 Encapsulation - Implementing Classes 18

toString method
return a Java String of list

empty list -> []

one element -> [12]

multiple elements -> [12, 0, 5, 4]

Clicker 3 - Timing Experiment
Add N elements to an initially empty IntList then call

toString. Time both events. How does the time to add

compare to the time to complete toString?

IntList list = new IntList();

for (int i = 0; i < N; i++)

list.add(i); // resize, cap * 2

String s = list.toString();

A. time to add << time for toString()

B. time to add < time for toString()

C. time to add ~= time for toString()

D. time to add > time for toString()

E. time to add >> time for toString()

The IntList Class
testing!!!

toString

– “beware the performance of String

concatenation” – Joshua Bloch

insert method (int pos, int value)

remove method(int pos)

insertAll method
(int pos, IntList other)

– queens and kings of all the IntLists!!!

CS 314 Encapsulation - Implementing Classes 20

CS 314 Encapsulation - Implementing Classes 21

Clicker Question 4

What is output by the following code?
IntList list

list = new IntList(25);

System.out.println(list.size());

A. 25

B. 0

C. -1

D. unknown

E. No output due to runtime error.

CS 314 Encapsulation - Implementing Classes 22

get and size methods
get

– access element from list

– preconditions?

[3, 5, 2].get(0) returns 3

[3, 5, 2].get(1) returns 5

size

– number of elements in the list

– Do not confuse with the capacity of the internal
storage container

– The array is not the list!

[4, 5, 2].size() returns 3

CS 314 Encapsulation - Implementing Classes 23

insert method
add at someplace besides the end

[3, 5].insert(1, 4) -> [3, 4, 5]

[3, 4, 5].insert(0, 4) -> [4, 3, 4, 5]

preconditions?

overload add?

chance for internal loose coupling

where what

CS 314 Encapsulation - Implementing Classes 24

Clicker 5
What is output by the following code?
IntList list = new IntList();
list.add(3);
list.insert(0, 4); // position, value
list.insert(1, 1);
list.add(5);
list.insert(2, 9);
System.out.println(list);

A. [4, 1, 3, 9, 5]

B. [3, 4, 1, 5, 9]

C. [4, 1, 9, 3, 5]

D. [3, 1, 4, 9, 5]

E. Something else

CS 314 Encapsulation - Implementing Classes 25

remove method
remove an element from the list based on

location

[3, 4, 5].remove(0) -> [4, 5]

[3, 5, 6, 1, 2].remove(2) ->

[3, 5, 1, 2]

preconditions?

return value?

– accessor methods, mutator methods, and

mutator methods that return a value

CS 314 Encapsulation - Implementing Classes 26

Clicker Question 6

What is output by the following code?
IntList list = new IntList();

list.add(12);

list.add(15);

list.add(12);

list.add(17);

list.remove(1);

System.out.println(list);

A. [15, 17]

B. [12, 17]

C. [12, 0, 12, 17]

D. [12, 12, 17]

E. [15, 12, 17]

CS 314 Encapsulation - Implementing Classes 27

insertAll method
add all elements of one list to another

starting at a specified location

[5, 3, 7].insertAll(2, [2, 3]) ->

[5, 3, 2, 3, 7]

The parameter [2, 3] would be unchanged.

Working with other objects of the same type

– this?

– where is private private?

– loose coupling vs. performance

– queens and kings of all the IntLists!!!

Clicker 7 - InsertAll First Version
What is the order of the first version of

InsertAll? Assume both lists have N elements

and that the insert position is halfway through

the calling list.

A. O(1)

B. O(logN)

C. O(N0.5)

D. O(N)

E. O(N2)

CS 314 Encapsulation - Implementing Classes 28

Class Design and Implementation –

Another Example

This example will not be covered

in class.

CS 314 Encapsulation - Implementing Classes 30

The Die Class
Consider a class used

to model a die

What is the interface? What

actions should a die be able

to perform?

The methods or behaviors can be broken up

into constructors, mutators, accessors

CS 314 Encapsulation - Implementing Classes 31

The Die Class Interface

Constructors (used in creation of objects)

– default, single int parameter to specify the

number of sides, int and boolean to determine if

should roll

Mutators (change state of objects)

– roll

Accessors (do not change state of objects)

– getResult, getNumSides, toString

Public constants

– DEFAULT_SIDES

CS 314 Encapsulation - Implementing Classes 32

Visibility Modifiers
All parts of a class have visibility modifiers

– Java keywords

– public, protected, private, (no modifier means package
access)

– do not use these modifiers on local variables (syntax error)

public means that constructor, method, or field may
be accessed outside of the class.
– part of the interface

– constructors and methods are generally public

private means that part of the class is hidden and
inaccessible by code outside of the class
– part of the implementation

– data fields are generally private

CS 314 Encapsulation - Implementing Classes 33

The Die Class Implementation
Implementation is made up of constructor code,

method code, and private data members of the
class.

scope of data members / instance variables
– private data members may be used in any of the

constructors or methods of a class

Implementation is hidden from users of a class and
can be changed without changing the interface or
affecting clients (other classes that use this class)
– Example: Previous version of Die class,

DieVersion1.java

Once Die class completed can be used in anything
requiring a Die or situation requiring random
numbers between 1 and N
– DieTester class. What does it do?

CS 314 Encapsulation - Implementing Classes 34

DieTester method

public static void main(String[] args) {

final int NUM_ROLLS = 50;

final int TEN_SIDED = 10;

Die d1 = new Die();

Die d2 = new Die();

Die d3 = new Die(TEN_SIDED);

final int MAX_ROLL = d1.getNumSides() +

d2.getNumSides() + d3.getNumSides();

for(int i = 0; i < NUM_ROLLS; i++)

{ d1.roll();

d2.roll();

System.out.println("d1: " + d1.getResult()

+ " d2: " + d2.getResult() + " Total: "

+ (d1.getResult() + d2.getResult()));

}

CS 314 Encapsulation - Implementing Classes 35

DieTester continued

int total = 0;

int numRolls = 0;

do

{ d1.roll();

d2.roll();

d3.roll();

total = d1.getResult() + d2.getResult()

+ d3.getResult();

numRolls++;

}

while(total != MAX_ROLL);

System.out.println("\n\nNumber of rolls to get "

+ MAX_ROLL + " was " + numRolls);

CS 314 Encapsulation - Implementing Classes 36

Correctness Sidetrack
When creating the public interface of a class give

careful thought and consideration to the contract
you are creating between yourself and users (other
programmers) of your class

Use preconditions to state what you assume to be
true before a method is called
– caller of the method is responsible for making sure these

are true

Use postconditions to state what you guarantee to
be true after the method is done if the preconditions
are met
– implementer of the method is responsible for making

sure these are true

CS 314 Encapsulation - Implementing Classes 37

Precondition and

Postcondition Example
/* pre: numSides > 1

post: getResult() = 1, getNumSides() = sides

*/

public Die(int numSides)

{ assert (numSides > 1) : “Violation of precondition: Die(int)”;

iMyNumSides = numSides;

iMyResult = 1;

assert getResult() == 1 && getNumSides() == numSides;

}

CS 314 Encapsulation - Implementing Classes 38

Object Behavior - Instantiation
Consider the DieTester class

Die d1 = new Die();

Die d2 = new Die();

Die d3 = new Die(10);

When the new operator is invoked control is

transferred to the Die class and the specified

constructor is executed, based on parameter matching

Space(memory) is set aside for the new object's fields

The memory address of the new object is passed

back and stored in the object variable (pointer)

After creating the object, methods may be called on it.

CS 314 Encapsulation - Implementing Classes 39

Creating Dice Objects

a Die object

iMySides iMyResult

6 1

a Die object

iMySides iMyResult

6 1

a Die object

iMySides iMyResult

10 1

d1

memory

address

d2

memory

address

d3

memory

address

DieTester class. Sees

interface of Die class
Die class.

Sees

implementation.

(of Die class.)

CS 314 Encapsulation - Implementing Classes 40

Objects
Every Die object created has its own

instance of the variables declared in the
class blueprint

private int iMySides;

private int iMyResult;

thus the term instance variable

the instance vars are part of the hidden
implementation and may be of any data type

– unless they are public, which is almost always a
bad idea if you follow the tenets of information
hiding and encapsulation

CS 314 Encapsulation - Implementing Classes 41

Complex Objects
What if one of the instance variables is itself

an object?

add to the Die class
private String myName;

a Die object

iMySides iMyResult

6 1

d1

memory

address

myName

memory

address

a String object

implementation
details not shown

d1 can hold the memory address
of a Die object. The instance variable
myName inside a Die object can hold
the memory address of a String object

CS 314 Encapsulation - Implementing Classes 42

The Implicit Parameter
Consider this code from the Die class
public void roll()

{ iMyResult =

ourRandomNumGen.nextInt(iMySides) + 1;

}

Taken in isolation this code is rather confusing.

what is this iMyResult thing?

– It's not a parameter or local variable

– why does it exist?

– it belongs to the Die object that called this method

– if there are numerous Die objects in existence

– Which one is used depends on which object called

the method.

CS 314 Encapsulation - Implementing Classes 43

The this Keyword

When a method is called it may be necessary

for the calling object to be able to refer to itself

– most likely so it can pass itself somewhere as a

parameter

when an object calls a method an implicit

reference is assigned to the calling object

the name of this implicit reference is this

this is a reference to the current calling object

and may be used as an object variable (may not

declare it)

CS 314 Encapsulation - Implementing Classes 44

this Visually
// in some class other than Die

Die d3 = new Die();

d3.roll();

// in the Die class

public void roll()

{ iMyResult =

ourRandomNumGen.nextInt(iMySides) + 1;

/* OR

this.iMyResult…

*/

}

a Die object

iMySides iMyResult

6 1

d3

memory

address

this

memory

address

CS 314 Encapsulation - Implementing Classes 45

An equals method

working with objects of the same type in a

class can be confusing

write an equals method for the Die class.

assume every Die has a myName instance

variable as well as iMyNumber and iMySides

CS 314 Encapsulation - Implementing Classes 46

A Possible Equals Method
public boolean equals(Object otherObject)

{ Die other = (Die)otherObject;

return iMySides == other.iMySides

&& iMyResult== other.iMyResult

&& myName.equals(other.myName);

}

Declared Type of Parameter is Object not Die

override (replace) the equals method instead of
overload (present an alternate version)
– easier to create generic code

we will see the equals method is inherited from
the Object class

access to another object's private instance
variables?

CS 314 Encapsulation - Implementing Classes 47

Another equals Methods

public boolean equals(Object otherObject)

{ // dangerous! Not checking for null or type.

Die other = (Die)otherObject;

return this.iMySides == other.iMySides

&& this.iMyNumber == other.iMyNumber

&& this.myName.equals(other.myName);

}

Using the this keyword / reference to access the implicit parameters

instance variables is unnecessary.

If a method within the same class is called within a method, the

original calling object is still the calling object

CS 314 Encapsulation - Implementing Classes 48

A "Perfect" Equals Method
From Cay Horstmann's Core Java
public boolean equals(Object otherObject)

{ // check if objects identical

if(this == otherObject)

return true;

// must return false if explicit parameter null

if(otherObject == null)

return false;

// if objects not of same type they cannot be equal

if(getClass() != otherObject.getClass())

return false;

// we know otherObject is a non null Die

Die other = (Die)otherObject;

return iMySides == other.iMySides

&& iMyNumber == other.iMyNumber

&& myName.equals(other.myName);

}

CS 314 Encapsulation - Implementing Classes 49

the instanceof Operator
instanceof is a Java keyword.

part of a boolean statement

public boolean equals(Object otherObj)

{ if otherObj instanceof Die

{ //now go and cast

// rest of equals method

}

}

Should not use instanceof in equals methods.

instanceof has its uses but not in equals

because of the contract of the equals method

CS 314 Encapsulation - Implementing Classes 50

Class Variables and Class Methods

Sometimes every object of a class does not
need its own copy of a variable or constant

The keyword static is used to specify
class variables, constants, and methods
private static Random ourRandNumGen

= new Random();

public static final int DEFAULT_SIDES = 6;

The most prevalent use of static is for class
constants.

– if the value can't be changed why should every
object have a copy of this non changing value

CS 314 Encapsulation - Implementing Classes 51

Class Variables and Constants

the Die class

DEFAULT_SIDES

6

ourRandNumGen

memory

address

a Random object

implementation
details not shown

All objects of type Die have

access to the class variables

and constants.

A public class variable or constant

may be referred to via the class name.

CS 314 Encapsulation - Implementing Classes 52

Syntax for Accessing Class Variables
public class UseDieStatic

{ public static void main(String[] args)

{ System.out.println("Die.DEFAULT_SIDES "

+ Die.DEFAULT_SIDES);

// Any attempt to access Die.ourRandNumGen

// would generate a syntax error

Die d1 = new Die(10);

System.out.println("Die.DEFAULT_SIDES "

+ Die.DEFAULT_SIDES);

System.out.println("d1.DEFAULT_SIDES "

+ d1.DEFAULT_SIDES);

// regardless of the number of Die objects in

// existence, there is only one copy of DEFAULT_SIDES

// in the Die class

} // end of main method

} // end of UseDieStatic class

CS 314 Encapsulation - Implementing Classes 53

Static Methods

static has a somewhat different
meaning when used in a method
declaration

static methods may not manipulate any
instance variables

in non static methods, some object
invokes the method

d3.roll();

the object that makes the method call is
an implicit parameter to the method

CS 314 Encapsulation - Implementing Classes 54

Static Methods Continued

Since there is no implicit object parameter
sent to the static method it does not have
access to a copy of any objects instance
variables

– unless of course that object is sent as an
explicit parameter

Static methods are normally utility methods
or used to manipulate static variables
(class variables)

The Math and System classes are nothing
but static methods

CS 314 Encapsulation - Implementing Classes 55

static and this
Why does this work (added to Die class)

but this doesn't?
public class StaticThis

{

public static void main(String[] args)

{ System.out.println(this);

}

}

public class Die

{

public void outputSelf()

{ System.out.println(this);

}

}

1

Topic 4

Inheritance

"Question: What is the object oriented way of

getting rich?

Answer: Inheritance.“

CS 314 Inheritance 2

Features of OO Programming

Encapsulation

– abstraction, creating new data types

– information hiding

– breaking problem up based on data types

Inheritance

– code reuse

– specialization

– "New code using old code."

Encapsulation
Create a program to allow people to play the

game Monopoly

– Create classes for money, dice, players, the

bank, the board, chance cards, community chest

cards, pieces, etc.

Some classes use other classes. Are clients

– the board consists of spaces

– a player has properties they own

– a piece has a position

Also referred to as composition

CS 314 Inheritance 3

Inheritance
Another kind of relationship exists between

things in the world and data types in programs

There are properties in Monopoly

– a street is a kind of property

– a railroad is a kind of property

– a utility is a kind of property

CS 314 Inheritance 4

Inheritance
In Monopoly there is the concept of a

Property

All properties have some common traits

– they have a name

– they have a position on the board

– they can be owned by players

– they have a purchase price

But some things are different for each of the

three kinds of property

– How to determine rent when another player

lands on the Property
CS 314 Inheritance 5

What to Do?
If we have a separate class for Street,

Railroad, and Utility there is going to be a lot

of code copied

– hard to maintain

– an anti-pattern

Inheritance is a programming feature to

allow data types to build on pre-existing data

types without repeating code

CS 314 Inheritance 6

Mechanics of Inheritance

CS 314 Inheritance 7

1. extends keyword

2. inheritance of instance methods

3. inheritance of instance variables

4. object initialization and constructors

5. calling a parent constructor with super()

6. overriding methods

7. partial overriding, super.parentMethod()

8. inheritance requirement in Java

9. the Object class

10. inheritance hierarchies

CS 314 Inheritance 8

Inheritance in Java
 Java is designed to encourage object

oriented programming

 all classes, except one, must inherit from
exactly one other class

 The Object class is the cosmic super class

– The Object class does not inherit from any other class

– The Object class has several important methods:
toString, equals, hashCode, clone, getClass

 implications:
– all classes are descendants of Object

– all classes and thus all objects have a toString,
equals, hashCode, clone, and getClass method
• toString, equals, hashCode, clone normally overridden

CS 314 Inheritance 9

Nomenclature of Inheritance
In Java the extends keyword is used in the

class header to specify which preexisting class
a new class is inheriting from
public class Student extends Person

Person is said to be
– the parent class of Student

– the super class of Student

– the base class of Student

– an ancestor of Student

Student is said to be
– a child class of Person

– a sub class of Person

– a derived class of Person

– a descendant of Person

CS 314 Inheritance 10

Clicker 1
What is the primary reason for using

inheritance when programming?

A. To make a program more complicated

B. To copy and paste code between classes

C. To reuse pre-existing code

D. To hide implementation details of a class

E. To ensure pre conditions of methods are met.

11

Clicker 2
What is output when the main method is run?
public class Foo {

public static void main(String[] args) {

Foo f1 = new Foo();

System.out.println(f1.toString());

}

}

A. 0

B. null

C. Unknown until code is actually run.

D. No output due to a syntax error.

E. No output due to a runtime error.

CS 314 Inheritance 12

Overriding methods

any method that is not final may be

overridden by a descendant class

same signature as method in ancestor

may not reduce visibility

may use the original method if simply want to

add more behavior to existing

– super.originalMethod()

CS 314 Inheritance 13

Constructors
Constructors handle initialization of objects

When creating an object with one or more ancestors (every

type except Object) a chain of constructor calls takes place

The reserved word super may be used in a constructor to

call a one of the parent's constructors

– must be first line of constructor

 if no parent constructor is explicitly called the default, 0

parameter constructor of the parent is called

– if no default constructor exists a syntax error results

 If a parent constructor is called another constructor in the

same class may no be called

– no super();this(); allowed. One or the other, not both

– good place for an initialization method

CS 314 Inheritance 14

The Keyword super
super is used to access something (any protected or

public field or method) from the super class that has

been overridden

Rectangle's toString makes use of the toString in

ClosedShape my calling super.toString()

without the super calling toString would result in

infinite recursive calls

Java does not allow nested supers
super.super.toString()

results in a syntax error even though technically this

refers to a valid method, Object's toString

Rectangle partially overrides ClosedShapes toString

Creating a SortedIntList

- A Cautionary Tale

of Inheritance

CS 314 Inheritance 16

A New Class
Assume we want to have a list of ints, but

that the ints must always be maintained in

ascending order

[-7, 12, 37, 212, 212, 313, 313, 500]

sortedList.get(0) returns the min

sortedList.get(list.size() – 1)

returns the max

CS 314 Inheritance 17

Implementing SortedIntList

Do we have to write a whole new class?

Assume we have an IntList class.

Clicker 3 - Which of the following methods

have to be changed?

A. add(int value)

B. int get(int location)

C. String toString()

D. int remove(int location)

E. More than one of A – D.

CS 314 Inheritance 18

Overriding the add Method

First attempt

Problem?

solving with insert method

– double edged sort

solving with protected

– What protected really means

Clicker 4
public class IntList {

private int size

private int[] con

}

public class SortedIntList extends IntList {

public SortedIntList() {

System.out.println(size); // Output?

}

}

A. 0

B. null

C. unknown until code is run

D. no output due to a compile error

E. no output due to a runtime error 19

CS 314 Inheritance 20

Problems
What about this method?

void insert(int location, int val)

What about this method?

void insertAll(int location,

IntList otherList)

SortedIntList is not a good application

of inheritance given all the behaviors
IntList provides.

More Example Code

ClosedShape and Rectangle classes

CS 314 Inheritance 21

Simple Code Example
Create a class named Shape

– what class does Shape inherit from

– what methods can we call on Shape objects?

– add instance variables for a position

– override the toString method

Create a Circle class that extends Shape

– add instance variable for radius

– debug and look at contents

– try to access instance var from Shape

– constructor calls

– use of key word super

CS 314 Inheritance 22

CS 314 Inheritance 23

Shape Classes
Declare a class called ClosedShape

– assume all shapes have x and y coordinates

– override Object's version of toString

Possible sub classes of ClosedShape

– Rectangle

– Circle

– Ellipse

– Square

Possible hierarchy

ClosedShape <- Rectangle <- Square

CS 314 Inheritance 24

A ClosedShape class
public class ClosedShape {

private double myX;

private double myY;

public ClosedShape() {

this(0,0);

}

public ClosedShape (double x, double y) {

myX = x;

myY = y;

}

public String toString() {

return "x: " + getX() + " y: " + getY(); }

public double getX(){ return myX; }

public double getY(){ return myY; }

}

// Other methods not shown

CS 314 Inheritance 25

A Rectangle Constructor
public class Rectangle extends ClosedShape {

private double myWidth;

private double myHeight;

public Rectangle(double x, double y,

double width, double height) {

super(x,y);

// calls the 2 double constructor in

// ClosedShape

myWidth = width;

myHeight = height;

}

// other methods not shown

}

CS 314 Inheritance 26

A Rectangle Class
public class Rectangle extends ClosedShape {

private double myWidth;

private double myHeight;

public Rectangle() {

this(0, 0);

}

public Rectangle(double width, double height) {

myWidth = width;

myHeight = height;

}

public Rectangle(double x, double y,

double width, double height) {

super(x, y);

myWidth = width;

myHeight = height;

}

public String toString() {

return super.toString() + " width " + myWidth

+ " height " + myHeight;

}

}

CS 314 Inheritance 27

Initialization method
public class Rectangle extends ClosedShape {

private double myWidth;

private double myHeight;

public Rectangle() {

init(0, 0);

}

public Rectangle(double width, double height) {

init(width, height);

}

public Rectangle(double x, double y,

double width, double height) {

super(x, y);

init(width, height);

}

private void init(double width, double height) {

myWidth = width;

myHeight = height;

}

CS 314 Inheritance 28

Result of Inheritance
Do any of these cause a syntax error?

What is the output?
Rectangle r = new Rectangle(1, 2, 3, 4);
ClosedShape s = new CloseShape(2, 3);
System.out.println(s.getX());
System.out.println(s.getY());

System.out.println(s.toString());

System.out.println(r.getX());

System.out.println(r.getY());

System.out.println(r.toString());
System.out.println(r.getWidth());

CS 314 Inheritance 29

The Real Picture

Fields from ClosedShape class

Instance Variables declared in

ClosedShape

Fields from Object class

Instance variables

declared in Object

A

Rectangle

object

Available

methods

are all methods

from Object,

ClosedShape,

and Rectangle

Fields from Rectangle class

Instance Variables declared in

Rectangle

CS 314 Inheritance 30

Access Modifiers and

Inheritance
public

– accessible to all classes

private
– accessible only within that class. Hidden from all sub

classes.

protected
– accessible by classes within the same package and all

descendant classes

Instance variables are typically private

protected methods are used to allow descendant
classes to modify instance variables in ways other
classes can't

CS 314 Inheritance 31

Why private Vars and not protected?

In general it is good practice to make

instance variables private

– hide them from your descendants

– if you think descendants will need to access

them or modify them provide protected methods

to do this

Why?

Consider the following example

CS 314 Inheritance 32

Required update
public class GamePiece {

private Board myBoard;

private Position myPos;

// whenever my position changes I must

// update the board so it knows about the change

protected void alterPos(Position newPos) {

Position oldPos = myPos;

myPos = newPos;

myBoard.update(oldPos, myPos);

}

1

Topic 5

Polymorphism

"“Inheritance is new code that reuses old code.

Polymorphism is old code that reuses new code.”

- OOP Koan

https://en.wikipedia.org/wiki/Koan

CS314 Polymorphism 2

Polymorphism
Another feature of OOP

literally “having many forms”

object variables in Java are polymorphic

object variables can refer to objects of their
declared type AND any objects that are
descendants of the declared type

Property p = new Property();

p = new Railroad(); // legal!

p = new Utility(); //legal!

p = new Street();

Object obj1; // = what?

CS314 Polymorphism 3

Data Type
object variables have:

– a declared type. Also called the static type.

– a dynamic type. What is the actual type of the
pointee at run time or when a particular
statement is executed.

Method calls are syntactically legal if the
method is in the declared type or any
ancestor of the declared type

The actual method that is executed at
runtime is based on the dynamic type

– dynamic dispatch

CS314 Polymorphism 4

Clicker Question 1
Consider the following class declarations:

public class BoardSpace

public class Property extends BoardSpace

public class Street extends Property

public class Railroad extends Property

Which of the following statements would cause a syntax
error? (Assume all classes have a zero argument
constructor.)

A. Object obj = new Railroad();

B. Street s = new BoardSpace();

C. BoardSpace b = new Street();

D. Railroad r = new Street();

E. More than one of these

CS314 Polymorphism 5

Method LookUp
To determine if a method is legal the compiler looks in the

class of the declared type
– if it finds it great, if not go to the super class and look there

– continue until the method is found, or the Object class is reached
and the method was never found. (Compile error)

To determine which method is actually executed the run
time system (abstractly):
– starts with the actual run time class of the object that is calling the

method

– search the class for that method

– if found, execute it, otherwise go to the super class and keep looking

– repeat until a version is found

 Is it possible the runtime system won’t find a method?

CS314 Polymorphism 6

Clicker Question 2
What is output by the
code to the right when
run?

A. !!live

B. !eggegg

C. !egglive

D. !!!

E. Something else

public class Animal {

public String bt(){ return "!"; }

}

public class Mammal extends Animal {

public String bt(){ return "live"; }

}

public class Platypus extends Mammal {

public String bt(){ return "egg";}

}

Animal a1 = new Animal();

Animal a2 = new Platypus();

Mammal m1 = new Platypus();

System.out.print(a1.bt());

System.out.print(a2.bt());

System.out.print(m1.bt());

Clicker Question 3

What is output by
the code to the
right when run?
Think carefully
about the dynamic
type.

A. MeowWoof

B. MeowEm

C. EmWoof

D. EmEm

E. Something else

public class Animal {

public void show() {

System.out.print(this.speak());

}

public String speak() { return "Em"; }

}

public class Dog extends Animal {

public String speak() { return "Woof"; }

}

public class Cat extends Animal {

public void show(int x) {

System.out.print("Meow");

}

}

Cat patches = new Cat();

Dog velvet = new Dog();

patches.show();

velvet.show();

CS314 Polymorphism 8

Why Bother?
Inheritance allows programs to model

relationships in the real world

– if the program follows the model it may be easier
to write

Inheritance allows code reuse

– complete programs faster (especially
large programs)

Polymorphism allows code reuse
in another way

Inheritance and polymorphism allow
programmers to create generic algorithms

CS314 Polymorphism 9

Genericity
One of the goals of OOP is the support of

code reuse to allow more efficient program
development

If a algorithm is essentially the same, but the
code would vary based on the data type
genericity allows only a single version of that
code to exist

in Java, there are 2 ways of doing this

1. polymorphism and the inheritance requirement

2. generics

CS314 Polymorphism 10

A Generic List Class

CS314 Polymorphism 11

Back to IntList

We may find IntList useful, but what if we

want a List of Strings? Rectangles?

Lists?

– What if I am not sure?

Are the List algorithms different if I am
storing Strings instead of ints?

How can we make a generic List class?

CS314 Polymorphism 12

Generic List Class
required changes

How does toString have to change?

– why?!?!

– A good example of why keyword this is

necessary from toString

What can a List hold now?

How many List classes do I need?

Clicker 4
After altering the data type of the elements to

Object in our list class, how many lines of

code in the toString method, originally from

the IntList class, need to be changed?

A. 0

B. 1

C. 2

D. 3

E. >= 4

CS314 Polymorphism 13

CS314 Polymorphism 14

Writing an equals Method

How to check if two objects are equal?

if(objA == objA)

// does this work?

Why not this

public boolean equals(List other)

Because

public void foo(List a, Object b)

if(a.equals(b))

System.out.println(same)

– what if b is really a List?

CS314 Polymorphism 15

equals method

read the javadoc carefully!

Must handle null

Parameter must be Object

– otherwise overloading instead of overriding

– causes

must handle cases when parameter is not

same data type as calling object

– instanceof or getClass()

don't rely on toString and then String's

equals (efficiency)

CS314 Polymorphism 16

the createASet example

public Object[] createASet(Object[] items)

{ /*

pre: items != null, no elements

of items = null

post: return an array of Objects

that represents a set of the elements

in items. (all duplicates removed)

*/

{5, 1, 2, 3, 2, 3, 1, 5} -> {5, 1, 2, 3}

CS314 Polymorphism 17

createASet examples
String[] sList = {"Texas", "texas", "Texas",

"Texas", "UT", "texas"};

Object[] sSet = createASet(sList);

for(int i = 0; i < sSet.length; i++)

System.out.println(sSet[i]);

Object[] list = {"Hi", 1, 4, 3.3, true,

new ArrayList(), "Hi", 3.3, 4};

Object[] set = createASet(list);

for(int i = 0; i < set.length; i++)

System.out.println(set[i]);

Topic 6
Generic Type Parameters

"Get your data structures correct

first, and the rest of the program will

write itself."

- David Jones

CS314 Generics 2

Back to our Array Based List
Started with a list of ints

Don't want to have to write a new list class

for every data type we want to store in lists

Moved to an array of Objects to store the

elements of the list
// from array based list

private Object[] con;

CS314 Generics 3

Using Object
In Java, all classes inherit from exactly one

other class except Object which is at the top

of the class hierarchy

– therefore all classes are descendants of Object

object variables can refer to objects of their

declared type and any descendants

– polymorphism

Thus, if the internal storage container is of

type Object it can hold anything

– primitives handled by wrapping them in objects.

int – Integer, char - Character

CS314 Generics 4

Difficulties with Object
Creating generic data structures using the

Object data type and polymorphism is

relatively straight forward

Using these generic data structrues leads to

some difficulties

– Casting

– Type checking

Code examples on the following slides

Clicker 1
What is output by the following code?
GenericList list = new GenericList(); // 1

Street s = new Street("Boardwalk", 400,

Color.BLUE);

list.add(s); // 2

System.out.print(list.get(0).getPrice());// 3

A. 400

B. No output due to syntax error at line // 1

C. No output due to syntax error at line // 2

D. No output due to syntax error at line // 3

E. No output due to runtime error.
CS314 Generics 5

CS314 Generics 6

Code Example - Casting
Assume a list class

GenericList li = new GenericList();

li.add("Hi");

System.out.println(li.get(0).charAt(0));

// previous line has syntax error

// return type of get is Object

// Object does not have a charAt method

// compiler relies on declared type

System.out.println(

((String) li.get(0)).charAt(0));

// must cast to a String

CS314 Generics 7

Code Example – type checking

//pre: all elements of li are Monopoly Properties

public void printPrices(GenericList li) {

for (int i = 0; i < li.size(); i++) {

Property temp = (Property) li.get(i);

System.out.println(temp.getPrice());

}

}

// what happens if pre condition not met?

CS314 Generics 8

"Fixing" the Method
//pre: all elements of li are Monopoly Properties

public void printPrices(GenericList li) {

for(int i = 0; i < li.size(); i++) {

// GACK!!!!

if (li.get(i) instanceof Property) {

Property temp = (Property) li.get(i);

System.out.println(temp.getPrice());

}

}

}

CS314 Generics 9

Clicker 2 - Too Generic?
Does this code compile?
GenericList list = new GenericList();

list.add("Olivia");

list.add(Integer.valueOf(12));

list.add(12); // autobox aka autowrap

list.add(new Rectangle(1, 2, 3, 4));

list.add(new GenericList());

A. No

B. Yes

Is this a bug or a feature?

CS314 Generics 10

CS314 Generics 11

Generic Types
Java has syntax for parameterized data types

Referred to as Generic Types in most of the

literature

A traditional parameter has a data type and can

store various values just like a variable

public void foo(int x)

Generic Types are like parameters, but the data

type for the parameter is data type

– like a variable that stores a data type

– this is an abstraction. Actually, all data type info is

erased at compile time and replaced with casts and,

typically, variables of type Object

CS314 Generics 12

Making our Array List Generic
Data type variables declared in class header

public class GenericList<E> {

The <E> is the declaration of a data type
parameter for the class
– any legal identifier: Foo, AnyType, Element,
DataTypeThisListStores

– Java style guide recommends terse identifiers

The value E stores will be filled in whenever
a programmer creates a new GenericList
GenericList<String> li =

new GenericList<>();

CS314 Generics 13

Modifications to GenericList
instance variable

private E[] myCon;

Parameters on

– add, insert, remove, insertAll

Return type on

– get

Changes to creation of internal storage

container
myCon = (E[]) new Object[DEFAULT_SIZE];

Constructor header does not change

Modifications to GenericList
Careful with the equals method

Recall type information is actually erased at

compile time.

– At runtime not sure what data type of elements

are. (Unless we get into reflection.)

use of wildcard

rely on the elements equals methods

CS314 Generics 14

CS314 Generics 15

Using Generic Types
Back to Java's ArrayList

ArrayList list1 = new ArrayList();

– still allowed, a "raw" ArrayList

– works just like our first pass at GenericList

– casting, lack of type safety

CS314 Generics 16

Using Generic Types
ArrayList<String> list2 =

new ArrayList<String>();

– for list2 E stores String

list2.add("Isabelle");

System.out.println(

list2.get(0).charAt(2)); //ok

list2.add(new Rectangle());

// syntax error

CS314 Generics 17

Parameters and Generic Types

Old version
//pre: all elements of li are Strings

public void printFirstChar(ArrayList li){

New version
//pre: none

public void printFirstChar(ArrayList<String> li){

Elsewhere
ArrayList<String> list3 = new ArrayList<String>();

printFirstChar(list3); // ok

ArrayList<Integer> list4 = new ArrayList<Integer>();

printFirstChar(list4); // syntax error

CS314 Generics 18

Generic Types and Subclasses
ArrayList<Shape> list5 =

new ArrayList<Shape>();

list5.add(new Rectangle());

list5.add(new Square());

list5.add(new Circle());

// all okay

list5 can store Shape objects and any

descendants of Shape

Topic 7

Interfaces

I once attended a Java user group meeting where James Gosling (one

of Java's creators) was the featured speaker. During the memorable

Q&A session, someone asked him: "If you could do Java over again,

what would you change?" "I'd leave out classes," he replied. After

the laughter died down, he explained that the real problem wasn't

classes per se, but rather implementation inheritance (the extends

relationship). Interface inheritance (the implements relationship)

is preferable.

- Allen Holub

Clicker 1
How many sorts do you want to have to write?

CS314 Interfaces

public static void selSort(double[] data) {

for (int i = 0; i < data.length; i++) {

int small = i;

for(int j = i + 1; j < data.length; j++) {

if (data[j] < data[small])

small = j;

}

double temp = data[i];

data[i] = data[small];

data[small] = temp;

}

}

A. 0

B. 1

C. 2

D. 3

E. >= 4

CS314 Interfaces 3

Why interfaces?
Interfaces allow the creation of abstract types

– "A set of data values and associated operations that are

precisely specified independent of any particular

implementation. "

– multiple implementations allowed

Interfaces allow a data type to be specified without

worrying about the implementation

– do design first

– What will this data type do?

– Don’t worry about implementation until design is done.

– separation of concerns.

– allow us to create generic algorithms

CS314 Interfaces 4

Interfaces
public interface List<E> {

No constructors

No instance variables

abstract instance methods

default instance methods

static methods

class constants (prefer enums)
public static final int DEFAULT_CAP = 10;

public void add(E val);

CS314 Interfaces 5

Implementing Interfaces
In Java, a class inherits (extends) exactly

one other class, but …

A class can implement as many interfaces

as it likes

public class ArrayList implements List

A class that implements an interface must

provide implementations of all non default

method declared in the interface

or the class must be abstract

interfaces can extend other interfaces

– multiple in fact, unlike Java classes

CS314 Interfaces 6

The Comparable Interface
The Java Standard Library

contains a number of interfaces

– names are italicized in the

class listing

One of the most important

interfaces is the Comparable

interface

CS314 Interfaces 7

Comparable Interface

compareTo must return

– an int <0 if the calling object is less than the parameter,

– 0 if they are equal

– an int >0 if the calling object is greater than the

parameter other

compareTo should be consistent with equals

but this isn't required.

package java.lang;

public interface Comparable<T> {

public int compareTo(T other);

}

Interfaces
"Use interfaces to ensure a class has

methods that other classes or methods will

use." (In other words, clients of your class.)

– Anthony, Spring 2013

The other classes or methods may already be

written.

The other methods or classes use interface

type for the parameters of methods.

POLYMORPHISM

– old code using new code

CS314 Interfaces 8

Clicker Question 2
What is output by the following code?
Comparable c1 = new Comparable();

Comparable c2 = new Comparable();

System.out.println(c1.compareTo(c2));

A. A value < 0

B. 0

C. A value > 0

D. Unknown until program run

E. Compile error

CS314 Interfaces 9

CS314 Interfaces 10

Example compareTo

Suppose we have a class to

model playing cards

– Ace of Spades, King of Hearts,

Two of Clubs

each card has a suit and a

value, represented by ints

this version of compareTo will

compare values first and then

break ties with suits

CS314 Interfaces 11

compareTo in a Card class

public class Card implements Comparable<Card> {

public int compareTo(Card otherCard) {

return this.rank - other.rank;

}

// other methods not shown

}

Assume ints for ranks (2, 3, 4, 5, 6,...) and suits (0 is

clubs, 1 is diamonds, 2 is hearts, 3 is spades).

CS314 Interfaces 12

Interfaces and Polymorphism

Interfaces may be used as the data type

for object variables

Can’t simply create objects of that type

Can refer to any objects that implement the

interface or descendants

Assume Card implements Comparable

Card c = new Card();

Comparable comp1 = new Card();

Comparable comp2 = c;

Clicker Question 3
Which of the following lines of code causes a

syntax error?

Comparable c1; // A

c1 = "Ann"; // B

Comparable c2 = "Kelly"; // C

int x = c2.compareTo(c1); // D

// E No syntax errors.

// what is x after statement?

CS314 Interfaces 13

Why Make More Work?
Why bother implementing an interface such

as Comparable
– objects can use method that expect an interface type

Example if I implement Comparable:

Arrays.sort(Object[] a)

public static void sort(Object[] a)

All elements in the array must implement the

Comparable interface. Furthermore, all elements in

the array must be mutually comparable

objects of my type can be stored in data

structures that accept Comparables
CS314 Interfaces 14

CS314 Interfaces 15

A List Interface
What if we wanted to specify the operations

for a List, but no implementation?

Allow for multiple, different implementations.

Provides a way of creating abstractions.

– a central idea of computer science and

programming.

– specify "what" without specifying "how"

– "Abstraction is a mechanism and practice to

reduce and factor out details so that one can

focus on a few concepts at a time. "

CS314 Interfaces 16

List Interface
public interface List <E> {

public void add(E val);

public int size();

public E get(int location);

public void insert(int location, E val);

public E remove(int location);

}

One Sort

CS314 Interfaces 17

public static void sort(Comparable[] data) {

final int LIMIT = data.length – 1;

for(int i = 0; i < LIMIT; i++) {

int small = i;

for(int j = i + 1; j < data.length; j++) {

int d = data[j].compareTo(data[small]);

if (d < 0)

small = j;

}

Comparable temp = data[i];

data[i] = data[small];

data[small] = temp;

} // end of i loop

}

1

Topic 8

Iterators

"First things first, but not necessarily

in that order "

-Dr. Who

CS314

Iterators
2

Iterators
ArrayList is part of the Java Collections

Framework

Collection is an interface that specifies the

basic operations every collection (data

structure) shall have

Some Collections don’t have a definite order

– Sets, Maps, Graphs

How to access all the items in a Collection

with no specified order?

CS314

Iterators
3

Iterator Interface
An iterator object is a "one shot" object

– it is designed to go through all the
elements of a Collection once

– if you want to go through the
elements of a Collection again you
have to get another iterator object

Iterators are obtained by calling
a method from the Collection

CS314

Iterators
4

Iterator Iterface Methods
The Iterator interface 3 methods we will use:

boolean hasNext()

//returns true if this iteration has more elements

E next()

//returns the next element in this iteration

//pre: hastNext()

void remove()

/*Removes from the underlying collection the last element
returned by the iterator.

pre: This method can be called only once per call to next.
After calling, must call next again before calling remove
again.

*/

Clicker 1
Which of the following produces a syntax error?
ArrayList<String> list = new ArrayList<>();

Iterator<String> it1 = new Iterator(); // I

Iterator<String> it2 = new Iterator(list); // II

Iterator<String> it3 = list.iterator(); // III

A. I

B. II

C. III

D. I and II

E. II and III

CS314

Iterators
5

CS314

Iterators
6

Iterator
Imagine a fence made up of fence posts and

rail sections

fenceposts

rails

CS314

Iterators
7

Fence Analogy
The iterator lives on the fence posts

The data in the collection are the rails

Iterator created at the far left post

As long as a rail exists to the right of the

Iterator, hasNext() is true
iterator object

CS314

Iterators
8

Fence Analogy
ArrayList<String> names = new ArrayList<>();

names.add("Jan");

names.add("Levi");

names.add("Tom");

names.add("Jose");

Iterator<String> it = names.iterator();

int i = 0;

"Jan" "Levi" "Tom" "Jose"

CS314

Iterators
9

Fence Analogy
while(it.hasNext()) {

i++;

System.out.println(it.next());

}

// when i == 1, prints out Jan

"Jan" "Levi" "Tom" "Jose"

first call to next moves iterator to

next post and returns "Jan"

CS314

Iterators
10

Fence Analogy
while(it.hasNext()) {

i++;

System.out.println(it.next());

}

// when i == 2, prints out Levi

"Jan" "Levi" "Tom" "Jose"

CS314

Iterators
11

Fence Analogy
while(it.hasNext()) {

i++;

System.out.println(it.next());

}

// when i == 3, prints out Tom

"Jan" "Levi" "Tom" "Jose"

CS314

Iterators
12

Fence Analogy
while(it.hasNext()) {

i++;

System.out.println(it.next());

}

// when i == 4, prints out Jose

"Jan" "Levi" "Tom" "Jose"

CS314

Iterators
13

Fence Analogy
while(it.hasNext()) {

i++;

System.out.println(it.next());

}

// call to hasNext returns false

// while loop stops

"Jan" "Levi" "Tom" "Jose"

CS314

Iterators
14

Typical Iterator Pattern
public void printAll(Collection<String> col) {

Iterator<String> it = col.iterator();

while (it.hasNext()) {

String temp = it.next();

System.out.println(temp);

}

}

OR……

for (String temp : col) {

System.out.println(temp);

}

Clicker Question 2
What is output by the following code?
ArrayList<Integer> list = new ArrayList<>();

list.add(3);

list.add(3);

list.add(5);

Iterator<Integer> it = list.iterator();

System.out.print(it.next() + " ");

System.out.print(it.next() + " ");

System.out.print(it.next());

A. 3 B. 3 5 C. 3 3 5

D. 3 3 E. 3 3 then a runtime error

15

CS314

Iterators
16

remove method
An Iterator can be used to remove things from

the Collection

Can only be called once per call to next()
public void removeWordsOfLength(int len) {

Iterator<String> it = myList.iterator

while(it.hasNext()) {

String temp = it.next();

if (temp.length() == len) {

it.remove();

}

}

}

// original list = ["dog", "cat", "hat", "sat"]

// resulting list after removeWordsOfLength(3) ?

17

Clicker 3
public void printTarget(Collection<String>

names, int len) {

Iterator<String> it = names.iterator();

while(it.hasNext())

if(it.next().length() == len)

System.out.println(it.next());

}

Given names = ["Jan", "Ivan", "Tom", "George"] and len = 3 what is output

by the printTarget method?

A. Jan Ivan Tom George

B. Jan Tom

C. Ivan George

D. No output due to syntax error

E. No output due to runtime error

CS314

Iterators
18

The Iterable Interface
A related interface is Iterable

The method of interest to us in the interface:
public Iterator<T> iterator()

Why?

Anything that implements the Iterable
interface can be used in the for each loop.
ArrayList<Integer> list;

//code to create and fill list

int total = 0;

for (int x : list) {

total += x;

}

CS314

Iterators
19

Iterable
If you simply want to go through all the

elements of a Collection (or Iterable thing)
use the for each loop

– hides creation of the Iterator

public void printAllOfLength(ArrayList<String> names,

int len){

//pre: names != null, names only contains Strings

//post: print out all elements of names equal in

// length to len

for (String s : names)

if (s.length() == len)

System.out.println(s);

}

CS314

Iterators
20

Implementing an Iterator
Implement an Iterator for our GenericList

class

– Nested Classes

– Inner Classes

– Example of encapsulation

– checking precondition on remove

– does our GenricList need an Iterator?

Madilyn L. 2019

CS314

Iterators
21

Comodification
If a Collection (ArrayList) is changed

while an iteration via an iterator is in progress

an Exception will be thrown the next time the
next() or remove() methods are called

via the iterator
ArrayList<String> names = new ArrayList<>();

names.add("Jan");

Iterator<String> it = names.iterator();

names.add("Andy");

it.next(); // exception occurs here

1

Topic 9

Using Maps

"He's off the map!"
-Stan (Mark Ruffalo) Eternal Sunshine of the

Spotless Mind

Data Structures
More than arrays and lists

Write a program to determine the frequency

of all the "words" in a file.

Maps 2CS 314

Performance using ArrayList

Maps 3

Title Size

(kb)

Total

Words

Distinct

Words

Time

(sec)
small sample 0.6 89 25 0.001

2BR02B 34 5,638 1,975 0.051

Alice in

Wonderland
120 29,460 6,017 0.741

Adventures of

Sherlock Holmes
581 107,533 15,213 4.144

2008 CIA Factbook 10,030 1,330,100 74,042 173.000

CS 314

Order?
Express change of value as factor of previous file

Maps 4

Title Size Total

Words

Distinct

Words

Time

small sample 0.6 89 25 0.001

2BR02B 57x 63x 79x 51x

Alice in

Wonderland
3.5x 5.2x 3.0x 14.5x

Adventures of

Sherlock Holmes
4.8x 3.7x 2.5x 6.0x

2008 CIA Factbook 17x 12.3x 5x 42x

O(Total Words * Distinct Words) ??

CS 314

Clicker 1

Given 3 minutes for the 2008 CIA Factbook

with 1,330,100 total words and 74,042

distinct words, how long for 1,000x total

words and 100x distinct words?

A. an hour

B. a day

C. a week

D. a month

E. half a year

Maps 5CS 314

Why So Slow??
Write a contains method for an array based list

public boolean indexOf(Object o) {

Maps 6CS 314

CS 314 Maps 7

A Faster Way - Maps
Also known as:

– table, search table, dictionary, associative array, or

associative container

A data structure optimized for a very specific kind

of search / access

In a map we access by asking "give me the value

associated with this key."

CS 314 Maps 8

Keys and Values
Dictionary Analogy:

– The key in a dictionary is a word:
foo

– The value in a dictionary is the definition:
First on the standard list of metasyntactic
variables used in syntax examples

A key and its associated value form a pair
that is stored in a map

To retrieve a value the key for that value
must be supplied

– A List can be viewed as a Map with integer keys

CS 314 Maps 9

More on Keys and Values
Keys must be unique, meaning a given key

can only represent one value

– but one value may be represented by multiple

keys

– like synonyms in the dictionary.

Example:

factor: n.See coefficient of X

– factor is a key associated with the same value

(definition) as the key coefficient of X

Clicker 2
Is it required that the keys and values of a

map be the same data type?

A. No

B. Yes

C. It Depends

CS 314 Maps 10

Map <String, List<String>>

CS 314 Maps 11

Movie Characters

Wizard of Oz Dorothy, Toto, Scarecrow, Tin

Man, Cowardly Lion

Iron Man Tony Stark, Pepper Potts, Phil

Coulson, Obadiah Stane

Pride and

Prejudice

Elizabeth Bennet, Jane Bennet,

Mr. Darcy, Mr. Bingley

The Avengers Tony Stark, Pepper Potts, Steve

Rogers, Bruce Banner, Phil Coulson

Sense and

Sensibility

Elinor Dashwood, Marianne

Dashwood, Edward Ferrars, John

Willoughby, Colonel Brandon

CS 314 Maps 12

The Map<K, V> Interface in Java

void clear()

– Removes all mappings from this map (optional operation).

 boolean containsKey(Object key)

– Returns true if this map contains a mapping for the

specified key.

 boolean containsValue(Object value)

– Returns true if this map maps one or more keys to the

specified value.

 Set<K> keySet()

– Returns a Set view of the keys contained in this map.

CS 314 Maps 13

The Map Interface Continued
 V get(Object key)

– Returns the value to which this map maps the

specified key. Returns null if key not present.

 boolean isEmpty()

– Returns true if this map contains no key-value

mappings.

V put(K key, V value)

– Associates the specified value with the specified

key in this map

CS 314 Maps 14

The Map Interface Continued
 V remove(Object key)

– Removes the mapping for this key from this map

if it is present

 int size()

– Returns the number of key-value mappings in

this map.

Collection<V> values()

– Returns a collection view of the values contained

in this map.

Results with HashMap

Maps 15

Title Size

(kb)

Total

Words

Distinct

Words

Time

List

Time

Map
small sample 0.6 89 25 0.001 0.0008

2BR02B 34 5,638 1,975 0.051 0.0140

Alice in

Wonderland

120 29,460 6,017 0.741 0.0720

Adventures of

Sherlock Holmes

581 107,533 15,213 4.144 0.2500

2008 CIA Factbook 10,030 1,330,100 74,042 173.000 4.0000

CS 314

Order?

Maps 16

Title Size Total

Words

Distinct

Words

Time

List

Time

Map
small sample 0.6 89 25 0.001 0.0008

2BR02B 57x 63x 79x 51x 18x

Alice in

Wonderland
3.5x 5.2x 3.0x 14.5x 5x

Adventures of

Sherlock Holmes
4.8x 3.7x 2.5x 5.6x 3.5x

2008 CIA

Factbook
17x 12.3x 5x 42x 16x

O(Total Words)?

CS 314

1

Topic 10

Abstract Classes

“I prefer Agassiz in the

abstract, rather than in

the concrete.”

- Statue of Biologist

Louis Agassiz that fell from

a ledge on the Stanford

Quad during the 1906

San Francisco earthquake.

Back to the Monopoly Property Example

There are properties on a

monopoly board

Railroads, Utilities, and Streets are

kinds of properties
Property

Street Railroad Utility

A getRent Behavior

One behavior we want in Property

is the getRent method

problem: How do I get the rent of

something that is “just a Property”?

CS314 Abstract Classes 3

CS314 Abstract Classes 4

The Property class

public class Property {

private int cost;

private String name;

public int getRent() {

return hmmmmm??????;

}

Doesn’t seem like we have enough information to

get the rent if all we know is it is a Property.

CS314 Abstract Classes 5

Potential Solutions
1. Just leave it for the sub classes.

 Have each sub class define getRent()

2. Define getRent() in Property and simply

return -1.

 Sub classes override the method with more

meaningful behavior.

CS314 Abstract Classes 6

Leave it to the Sub - Classes
// no getRent() in Property

// Railroad and Utility DO have getRent() methods

public void printRents(Property[] props) {

for (Property p : props)

System.out.println(p.getRent());

}

Property[] props = new Property[2];

props[0] = new Railroad("NP", 200, 1);

props[1] = new Utility("Electric", 150, false);

printRents(props);

Clicker 1 - What is result of above code?

A. 200150 B. different every time

C. Syntax error D. Class Cast Exception

E. Null Pointer Exception

CS314 Abstract Classes 7

"Fix" by Casting
// no getRent() in Property

public void printRents(Property[] props) {

for (Property p : props) {

if (p instanceof Railroad)

System.out.println(((Railroad) p).getRent());

else if (p instanceof Utility)

System.out.println(((Utility) p).getRent());

else if (p instanceof Street)

System.out.println(((Street) p).getRent())

} // GACK!!!!

}

Property[] props= new Property[2];

props[0] = new Railroad("NP", 200, 1);

props[1] = new Utility("Electric", 150, false);

printRents(props);

What happens as we add more sub classes of Property?

What happens if one of the objects is just a Property?

CS314 Abstract Classes 8

Fix with Placeholder Return
// getRent() in Property returns -1

public void printRents(Property[] props) {

for (Property p : props)

System.out.println(p.getRent());

}

Property[] props= new Property[2];

props[0] = new Railroad("NP", 200, 1);

props[1] = new Utility("Electric", 150, false);

printRents(props);

What happens if sub classes don’t override
getRent()?

Is that a good answer?

CS314 Abstract Classes 9

A Better Fix
We know we want to be able to get the rent

of objects that are instances of Property

The problem is we don’t know how to do that
if all we know is it a Property

Make getRent an abstract method

Java keyword

CS314 Abstract Classes 10

Making getRent Abstract
public class Property {

private int cost;

private String name;

public abstract int getRent();

// I know I want it.

// Just don’t know how, yet…

}

Methods that are declared abstract have no body
an undefined behavior.

All non-default methods in a Java interface are
abstract.

Problems with Abstract Methods

If things can go wrong with a tool, provide

safeguards to prevent that from happening.

Given getRent() is now an abstract method

what is wrong with the following code?

Property p = new Property();

System.out.println(p.getRent());

CS314 Abstract Classes 12

Undefined Behavior = Bad
Not good to have undefined behaviors

If a class has 1 or more abstract methods,

the class must also be declared abstract.

– version of Property shown would cause a

compile error

Even if a class has zero abstract methods a

programmer can still choose to make it

abstract

– if it models some abstract thing

– is there anything that is just a “Mammal”?

Abstract Classes Safety
1. A class with one or more abstract methods must be

declared abstract.

- Syntax error if not done.

- Can still decide to make class abstract even if no

abstract methods.

2. Objects of an abstract type cannot be instantiated.

- Just like interfaces

- Can still declare variables of this type

3. A subclass must implement all inherited abstract

methods or be abstract itself.

CS314 Abstract Classes 13

CS314 Abstract Classes 14

Abstract Classes
public abstract class Property {

private int cost;

private String name;

public abstract double getRent();

// I know I want it.

// Just don’t know how, yet…

}

// Other methods not shown

if a class is abstract the compiler will not allow

constructors of that class to be called
Property s = new Property(1, 2);

//syntax error

CS314 Abstract Classes 15

Abstract Classes
In other words you can’t create instances of

objects where the lowest or most specific

class type is an abstract class

Prevents having an object with an undefined

behavior

Why would you still want to have

constructors in an abstract class?

Object variables of classes that are abstract

types may still be declared

Property p; //okay

CS314 Abstract Classes 16

Sub Classes of Abstract Classes

Classes that extend an abstract class must

provided a working version of any and all

abstract methods from the parent class

– or they must be declared to be abstract as well

– could still decide to keep a class abstract

regardless of status of abstract methods

CS314 Abstract Classes 17

Implementing getRent()

public class Railroad extends Property {

private static int[] rents

= {25, 50, 100, 200};

private int numOtherRailroadsOwned;

public double getRent() {

return rents[numOtherRailroadsOwned];}

// other methods not shown

}

CS314 Abstract Classes 18

A Utility Class

CS314 Abstract Classes 19

Polymorphism in Action

// getRent() in Property is abstract

public void printRents(Property[] props) {

for (Property p : props)

System.out.println(p.getRent());

}

• Add the Street class. What needs to change in

printRents method?

• Inheritance is can be described as new code using

old code.

• Koan of Polymorphism: Polymorphism can be

described as old code reusing new code.

CS314 Abstract Classes 20

Comparable in Property
public abstract class Property

implements Comparable<Property> {

private int cost;

private String name;

public abstract int getRent();

public int compareTo(Property other) {

return this.getRent()

– otherProperty.getRent();

}

}

Back to Lists
We suggested having a list interface

public interface IList<E> extends Iterable<E> {

public void add(E value);

public int size();

public E get(int location);

public E remove(int location);

public boolean contains(E value);

public void addAll(IList<E> other);

public boolean containsAll(IList<E> other);

}

CS314 Abstract Classes 21

Data Structures
When implementing data structures:

- Specify an interface

- Create an abstract class that is skeletal

implementation interface

- Create classes that extend the skeletal

interface

public boolean contains(E val) {

for (E e : this)

if val.equals(e)

return true;

return false
CS314 Abstract Classes 22

1

Topic 11

Linked Lists
"All the kids who did great in high school writing

pong games in BASIC for their Apple II would get to

college, take CompSci 101, a data structures

course, and when they hit the pointers business their

brains would just totally explode, and the next thing

you knew, they were majoring in Political Science

because law school seemed like a better idea."

-Joel Spolsky

Thanks to Don Slater of CMU for use of his slides.

Clicker 1
What is output by the following code?
ArrayList<Integer> a1 = new ArrayList<>();

ArrayList<Integer> a2 = new ArrayList<>();

a1.add(12);

a2.add(12);

System.out.println(a1 == a2);

A. false

B. true

C. No output due to syntax error

D. No output due to runtime error

E. Varies from one run of the program to the next

CS314

Linked Lists
2

CS314

Linked Lists
3

Dynamic Data Structures
Dynamic data structures

– They grow and shrink one element at a time,
normally without some of the inefficiencies of
arrays

– as opposed to a static container such as an array

Big O of Array Manipulations

– Access the kth element

– Add or delete an element in the middle of the
array while maintaining relative order

– adding element at the end of array? space
avail? no space avail?

– add element at beginning of an array

Linked Lists
4

Object References
Recall that an object reference is a variable

that stores the address of an object

A reference can also be called a pointer

They are often depicted graphically:

student

John Smith

40725

3.57

CS314

Linked Lists
5

References as Links
Object references can be used to create

links between objects

Suppose a Student class contained a

reference to another Student object

John Smith

40725

3.57

Jane Jones

58821

3.72

CS314

Linked Lists
6

References as Links
References can be used to create a variety

of linked structures, such as a linked list:

studentList

CS314

CS314

Linked Lists
7

Linked Lists
A linear collection of self-referential objects,

typically called nodes, connected by other links
– linear: for every node in the list, there is one and only one node

that precedes it (except for possibly the first node, which may
have no predecessor,) and there is one and only one node that
succeeds it, (except for possibly the last node, which may have
no successor)

– self-referential: a node that has the ability to refer to another
node of the same type, or even to refer to itself

– node: contains data of any type, including a reference to another
node of the same data type, or to nodes of different data types

– Usually a list will have a beginning and an end; the first element
in the list is accessed by a reference to that class, and the last
node in the list will have a reference that is set to null

CS314

Linked Lists
8

Linked lists are dynamic, they can grow or shrink

as necessary

Linked lists are non-contiguous; the logical

sequence of items in the structure is decoupled

from any physical ordering in memory

Advantages of linked lists

CS314

Linked Lists
9

Nodes and Lists
A different way of implementing a list

Each element of a Linked List is a separate

Node object.

Each Node tracks a single piece of data plus

a reference (pointer) to the next

Create a new Node very time we add

something to the List

Remove nodes when item removed from list

and allow garbage collector to reclaim that

memory

CS314

Linked Lists
10

A Node Class
public class Node<E> {

private E myData;

private Node<E> myNext;

public Node()

{ myData = null; myNext = null; }

public Node(E data, Node<E> next)

{ myData = data; myNext = next; }

public E getData()

{ return myData; }

public Node<E> getNext()

{ return myNext; }

public void setData(E data)

{ myData = data; }

public void setNext(Node<E> next)

{ myNext = next; }

}

CS314

Linked Lists
11

One Implementation of a Linked List

The Nodes show on the previous slide are
singly linked

– a node refers only to the next node in the
structure

– it is also possible to have doubly linked nodes.

– The node has a reference to the next node in the
structure and the previous node in the structure
as well

How is the end of the list indicated

– myNext = null for last node

– a separate dummy node class / object

CS314

Linked Lists
12

A Linked List Implementation
public class LinkedList<E> implements IList<E>

private Node<E> head;

private Node<E> tail;

private int size;

public LinkedList(){

head = null;

tail = null;

size = 0;

}

}

LinkedList<String> list = new LinkedList<String>();

LinkedList

myHead iMySize

myTail

null

null

0

CS314

Linked Lists
13

Writing Methods
When trying to code methods for Linked

Lists draw pictures!

– If you don't draw pictures of what you are trying

to do it is very easy to make mistakes!

CS314

Linked Lists
14

add method
add to the end of list

special case if empty

steps on following slides

public void add(E obj)

CS314

Linked Lists
15

Add Element - List Empty (Before)

head tail size

null null 0

Object

item

CS314

Linked Lists
16

Add Element - List Empty (After)

head tail size

1

String
Node

myData myNext

null

CS314

Linked Lists
17

Add Element - List Not Empty (Before)

1

String

Node

myData myNext

null

head tail size

String
item

CS314

Linked Lists
18

Add Element - List Not Empty (After)

2

String

Node

myData myNext

head tail size

String

Node

myData myNext

null

CS314

Linked Lists
19

Code for default add
public void add(E obj)

Clicker 2
What is the worst case Big O for adding to

the end of an array based list and our

LinkedList314 class? The lists already

contain N items.

Array based Linked

A. O(1) O(1)

B. O(N) O(N)

C. O(logN) O(1)

D. O(1) O(N)

E. O(N) O(1)
20

Contains method
Implement a contains method for our Linked

List class

public boolean contains(E val) // val != null

CS314

Linked Lists
21

CS314

Linked Lists
22

Code for addFront
add to front of list

public void addFront(E obj)

How does this compare to adding at the front

of an array based list?

Clicker 3
What is the Big O for adding to the front of

an array based list and a linked list? The lists

already contain N items.

Array based Linked

A. O(1) O(1)

B. O(N) O(1)

C. O(logN) O(1)

D. O(1) O(N)

E. O(N) O(N)

CS314

Linked Lists
23

CS314

Linked Lists
24

Code for Insert
public void insert(int pos, E obj)

Must be careful not to break the chain!

Where do we need to go?

Special cases?

Clicker 4
What is the Big O for inserting an element

into the middle of an array based list and into

the middle of a linked list? Each list already

contains N items.

Array based Linked

A. O(1) O(1)

B. O(1) O(N)

C. O(N) O(1)

D. O(N) O(N)

E. O(N) O(logN)
CS314

Linked Lists
25

Clicker Question 5
What is the Big O for getting an element

based on position from an array based list

and from a linked list? Each list contains N
items. In other words E get(int pos)

Array based Linked

A. O(1) O(1)

B. O(1) O(N)

C. O(N) O(1)

D. O(logN) O(N)

E. O(N) O(N)
Linked Lists

26

CS314

Linked Lists
27

Code for get
public E get(int pos)

The downside of Linked Lists

CS314

Linked Lists
28

Code for remove
public E remove(int pos)

Clicker 6
What is the order to remove the last element

of a singly linked list with references to the

first and last nodes of the linked structure of

nodes?

The list contains N elements

A. O(1)

B. O(logN)

C. O(N^0.5)

D. O(N)

E. O(NlogN))
CS314

Linked Lists
29

CS314

Linked Lists
30

Why Use Linked List
What operations with a Linked List faster

than the version from ArrayList?

CS314

Linked Lists
31

Clicker 7 - Getting All Elements in

Order From a Linked List
What is the Order (Big O) of the following code?

LinkedList314<Integer> list;

list = new LinkedList314<Integer>();

// code to fill list with N elements

int total = 0;

//Big O of following code?

for(int i = 0; i < list.size(); i++)

total += list.get(i);

A. O(N) B. O(2N) C. O(NlogN)

D. O(N2) E. O(N3)

Iterators to the Rescue

CS314

Linked Lists
32

CS314

Linked Lists
33

Other Possible Features of

Linked Lists

Doubly Linked

Circular

Dummy Nodes for first and last node in list
public class DLNode<E> {

private E myData;

private DLNode<E> myNext;

private DLNode<E> myPrevious;

}

CS314

Linked Lists
34

Dummy Nodes
Use of Dummy Nodes for a Doubly Linked

List removes most special cases

Also could make the Double Linked List

circular

CS314

Linked Lists
35

Doubly Linked List add

public void add(E obj)

CS314

Linked Lists
36

Insert for Doubly Linked List
public void insert(int pos, E obj)

Topic 12

Introduction to Recursion

"To a man with a hammer,

everything looks like a nail"

-Mark Twain

CS314 Recursion 2

Underneath the Hood.

CS314 Recursion 3

The Program Stack
When you invoke a method in your code

what happens when that method is done?
public class Mice {

public static void main(String[] args) {

int x = 37;

int y = 12;

method1(x, y);

int z = 73;

int m1 = method1(z, x);

method2(x, x);

}

// method1 and method2

// on next slide

CS314 Recursion 4

method1 and method2
// in class Mice

public static int method1(int a, int b) {

int r = 0;

if (b != 0) {

int x = a / b;

int y = a % b;

r = x + y;

}

return r;

}

public static void method2(int x, int y) {

x++;

y--;

int z = method1(y, x);

System.out.print(z);

}

CS314 Recursion 5

The Program Stack
When your program is run on a processor, the

commands are converted into another set of

instructions and assigned memory locations.

– normally a great deal of expansion takes place

public static void main(String[] args) {

int x = 37; // 0

int y = 12; // 1

method1(x, y); // 2

int z = 73; // 3

int m1 = method1(z, x); // 4

method2(x, x); // 7

}

6

Basic CPU Operations
A CPU works via a fetch

command / execute command
loop and a program counter

Instructions stored in memory
(Instructions are data!)

What if the first instruction of the method1 is
stored at memory location 50?

int x = 37; // 0

int y = 12; // 1

method1(x, y); // 2

int z = 73; // 3

int m1 = method1(z, x); // 4

method2(x, x); // 5

CS314 Recursion 7

// in class Mice

public static int method1(int a, int b) {

int r = 0; // 51

if (b != 0) { // 52

int x = a / b; // 53

int y = a % b; // 54

r = x + y; // 55

}

return r; // 56

}

public static void method2(int x, int y) {

x++; // 60

y--; // 61

int z = method1(y, x); // 62

System.out.print(z); // 63

}

CS314 Recursion
8

Clicker 1 - The Program Stack

Instruction 3 is really saying jump to instruction

50 with parameters x and y

In general what happens when method1 finishes?

A. program ends B. goes to instruction 4

C. goes back to whatever method called it

int x = 37; // 1

int y = 12; // 2

method1(x, y); // 3

int z = 73; // 4

int m1 = method1(z, x); // 5

method2(x, x); // 6

CS314 Recursion 9

Activation Records and the

Program Stack
When a method is invoked all the relevant

information about the current method

(variables, values of variables, next line of

code to be executed) is placed in an

activation record

The activation record is pushed onto the

program stack

A stack is a data structure with a single

access point, the top.

CS314 Recursion 10

The Program Stack
Data may either be

added (pushed) or

removed (popped) from

a stack but it is always

from the top.

– A stack of dishes

– which dish do we have

easy access to?

top

Using Recursion

CS314 Recursion 12

A Problem

Write a method that determines how much

space is take up by the files in a directory

A directory can contain files and

directories

How many directories does our code have

to examine?

How would you add up the space taken

up by the files in a single directory

– Hint: don't worry about any sub directories at

first

Clicker 2
How many levels of directories have to be

visited?

A. 0

B. 1

C. 8

D. Infinite

E. Unknown

CS314 Recursion 13

CS314 Recursion 14

Sample Directory Structure

scottm

cs314

m1.txt m2.txt

hw

a1.htm a2.htm a3.htm a4.htm

AP

A.pdf

AB.pdf

Java File Class
File(String pathname) Creates a new

File instance by converting the given

pathname.

boolean isDirectory() Tests whether

the file denoted by this abstract pathname is

a directory.

File[] listFiles() Returns an array

of abstract pathnames denoting the files in

the directory denoted by this abstract

pathname.

CS314 Recursion 15

https://docs.oracle.com/javase/8/docs/api/java/io/File.html

16

Code for getDirectorySpace()
// pre: dir is a directory and dir != null

public static long spaceUsed(File dir) {

if(dir == null || !dir.isDirectory())

throw new IllegalArgumentException();

long spaceUsed = 0;

File[] subFilesAndDirs = dir.listFiles();

if(subFilesAndDirs != null)

for(File sub : subFilesAndDirs)

if(sub != null)

if(sub.isFile()) // sub is a plain old file

spaceUsed += sub.length();

else if (sub.isDirectory())

// else sub is a directory

spaceUsed += spaceUsed(sub);

return spaceUsed;

}

Clicker 3
Is it possible to write a non recursive method

to determine space taken up by files in a

directory, including its subdirectories, and

their subdirectories, and their subdirectories,

and so forth?

A. No

B. Yes

C. It Depends

CS314 Recursion 17

CS314 Recursion 18

Iterative getDirectorySpace()
public long getDirectorySpace(File d) {

ArrayList<File> dirs = new ArrayList<>();

dirs.add(d);

long total = 0;

while (dirs.size() > 0) {

File temp = dirs.remove(dirs.size() – 1);

File[] filesAndSubs = temp.listFiles();

if (filesAndSubs != null) {

for (File f : filesAndSubs) {

if (f != null) {

if (f.isFile())

total += f.length();

else if (f.isDirectory())

dirs.add(f);

}

}

}

return total;

}

Wisdom for Writing Recursive

Methods

CS314 Recursion 20

The 3 plus 1 rules of Recursion

1. Know when to stop

2. Decide how to take one step

3. Break the journey down into that step and a

smaller journey

4. Have faith

From Common Lisp: A Gentle

Introduction to

Symbolic Computation

by David Touretzky

CS314 Recursion 21

Writing Recursive Methods
 Rules of Recursion

1. Base Case: Always have at least one case that
can be solved without using recursion

2. Make Progress: Any recursive call must
progress toward a base case.

3. "You gotta believe." Always assume that the
recursive call works. (Of course you will have to
design it and test it to see if it works or prove
that it always works.)

A recursive solution solves a small part of
the problem and leaves the rest of the
problem in the same form as the original

CS314 Recursion 22

N!
the classic first recursion problem / example

N!

5! = 5 * 4 * 3 * 2 * 1 = 120

int res = 1;

for(int i = 2; i <= n; i++)

res *= i;

CS314 Recursion 23

Factorial Recursively
Mathematical Definition of Factorial

for N >= 0, N! is:
0! = 1

N! = N * (N - 1)! (for N > 0)

The definition is recursive.
// pre n >= 0

public int fact(int n) {

if(n == 0)

return 1;

else

return n * fact(n-1);

} // return (n == 0) ? 1 : n * fact(n - 1);

CS314 Recursion 24

Tracing Fact With the

Program Stack

System.out.println(fact(4));

System.out.println(fact(4));top

CS314 Recursion 25

Calling fact with 4

System.out.println(fact(4));top

n 4

partial result = n * fact(n-1)

in method fact

CS314 Recursion 26

Calling fact with 3

System.out.println(fact(4));

top n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

CS314 Recursion 27

Calling fact with 2

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2

partial result = n * fact(n-1)

in method fact

CS314 Recursion 28

Calling fact with 1

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2

partial result = n * fact(n-1)

in method fact

n 1

partial result = n * fact(n-1)

in method fact

CS314 Recursion 29

Calling fact with 0 and returning 1

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2

partial result = n * fact(n-1)

in method fact

n 1

partial result = n * fact(n-1)

in method fact

n 0

returning 1 to whatever method called me

in method fact

CS314 Recursion 30

Returning 1 from fact(1)

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2

partial result = n * fact(n-1)

in method fact

n 1

partial result = n * 1,

return 1 to whatever method called me

in method fact

CS314 Recursion 31

Returning 2 from fact(2)

System.out.println(fact(4));

top

n 4

partial result = n * fact(n-1)

in method fact

n 3

partial result = n * fact(n-1)

in method fact

n 2 in method fact

partial result = 2 * 1,

return 2 to whatever method called me

CS314 Recursion 32

Returning 6 from fact(3)

System.out.println(fact(4));

top n 4

partial result = n * fact(n-1)

in method fact

n 3 in method fact

partial result = 3 * 2,

return 6 to whatever method called me

CS314 Recursion 33

Returning 24 from fact(4)

System.out.println(fact(4));top

n 4 in method fact

partial result = 4 * 6,

return 24 to whatever method called me

CS314 Recursion 34

Calling System.out.println

System.out.println(24);

top ??

Evaluating Recursive Methods

CS314 Recursion 36

Evaluating Recursive Methods
you must be able to evaluate recursive

methods

public static int mystery (int n){

if(n == 0)

return 2;

else

return 3 * mystery(n-1);

}

// what is returned by mystery(3)

CS314 Recursion 37

Evaluating Recursive Methods
Draw the program stack!

with practice you can see the result

m(3) = 3 * m(2) -> 3 * 18 = 54

m(2) = 3 * m(1) -> 3 * 6 = 18

m(1) = 3 * m(0) -> 3 * 2 = 6

m(0) = 2

-> 54

Clicker 4
What is returned by fact(-3) ?

A. 0

B. 1

C. Infinite loop

D. Syntax error

E. Runtime error
public static int fact(int n) {

if (n == 0) {

return 1;

} else {

return n * fact(n - 1);

}

}
38

CS314 Recursion 39

Evaluating Recursive Methods
What about multiple recursive calls?

public static int bar(int n){

if (n <= 0)

return 2;

else

return 3 + bar(n-1) + bar(n-2);

}

Clicker 5 - What does bar(4) return?

A. 2 B. 3 C. 12 D. 22 E. 37

CS314 Recursion 40

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + b(3) + b(2)

b(3) = 3 + b(2) + b(1)

b(2) = 3 + b(1) + b(0)

b(1) = 3 + b(0) + b(-1)

b(0) = 2

b(-1) = 2

CS314 Recursion 41

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + b(3) + b(2)

b(3) = 3 + b(2) + b(1)

b(2) = 3 + b(1) + b(0) //substitute in results

b(1) = 3 + 2 + 2 = 7

b(0) = 2

b(-1) = 2

CS314 Recursion 42

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + b(3) + b(2)

b(3) = 3 + b(2) + b(1)

b(2) = 3 + 7 + 2 =12

b(1) = 7

b(0) = 2

b(-1) = 2

CS314 Recursion 43

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + b(3) + b(2)

b(3) = 3 + 12 + 7 = 22

b(2) = 12

b(1) = 7

b(0) = 2

b(-1) = 2

CS314 Recursion 44

Evaluating Recursive Methods
What is returned by bar(4)?

b(4) = 3 + 22 + 12 = 37

b(3) = 22

b(2) = 12

b(1) = 7

b(0) = 2

b(-1) = 2

CS314 Recursion 45

Recursion Practice
Write a method raiseToPower(int base,

int power)

//pre: power >= 0

Simple recursion (also called tail recursion)

CS314 Recursion 46

Finding the Maximum in an Array

public int max(int[] data) {

Helper method or create smaller arrays each

time

Clicker 6
When writing recursive methods what should

be done first?

A. Determine recursive case

B. Determine recursive step

C. Make a recursive call

D. Determine base case(s)

E. Determine the Big O

CS314 Recursion 47

CS314 Recursion 48

Your Meta Cognitive State
Remember we are learning to use a tool.

It is not a good tool for all problems.

– In fact we will implement several algorithms and

methods where an iterative (looping without

recursion) solution would work just fine

After learning the mechanics and basics of

recursion the real skill is knowing what

problems or class of problems to apply it to

CS314 Recursion 49

Big O and Recursion
Determining the Big O of recursive methods

can be tricky.

A recurrence relation exits if the function is

defined recursively.

The T(N), actual running time, for N! is

recursive

T(N)fact = T(N-1)fact + O(1)

This turns out to be O(N)

– There are N steps involved

CS314 Recursion 50

Common Recurrence Relations
T(N) = T(N/2) + O(1) -> O(logN)

– binary search

T(N) = T(N-1) + O(1) -> O(N)
– sequential search, factorial

T(N) = T(N/2) + T(N/2) + O(1) -> O(N),
– tree traversal

T(N) = T(N-1) + O(N) -> O(N^2)
– selection sort

T(N) = T(N/2) + T(N/2) + O(N) -> O(NlogN)
– merge sort

T(N) = T(N-1) + T(N-1) + O(1) -> O(2^N)
– Fibonacci

Topic 13

Recursive Backtracking
"In ancient times, before computers were invented,
alchemists studied the mystical properties of
numbers. Lacking computers, they had to rely on
dragons to do their work for them. The dragons
were clever beasts, but also lazy and bad-tempered.
The worst ones would sometimes burn their keeper
to a crisp with a single fiery belch. But most dragons
were merely uncooperative, as violence required too
much energy. This is the story of how Martin, an
alchemist’s apprentice, discovered recursion by
outsmarting a lazy dragon."

- David S. Touretzky, Common Lisp: A Gentle Introduction to
Symbolic Computation

Devon: 2022 - 2023

CS314

Recursive Backtracking
2

Backtracking
Start

Success!

Success!

Failure

Problem space consists of states (nodes) and actions

(paths that lead to new states). When in a node can

can only see paths to connected nodes

If a node only leads to failure go back to its "parent"

node. Try other alternatives. If these all lead to failure

then more backtracking may be necessary.

Escaping a Maze

Which door should we take?

A view from above

CS314

Recursive Backtracking
3

Current

Room

Doors

Exit out there,

some where …

we hope

Escaping a Maze

Try door to the east

CS314

Recursive Backtracking
4

First

room

Doors

Exit out there,

some where …

we hope

Current

Room

A dead end!

Escaping a Maze

Back we go

CS314

Recursive Backtracking
5

Doors

Exit out there,

some where …

we hope

Current

Room
A dead end!

Escaping a Maze

What if we knew the exit was to the south?

CS314

Recursive Backtracking
6

Doors

Exit out there,

some where

to the south!

Current

Room

Escaping a Maze

Start over. What if we knew the exit was to

the south?

CS314

Recursive Backtracking
7

Doors

Exit out there,

some where

to the south!
Current

Room A dead end!

Escaping a Maze

What if we knew the exit was to the south?

CS314

Recursive Backtracking
8

Doors

Exit out there,

some where

to the south!

Current

Room

A dead end!

Escaping a Maze

What if we knew the exit was to the south?

CS314

Recursive Backtracking
9

Doors

Exit out there,

some where

to the south!

A dead end!

Escaping a Maze

What if we knew the exit was to the south?

CS314

Recursive Backtracking
10

Doors

Exit out there,

some where

to the south!

Current

Room

A dead end!

Escaping a Maze

CS314

Recursive Backtracking
11

Doors

Exit out there,

some where

to the south!

Current

Room

A dead end!

A dead end!

Escaping a Maze

CS314

Recursive Backtracking
12

Doors

Exit out there,

some where

to the south!

Current

Room

A dead end!

A dead end!

Escaping a Maze

CS314

Recursive Backtracking
13

Doors

Exit out there,

some where

to the south!

Current

Room

A dead end!

A dead end!

Escaping a Maze

CS314

Recursive Backtracking
14

Doors

Exit out there,

some where

to the south!

OUT!! A dead end!

A dead end!

CS314

Recursive Backtracking
15

Recursive Backtracking
Pseudo code for recursive backtracking

algorithms – looking for a solution

If at a solution, report success
for (every possible choice from current state)

Make that choice and take one step along path
Use recursion to try to solve the problem for the new state
If the recursive call succeeds, report the success to the

previous level
Otherwise Back out of the current choice to restore the

state at the start of the loop.

Report failure

CS314

Recursive Backtracking
16

Another Concrete Example

Sudoku

9 by 9 matrix with some

numbers filled in

all numbers must be between

1 and 9

Goal: Each row, each column,

and each mini matrix must

contain the numbers between

1 and 9 once each

– no duplicates in rows, columns,

or mini matrices

CS314

Recursive Backtracking
17

Solving Sudoku – Brute Force
A brute force algorithm is a

simple but generally

inefficient approach

Try all combinations until

you find one that works

This approach isn’t clever,

but computers are fast

Then try and improve on

the brute force results

CS314

Recursive Backtracking
18

Solving Sudoku
Brute force Sudoku Soluton

– if not open cells, solved

– scan cells from left to right,

top to bottom for first open

cell

– When an open cell is found

start cycling through digits 1

to 9.

– When a digit is placed check

that the set up is legal

– now solve the board

1

Clicker 1
After placing a number in a cell is the

remaining problem very similar to the original

problem?

A. No

B. Yes

CS314

Recursive Backtracking
19

CS314

Recursive Backtracking
20

Solving Sudoku – Later Steps
1 1 2 1 2 4

1 2 4 8 1 2 4 8 9

uh oh!

CS314

Recursive Backtracking
21

Sudoku – A Dead End
We have reached a dead end in our search

With the current set up none of the nine

digits work in the top right corner

1 2 4 8 9

CS314

Recursive Backtracking
22

Backing Up
When the search reaches a dead

end in backs up to the previous

cell it was trying to fill and goes

onto to the next digit

We would back up to the cell with

a 9 and that turns out to be a dead

end as well so we back up again

– so the algorithm needs to remember

what digit to try next

Now in the cell with the 8. We try

and 9 and move forward again.

1 2 4 8 9

1 2 4 9

CS314

Recursive Backtracking
23

Characteristics of Brute Force

and Backtracking

Brute force algorithms are slow

The first pass attempts typically don't employ

a lot of logic

But, brute force algorithms are fairly easy to

implement as a first pass solution

– many backtracking algorithms are brute force

algorithms

CS314

Recursive Backtracking
24

Key Insights
After trying placing a digit in a cell we want to solve

the new sudoku board

– Isn't that a smaller (or simpler version) of the same

problem we started with?!?!?!?

After placing a number in a cell the we need to

remember the next number to try in case things

don't work out.

We need to know if things worked out (found a

solution) or they didn't, and if they didn't try the next

number

If we try all numbers and none of them work in our

cell we need to report back that things didn't work

Clicker 2
Grace 2019 Asked: When we reach the base

case in the solveSudoku method (9 x 9

board) and before we return true, how many

stack frames are on the program stack of the

solveSudoku method? Pick the closest

answer.

A. <= 9

B. 82

C. 819

D. 981

E. cannot determine 25

CS314

Recursive Backtracking
26

Recursive Backtracking
Problems such as Suduko can be solved

using recursive backtracking

recursive because later versions of the

problem are just slightly simpler versions of

the original

backtracking because we may have to try

different alternatives

CS314

Recursive Backtracking
27

Recursive Backtracking - Repeated

Pseudo code for recursive backtracking
algorithms – looking for a solution

If at a solution, report success
for (every possible choice from current state)

Make that choice and take one step along path
Use recursion to try to solve the problem for the new state
If the recursive call succeeds, report the success to the

previous level
Otherwise Back out of the current choice to restore the

state at the start of the loop.

Report failure

CS314

Recursive Backtracking
28

Goals of Backtracking
Possible goals

– Find a path to success

– Find all paths to success

– Find the best path to success

Not all problems are exactly alike, and

finding one success node may not be the

end of the search
Start

Success!

Success!

CS314

Recursive Backtracking
29

The 8 N Queens Problem

CS314

Recursive Backtracking
30

The 8 Queens Problem
A classic chess puzzle

– Place 8 queen pieces on a chess board so that

none of them can attack one another

CS314

Recursive Backtracking
31

The N Queens Problem
Place N Queens on an N by N chessboard so that

none of them can attack each other

Number of possible placements?

In 8 x 8
64 * 63 * 62 * 61 * 60 * 59 * 58 * 57

= 178,462, 987, 637, 760 / 8!

= 4,426,165,368

n choose k

– How many ways can you choose k things from a

set of n items?

– In this case there are 64 squares and we want to choose
8 of them to put queens on

Clicker 3

For a safe solution, how many queens can

be placed in a given column?

A. 0

B. 1

C. 2

D. 3

E. Any number

CS314

Recursive Backtracking
32

CS314

Recursive Backtracking
33

Reducing the Search Space
The previous calculation includes set ups like this

one

Includes lots of set ups with
multiple queens in the same
column

How many queens can there be
in one column?

Number of set ups
8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 = 16,777,216

We have reduced search space by two orders of
magnitude by applying some logic

Q

Q

Q

Q

Q

Q

Q

Q

Solving N Queens Approach

CS314

Recursive Backtracking
34

CS314

Recursive Backtracking
35

A Solution to 8 Queens
 If number of queens is fixed and I realize there can't be

more than one queen per column I can iterate through the

rows for each column
for(int r0 = 0; r0 < 8; r0++){

board[r0][0] = 'q';

for(int r1 = 0; r1 < 8; r1++){

board[r1][1] = 'q';

for(int r2 = 0; r2 < 8; r2++){

board[r2][2] = 'q';

// a little later

for(int r7 = 0; r7 < 8; r7++){

board[r7][7] = 'q';

if(queensAreSafe(board))

printSolution(board);

board[r7][7] = ' '; //pick up queen

}

board[r6][6] = ' '; // pick up queen

CS314

Recursive Backtracking
36

N Queens
The problem with N queens is you don't

know how many for loops to write.

Do the problem recursively

Write recursive code with class and demo

– show backtracking with breakpoint and

debugging option

CS314

Recursive Backtracking
37

Recursive Backtracking
You must practice!!!

Learn to recognize problems that fit the

pattern

Is a kickoff method needed?

All solutions or a solution?

Reporting results and acting on results

Minesweeper

CS314

Recursive Backtracking
38

Minesweeper Reveal

Algorithm
Minesweeper

click a cell

– if bomb game over

– if cell that has 1 or more bombs on border

then reveal the number of bombs that border cell

– if a cell that has 0 bombs on border

then reveal that cell as a blank and click on the 8

surrounding cells

CS314

Recursive Backtracking
39

CS314

Recursive Backtracking
40

Another Backtracking Problem

A Simple Maze

Search maze until way

out is found. If no way

out possible report that.

CS314

Recursive Backtracking
41

The Local View

North

East

West

Behind me, to the South

is a door leading South

Which way do

I go to get

out?

CS314

Recursive Backtracking
42

Modified Backtracking

Algorithm for Maze
 If the current square is outside, return TRUE to indicate that a solution has been

found.

If the current square is marked, return FALSE to indicate that this path has been

tried.

Mark the current square.

for (each of the four compass directions)

{ if (this direction is not blocked by a wall)

{ Move one step in the indicated direction from the current square.

Try to solve the maze from there by making a recursive call.

If this call shows the maze to be solvable, return TRUE to indicate that

fact.

}

}

Unmark the current square.

Return FALSE to indicate that none of the four directions led to a solution.

CS314

Recursive Backtracking
43

Backtracking in Action

The crucial part of the

algorithm is the for loop

that takes us through the

alternatives from the current

square. Here we have moved

to the North.

for (dir = North; dir <= West; dir++)

{ if (!WallExists(pt, dir))

{if (SolveMaze(AdjacentPoint(pt, dir)))

return(TRUE);

}

CS314

Recursive Backtracking
44

Backtracking in Action

Here we have moved

North again, but there is

a wall to the North .

East is also

blocked, so we try South.

That call discovers that

the square is marked, so

it just returns.

CS314

Recursive Backtracking
45

So the next move we

can make is West.

Where is this leading?

CS314

Recursive Backtracking
46

This path reaches

a dead end.

Time to backtrack!

Remember the

program stack!

CS314

Recursive Backtracking
47

The recursive calls

end and return until

we find

ourselves back here.

CS314

Recursive Backtracking
48

And now we try

South

CS314

Recursive Backtracking
49

Path Eventually Found

CS314

Recursive Backtracking
50

More Backtracking Problems

CS314

Recursive Backtracking
51

Other Backtracking Problems
Knight's Tour

Regular Expressions

Knapsack problem / Exhaustive Search

– Filling a knapsack. Given a choice of items with

various weights and a limited carrying capacity

find the optimal load out. 50 lb. knapsack. items

are 1 40 lb, 1 32 lb. 2 22 lbs, 1 15 lb, 1 5 lb. A

greedy algorithm would choose the 40 lb item

first. Then the 5 lb. Load out = 45lb. Exhaustive

search 22 + 22 + 5 = 49.

CS314

Recursive Backtracking
52

The CD problem
We want to put songs on a Compact Disc.

650MB CD and a bunch of songs of various

sizes.

If there are no more songs to consider return result

else{

Consider the next song in the list.

Try not adding it to the CD so far and use recursion to evaluate best

without it.

Try adding it to the CD, and use recursion to evaluate best with it

Whichever is better is returned as absolute best from here

}

CS314

Recursive Backtracking
53

Another Backtracking Problem
Airlines give out frequent flier miles as a way to get

people to always fly on their airline.

Airlines also have partner airlines. Assume if you

have miles on one airline you can redeem those

miles on any of its partners.

Further assume if you can redeem miles on a

partner airline you can redeem miles on any of its

partners and so forth...

– Airlines don't usually allow this sort of thing.

Given a list of airlines and each airlines partners

determine if it is possible to redeem miles on a

given airline A on another airline B.

CS314

Recursive Backtracking
54

Airline List – Part 1
Delta

– partners: Air Canada, Aero Mexico, OceanAir

United

– partners: Aria, Lufthansa, OceanAir, Quantas, British Airways

Northwest

– partners: Air Alaska, BMI, Avolar, EVA Air

Canjet

– partners: Girjet

Air Canda

– partners: Areo Mexico, Delta, Air Alaska

Aero Mexico

– partners: Delta, Air Canda, British Airways

CS314

Recursive Backtracking
55

Airline List - Part 2
Ocean Air

– partners: Delta, United, Quantas, Avolar

AlohaAir
– partners: Quantas

Aria
– partners: United, Lufthansa

Lufthansa
– partners: United, Aria, EVA Air

Quantas
– partners: United, OceanAir, AlohaAir

BMI
– partners: Northwest, Avolar

Maxair
– partners: Southwest, Girjet

CS314

Recursive Backtracking
56

Airline List - Part 3
Girjet

– partners: Southwest, Canjet, Maxair

British Airways
– partners: United, Aero Mexico

Air Alaska
– partners: Northwest, Air Canada

Avolar
– partners: Northwest, Ocean Air, BMI

EVA Air
– partners: Northwest, Luftansa

Southwest
– partners: Girjet, Maxair

CS314

Recursive Backtracking
57

Problem Example
 If I have miles on Northwest can I redeem them on Aria?

Partial graph:

Northwest

BMI

Air Alaska

EVA Air

Avolar

Ocean Air

Topic 14

Searching and Simple Sorts

"There's nothing in your head the
sorting hat can't see. So try me
on and I will tell you where you
ought to be."

-The Sorting Hat, Harry Potter
and the Sorcerer's Stone

CS314 Searching and Simple Sorts 2

Sorting and Searching
Fundamental problems in computer science

and programming

Sorting done to make searching easier

Multiple different algorithms to solve the

same problem

– How do we know which algorithm is "better"?

Look at searching first

Examples use arrays of ints to illustrate

algorithms

Searching

CS314 Searching and Simple Sorts 4

Searching
Given an array or list of data find the location

of a particular value or report that value is not
present

linear search

– intuitive approach?

– start at first item

– is it the one I am looking for?

– if not go to next item

– repeat until found or all items checked

If items not sorted or unsortable this
approach is necessary

CS314 Searching and Simple Sorts 5

Linear Search
/* pre: data != null

post: return the index of the first occurrence

of target in data or -1 if target not present in

data

*/

public int linearSearch(int[] data, int target) {

for (int i = 0; i < data.length; i++) {

if (data[i] == target) {

return i;

}

}

return -1;

}

CS314 Searching and Simple Sorts 6

Linear Search, Generic
/* pre: data != null, no elements of data == null

target != null

post: return the index of the first occurrence

of target in data or -1 if target not present in

data

*/

public int linearSearch(Object[] data, Object target) {

for (int i = 0; i < data.length; i++)

if (target.equals(data[i]))

return i;

return -1;

}

T(N)? Big O? Best case, worst case, average case?

Clicker 1
What is the average case Big O of linear

search in an array with N items, if an item is

present once?

A. O(1)

B. O(logN)

C. O(N)

D. O(NlogN)

E. O(N2)

CS314 Searching and Simple Sorts 7

CS314 Searching and Simple Sorts 8

Searching in a Sorted Array or List

If items are sorted then we can divide and
conquer

dividing your work in half with each step

– generally a good thing

The Binary Search with array in ascending order

– Start at middle of list

– is that the item?

– If not is it less than or greater than the item?

– less than, move to second half of list

– greater than, move to first half of list

– repeat until found or sub list size = 0

CS314 Searching and Simple Sorts 9

Binary Search

data

low item middle item high item

Is middle item what we are looking for? If not is it

more or less than the target item? (Assume lower)

data

low middle high

item item item

and so forth…

CS314 Searching and Simple Sorts 10

Binary Search in Action

2 3 5 7 11 13 17 19 23 29 31 37 41 4743 53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

public static int bsearch(int[] data, int target) {

int indexOfTarget = -1;

int low = 0;

int high = data.length - 1;

while(indexOfTarget == -1 && low <= high) {

int mid = low + ((high - low) / 2);

if(data[mid] == target)

indexOfTarget = mid;

else if(data[mid] < target)

low = mid + 1;

else.

high = mid - 1;

}

return indexOfTarget;

}

// mid = (low + high) / 2; // may overflow!!!
// or mid = (low + high) >>> 1; using bitwise op

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

CS314 Searching and Simple Sorts 11

Trace When Key == 3

Trace When Key == 30

Variables of Interest?

Clicker 2

CS314 Searching and Simple Sorts 12

What is the worst case Big O of binary search in

an array with N items, if an item is present?

A.O(1)

B.O(logN)

C.O(N)

D.O(NlogN)

E.O(N2)

CS314 Searching and Simple Sorts 13

Generic Binary Search
public static <T extends Comparable<? super T>> int

bsearch(T[] data, T target) {

int result = -1;

int low = 0;

int high = data.length - 1;

while(result == -1 && low <= high) {

int mid = low + ((high - low) / 2);

int compareResult = target.compareTo(data[mid]);

if(compareResult == 0)

result = mid;

else if(compareResult > 0)

low = mid + 1;

else

high = mid - 1; // compareResult < 0

}

return result;

}

CS314 Searching and Simple Sorts 14

Recursive Binary Search
public static int bsearch(int[] data, int target) {

return bsearch(data, target, 0, data.length – 1);

}

public static int bsearch(int[] data, int target,

int low, int high) {

if(low <= high){

int mid = low + ((high - low) / 2);

if(data[mid] == target)

return mid;

else if(data[mid] > target)

return bsearch(data, target, low, mid – 1);

else

return bsearch(data, target, mid + 1, high);

}

return -1;

}

// Clicker 3 Is this a recursive backtracking algorithm?

A. NO

B. YES

CS314 Searching and Simple Sorts 15

Other Searching Algorithms
Interpolation Search

– more like what people really do

Indexed Searching

Binary Search Trees

Hash Table Searching

best-first

A*

Sorting

CS314 Searching and Simple Sorts 17

Sorting
A fundamental application for computation

Done to make finding data (searching) faster

Many different algorithms for sorting

One of the difficulties with sorting is working
with a fixed size storage container (array)

– if resize, that is expensive (slow)

The simple sorts are slow

– bubble sort

– selection sort

– insertion sort

CS314 Searching and Simple Sorts 18

Selection sort
Algorithm

– Search through the data and find the smallest element

– swap the smallest element with the first element

– repeat starting at second element and find the second

smallest element
public static void selectionSort(int[] data) {

for (int i = 0; i < data.length - 1; i++) {

int min = i;

for (int j = i + 1; j < data.length; j++)

if (data[j] < data[min])

min = j;

int temp = data[i];

data[i] = data[min];

data[min] = temp;

}

}

CS314 Searching and Simple Sorts 19

Insertion Sort in Practice

What is the T(N), actual number of statements

executed, of the selection sort code, given an

array of N elements? What is the Big O?

44 68 191 119 119 37 83 82 191 45 158 130 76 153 39 25

CS314 Searching and Simple Sorts 20

Generic Selection Sort
public static <T extends Comparable<? super T>>

void selectionSort(T[] data) {

for(int i = 0; i < data.length - 1; i++) {

int min = i;

for(int j = i + 1; j < data.length; j++)

if(data[min].compareTo(data[j]) > 0)

min = j;

T temp = data[i];

data[i] = data[min];

data[min] = temp;

}

}

CS314 Searching and Simple Sorts 21

Insertion Sort
Another of the O(N2) sorts

The first item is sorted

Compare the second item to the first

– if smaller swap

Third item, compare to item next to it

– need to swap

– after swap compare again

And so forth…

CS314 Searching and Simple Sorts 22

Insertion Sort Code

public void insertionSort(int[] data) {

for (int i = 1; i < data.length; i++) {

int temp = data[i];

int j = i;

while (j > 0 && temp < data[j - 1]) {

// swap elements

data[j] = data[j - 1];

data[j - 1] = temp;

j--;

}

}

}

Best case, worst case, average case Big O?

CS314 Searching and Simple Sorts 23

Clicker 4 - Comparing Algorithms
Which algorithm do you think has a smaller

T(N) given random data, selection sort or

insertion sort?

A. Insertion Sort

B. Selection Sort

C. About the same

Topic 15

Implementing and Using Stacks
"stack n.

The set of things a person has to do in the future. "I haven't

done it yet because every time I pop my stack something new

gets pushed." If you are interrupted several times in the

middle of a conversation, "My stack overflowed" means

"I forget what we were talking about."

-The Hacker's Dictionary

Friedrich L. Bauer
German computer scientist

who proposed "stack method

of expression evaluation"

in 1955.

CS314

Stacks
2

Sharper Tools

Lists

Stacks

CS314

Stacks
3

Stacks
Access is allowed only at one point of the structure,

normally termed the top of the stack

– access to the most recently added item only

 Operations are limited:

– push (add item to stack)

– pop (remove top item from stack)

– top (get top item without removing it)

– isEmpty

Described as a "Last In First Out"

(LIFO) data structure

CS314

Stacks
4

Implementing a stack
need an underlying collection to hold the elements

of the stack

3 obvious choices?

– native array

– linked structure of nodes

– a list!!!

Adding a layer of abstraction.

A HUGE idea.

array implementation

linked list implementation

https://xkcd.com/2347/

https://xkcd.com/2347/
https://xkcd.com/2347/

CS314

Stacks
5

Uses of Stacks
The runtime stack used by a

process (running program) to

keep track of methods in

progress

Search problems

Undo, redo, back, forward

CS314

Stacks
6

Stack Operations
Assume a simple stack for integers.

Stack<Integer> s = new Stack<>();

s.push(12);

s.push(4);

s.push(s.top() + 2);

s.pop();

s.push(s.top());

//what are contents of stack?

CS314

Stacks
7

Clicker 1 - What is Output?
Stack<Integer> s = new Stack<>();

// put stuff in stack

for (int i = 0; i < 5; i++)

s.push(i);

// Print out contents of stack.

// Assume there is a size method.

for (int i = 0; i < s.size(); i++)

System.out.print(s.pop() + " ");

A 0 1 2 3 4 D 2 3 4

B 4 3 2 1 0 E No output due

C 4 3 2 to runtime error

CS314

Stacks
8

Corrected Version
Stack<Integer> s = new Stack<Integer>();

// put stuff in stack

for (int i = 0; i < 5; i++)

s.push(i);

// print out contents of stack

// while emptying it

final int LIMIT = s.size();

for (int i = 0; i < LIMIT; i++)

System.out.print(s.pop() + " ");

//or

// while (!s.isEmpty())

// System.out.println(s.pop());

CS314

Stacks
9

Stack Operations
Write a method to print out contents of stack

in reverse order.

Applications of Stacks

CS314

Stacks
11

Mathematical Calculations
What does 3 + 2 * 4 equal?

2 * 4 + 3? 3 * 2 + 4?

The precedence of operators affects the
order of operations.

A mathematical expression cannot simply be
evaluated left to right.

A challenge when evaluating a program.

Lexical analysis is the process of
interpreting a program.

What about 1 - 2 - 4 ^ 5 * 3 * 6 / 7 ^ 2 ^ 3

CS314

Stacks
12

Infix and Postfix Expressions
The way we are use to writing

expressions is known as infix
notation

Postfix expression does not

require any precedence rules

3 2 * 1 + is postfix of 3 * 2 + 1

evaluate the following postfix
expressions and write out a
corresponding infix expression:

2 3 2 4 * + * 1 2 3 4 ^ * +

1 2 - 3 2 ^ 3 * 6 / + 2 5 ^ 1 -

Clicker Question 2
What does the following postfix expression

evaluate to?

6 3 2 + *

A. 11

B. 18

C. 24

D. 30

E. 36

CS314

Stacks
13

CS314

Stacks
14

Evaluation of Postfix Expressions
Easy to do with a stack

given a proper postfix expression:

– get the next token

– if it is an operand push it onto the stack

– else if it is an operator

• pop the stack for the right hand operand

• pop the stack for the left hand operand

• apply the operator to the two operands

• push the result onto the stack

– when the expression has been exhausted the

result is the top (and only element) of the stack

CS314

Stacks
15

Infix to Postfix
Convert the following equations from infix to

postfix:

2 ^ 3 ^ 3 + 5 * 1

11 + 2 - 1 * 3 / 3 + 2 ^ 2 / 3

Problems:

Negative numbers?

parentheses in expression

CS314

Stacks
16

Infix to Postfix Conversion
Requires operator precedence parsing algorithm

– parse v. To determine the syntactic structure of a
sentence or other utterance

Operands: add to expression

Close parenthesis: pop stack symbols until an open
parenthesis appears

Operators:

Have an on stack and off stack precedence

Pop all stack symbols until a symbol of lower
precedence appears. Then push the operator

End of input: Pop all remaining stack symbols and
add to the expression

CS314

Stacks
17

Simple Example
Infix Expression: 3 + 2 * 4

PostFix Expression:

Operator Stack:

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
18

Simple Example
Infix Expression: + 2 * 4

PostFix Expression: 3

Operator Stack:

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
19

Simple Example
Infix Expression: 2 * 4

PostFix Expression: 3

Operator Stack: +

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
20

Simple Example
Infix Expression: * 4

PostFix Expression: 3 2

Operator Stack: +

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
21

Simple Example
Infix Expression: 4

PostFix Expression: 3 2

Operator Stack: + *

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
22

Simple Example
Infix Expression:

PostFix Expression: 3 2 4

Operator Stack: + *

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
23

Simple Example
Infix Expression:

PostFix Expression: 3 2 4 *

Operator Stack: +

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
24

Simple Example
Infix Expression:

PostFix Expression: 3 2 4 * +

Operator Stack:

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
25

Example
11 + 2 ^ 4 ^ 3 - ((4 + 5) * 6) ^ 2

Show algorithm in action on above equation

CS314

Stacks
26

Balanced Symbol Checking
In processing programs and working with

computer languages there are many

instances when symbols must be balanced

{ } , [] , ()

A stack is useful for checking symbol balance.

When a closing symbol is found it must match

the most recent opening symbol of the same

type.

Applicable to checking html and xml tags!

CS314

Stacks
27

Algorithm for Balanced

Symbol Checking
Make an empty stack

read symbols until end of file

– if the symbol is an opening symbol push it onto

the stack

– if it is a closing symbol do the following

• if the stack is empty report an error

• otherwise pop the stack. If the symbol popped does

not match the closing symbol report an error

At the end of the file if the stack is not empty

report an error

CS314

Stacks
28

Algorithm in practice
list[i] = 3 * (44 - method(foo(list[2 * (i + 1) + foo(

list[i - 1])) / 2 *) - list[method(list[0])];

Complications

– when is it not an error to have non matching symbols?

Processing a file

– Tokenization: the process of scanning an input stream.

Each independent chunk is a token.

Tokens may be made up of 1 or more characters

Topic 16

Queues
"FISH queue: n.

[acronym, by analogy with FIFO (First In,

First Out)] ‘First In, Still Here’. A joking way of

pointing out that processing of a particular

sequence of events or requests has stopped

dead. Also FISH mode and FISHnet; the

latter may be applied to any network that is

running really slowly or exhibiting extreme

flakiness."

-The Jargon File 4.4.7

CS314

Queues
2

Queues
A sharp tool, like stacks

A line

–In England people don’t “get in line”

they “queue up”.

CS314

Queues
3

Queue Properties
Queues are a first in first out data

structure

– FIFO (or LILO, but I guess that sounds a

bit silly)

Add items to the end of the queue

Access and remove from the front

– Access to the element that has been in the

structure the longest amount of time

Used extensively in operating systems

– Queues of processes, I/O requests, and

much more

CS314

Queues
4

Queues in Operating Systems
On a computer with N cores on the CPU, but more

than N processes, how many processes can actually

be executing at one time?

One job of OS, schedule the processes for the CPU

CS314

Queues
5

Queue operations
void enqueue(E item)

– a.k.a. add(E item)

E front()

– a.k.a. E peek()

E dequeue()

– a.k.a. E remove()

boolean isEmpty()

Specify methods in an interface, allow multiple

implementations.

CS314

Queues
6

Queue interface, version 1
public interface Queue314<E> {

//place item at back of this queue

public void enqueue(E item);

//access item at front of this queue

//pre: !isEmpty()

public E front();

//remove item at front of this queue

//pre: !isEmpty()

public E dequeue();

public boolean isEmpty();

}

CS314

Queues
7

Implementing a Queue
Given the internal storage container and

choice for front and back of queue what are

the Big O of the queue operations?

ArrayList LinkedList LinkedList
(Singly Linked) (Doubly Linked)

enqueue

front

dequeue

isEmpty

Clicker 1
If implementing a queue with a singly linked list

with references to the first and last nodes (head

and tail) which end of the list should be the front

of the queue in order to have all queue

operations O(1)?

A. The front of the list should be the front of the queue.

B. The back of the list should be the front of the queue.

C. Either end will work to make all ops O(1).

D. Neither end will allow all ops to be O(1).

CS314

Queues
8

CS314

Queues
9

Alternate Implementation
How about implementing a Queue with a

native array?

– Seems like a step backwards

CS314

Queues
10

Application of Queues
Radix Sort

– radix is a synonym for base. base 10, base 2

Multi pass sorting algorithm that only looks
at individual digits during each pass

Use queues as buckets to store elements

Create an array of 10 queues

Starting with the least significant digit place
value in queue that matches digit

empty queues back into array

repeat, moving to next least significant digit

CS314

Queues
11

Radix Sort in Action: 1s place
original values in array

9, 113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12

Look at ones place

9, 113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12

Array of Queues (all empty initially):

0 5

1 6

2 7

3 8

4 9

CS314

Queues
12

Radix Sort in Action: 1s
original values in array

9, 113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12

Look at ones place

9, 113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12

Queues:

0 70, 40 5

1 6 86

2 12, 252, 12 7 37, 7

3 113, 93 8

4 9 9, 79

CS314

Queues
13

Radix Sort in Action: 10s
Empty queues in order from 0 to 9 back into

array

70, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9, 79

Now look at 10's place

70, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9, 79

Queues:

0 7, 9 5 252

1 12, 12, 113 6

2 7 70, 79

3 37 8 86

4 40 9 93

CS314

Queues
14

Radix Sort in Action: 100s
Empty queues in order from 0 to 9 back into array

7, 9, 12, 12, 113, 37, 40, 252, 70, 79, 86, 93

Now look at 100's place

__7, __9, _12, _12, 113, _37, _40, 252, _70, _79, _86, _93

Queues:

0 7, 9, _12, _12, _37, _40, _70, _79, _86, _93 5

1 113 6

2 252 7

3 8

4 9

CS314

Queues
15

Radix Sort in Action: Final Step

Empty queues in order from 0 to 9 back into

array

7, 9, 12, 12, 40, 70, 79, 86, 93, 113, 252

CS314

Queues
16

Radix Sort Code
public static void sort(int[] list){

ArrayList<Queue<Integer>> queues = new ArrayList<Queue<Integer>>();

for(int i = 0; i < 10; i++)

queues.add(new LinkedList<Integer>());

int passes = numDigits(list[0]); // helper method

// or int passes = (int) Math.log10(list[0]);

for(int i = 1; i < list.length; i++){

int temp = numDigits(list[i]);

if(temp > passes)

passes = temp;

}

for(int i = 0; i < passes; i++){

for(int j = 0; j < list.length; j++)

queues.get(valueOfDigit(list[j], i)).add(list[j]);

int pos = 0;

for(Queue<Integer> q : queues){

while(!q.isEmpty())

list[pos++] = q.remove();

}

}

}

Topic 17

Faster Sorting

"The bubble sort seems to have
nothing to recommend it, except
a catchy name and the fact that it
leads to some interesting
theoretical problems."

- Don Knuth

Previous Sorts
Insertion Sort and Selection Sort are both

average case O(N2)

Today we will look at two faster sorting

algorithms.

– quicksort

– mergesort

CS314 Fast Sorting 2

Properties of Sorting Algorithms
In place?

– Do we use another data structure or not?

– Program stack typically not considered another

data structure if only using O(log N) space

Comparison?

– Works by comparing the items to be sorted to

each other?

– How could we not?

Stable?

– Next slide!

CS314 Fast Sorting 3

CS314 Fast Sorting 4

Stable Sorting
A property of sorts

If a sort guarantees the relative order of
equal items stays the same then it is a stable
sort

[71, 6, 72, 5, 1, 2, 73, -5] original data
– subscripts added for clarity

[-5, 1, 2, 5, 6, 71, 72, 73] sorted data

– result of stable sort

Real world example:
– sort a table in Wikipedia by one criteria, then another

– sort by country, then by major wins

http://en.wikipedia.org/wiki/Golfers_with_most_PGA_Tour_wins

CS314 Fast Sorting 5

Quicksort

 Invented by C.A.R. (Tony) Hoare

 A divide and conquer approach

that uses recursion

1. If the list has 0 or 1 elements it is sorted

2. otherwise, pick any element p in the list. This is

called the pivot value

3. Partition the list minus the pivot into two sub lists

according to values less than or greater than the

pivot. (equal values go to either)

4. return the quicksort of the first list followed by the

quicksort of the second list

CS314 Fast Sorting 6

Quicksort in Action
39 23 17 90 33 72 46 79 11 52 64 5 71

Pick middle element as pivot: 46

Partition list

23 17 5 33 39 11 46 79 72 52 64 90 71

quick sort the less than list

Pick middle element as pivot: 33

23 17 5 11 33 39

quicksort the less than list, pivot now 5

{} 5 23 17 11

quicksort the less than list, base case

quicksort the greater than list

Pick middle element as pivot: 17

and so on….

CS314 Fast Sorting 7

Quicksort on Another Data Set

44 68 191 119 119 37 83 95 191 45 158 130 76 153 39 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Big O of Quicksort?

CS314 Fast Sorting 8

private static void swapReferences(Object[] a, int index1, int index2) {
Object tmp = a[index1];
a[index1] = a[index2];
a[index2] = tmp;

}

private void quicksort(Comparable[] data, int start, int stop) {
if(start < stop) {

int pivotIndex = (start + stop) / 2;

// Place pivot at start position
swapReferences(data, pivotIndex, start);
Comparable pivot = data[start];

// Begin partitioning
int j = start;

// from first to j are elements less than or equal to pivot
// from j to i are elements greater than pivot
// elements beyond i have not been checked yet
for(int i = start + 1; i <= stop; i++) {

//is current element less than or equal to pivot
if (data[i].compareTo(pivot) <= 0) {

// if so move it to the less than or equal portion
j++;
swapReferences(data, i, j);

}
}

//restore pivot to correct spot
swapReferences(data, start, j);
quicksort(data, start, j - 1); // Sort small elements
quicksort(data, j + 1, stop); // Sort large elements

} // else start >= stop, 0 or 1 element, base case, do nothing
}

Clicker 1
What are the best case and worst case

Orders (Big O) for quicksort?

Best Worst

A. O(NlogN) O(N2)

B. O(N2) O(N2)

C. O(N2) O(N!)

D. O(NlogN) O(NlogN)

E. O(N) O(NlogN)

CS314 Fast Sorting 9

Clicker 2
Is quicksort always stable?

A. No

B. Yes

CS314 Fast Sorting 10

CS314 Fast Sorting 11

Merge Sort Algorithm

1. If a list has 1 element or 0

elements it is sorted

2. If a list has more than 1 split

into 2 separate lists

3. Perform this algorithm on each

of those smaller lists

4. Take the 2 sorted lists and

merge them together

Don Knuth cites John von Neumann as the creator

of this algorithm

CS314 Fast Sorting 12

Merge Sort

When implementing

one temporary array

is used instead of

multiple temporary

arrays.

Why?

CS314 Fast Sorting 13

Merge Sort code
/**

* perform a merge sort on the elements of data

* @param data data != null, all elements of data

* are the same data type

*/

public static void mergeSort(Comparable[] data) {

Comparable[] temp = new Comparable[data.length];

sort(data, temp, 0, data.length - 1);

}

private static void sort(Comparable[] data, Comparable[] temp,

int low, int high) {

if(low < high) {

int center = (low + high) / 2;

sort(data, temp, low, center);

sort(data, temp, center + 1, high);

merge(data, temp, low, center + 1, high);

}

}

CS314 Fast Sorting 14

Merge Sort Code
private static void merge(Comparable[] data, Comparable[] temp,

int leftPos, int rightPos, int rightEnd) {

int leftEnd = rightPos - 1;

int tempPos = leftPos;

int numElements = rightEnd - leftPos + 1;

//main loop

while(leftPos <= leftEnd && rightPos <= rightEnd){

if(data[leftPos].compareTo(data[rightPos]) <= 0) {

temp[tempPos] = data[leftPos];

leftPos++;

} else {

temp[tempPos] = data[rightPos];

rightPos++;

}

tempPos++;

}

//copy rest of left half

while (leftPos <= leftEnd) {

temp[tempPos] = data[leftPos];

tempPos++;

leftPos++;

}

//copy rest of right half

while (rightPos <= rightEnd) {

temp[tempPos] = data[rightPos];

tempPos++;

rightPos++;

}

//Copy temp back into data

for (int i = 0; i < numElements; i++, rightEnd--)

data[rightEnd] = temp[rightEnd];

}

Clicker 3
What are the best case and worst case

Orders (Big O) for mergesort?

Best Worst

A. O(NlogN) O(N2)

B. O(N2) O(N2)

C. O(N2) O(N!)

D. O(NlogN) O(NlogN)

E. O(N) O(NlogN)

CS314 Fast Sorting 15

Clicker 4
Is mergesort always stable?

A. No

B. Yes

CS314 Fast Sorting 16

Clicker 5
You have 1,000,000 distinct items in random

order that you will be searching. How many

searches need to be performed before the

data is changed to make it worthwhile to sort

the data before searching?

A. ~40

B. ~100

C. ~500

D. ~2,000

E. ~500,000
CS314 Fast Sorting 17

CS314 Fast Sorting 18

Comparison of Various Sorts (2001)

Num Items Selection Insertion Quicksort

1000 0.016 0.005 0 ??

2000 0.059 0.049 0.006

4000 0.271 0.175 0.005

8000 1.056 0.686 0??

16000 4.203 2.754 0.011

32000 16.852 11.039 0.045

64000 expected? expected? 0.068

128000 expected? expected? 0.158

256000 expected? expected? 0.335

512000 expected? expected? 0.722

1024000 expected? expected? 1.550

times in seconds

Comparison of Various Sorts (2011)
Num Items Selection Insertion Quicksort Merge Arrays.sort

1000 0.002 0.001 - - -

2000 0.002 0.001 - - -

4000 0.006 0.004 - - -

8000 0.022 0.018 - - -

16000 0.086 0.070 0.002 0.002 0.002

32000 0.341 0.280 0.004 0.005 0.003

64000 1.352 1.123 0.008 0.010 0.007

128000 5.394 4.499 0.017 0.022 0.015

256000 21.560 18.060 0.035 0.047 0.031

512000 86.083 72.303 0.072 0.099 0.066

1024000 ??? ??? 0.152 0.206 0.138

2048000 0.317 0.434 0.287

4096000 0.663 0.911 0.601

8192000 1.375 1.885 1.246

Comparison of Various Sorts (2020)
Num

Items

Selection Insertion Quicksort Mergesort Arrays.

sort(int)

Arrays.so

rt(Integer)
Arrays.

parallelSort

1,000 <0.001 <0.001 - - - - -

2,000 0.001 <0.001 - - - - -

4,000 0.004 0.003 - - - - Speeds

8,000 0.017 0.010 - - - - up????

16,000 0.065 0.040 0.002 0.002 0.003 0.011 0.007

32,000 0.258 0.160 0.002 0.003 0.002 0.008 0.003

64,000 1.110 0.696 0.005 0.008 0.004 0.011 0.001

128,000 4.172 2.645 0.011 0.015 0.009 0.024 0.002

256,000 16.48 10.76 0.024 0.034 0.018 0.051 0.004

512,000 70.38 47.18 0.049 0.068 0.040 0.114 0.008

1,024,000 - - 0.098 0.143 0.082 0.259 0.017

2,048,000 - - 0.205 0.296 0.184 0.637 0.035

4,096,000 - - 0.450 0.659 0.383 1.452 0.079

8,192,000 - - 0.941 1.372 0.786 3.354 0.148

Fast Sorting 21

Concluding Thoughts
Language libraries often have sorting

algorithms in them

– Java Arrays and Collections classes

– C++ Standard Template Library

– Python sort and sorted functions

Hybrid sorts

– when size of unsorted list or portion of array is

small use insertion sort, otherwise use

O(N log N) sort like Quicksort or Mergesort

Concluding Thoughts
Sorts still being created!

Timsort (2002)

– created for python version 2.3

– now used in Java version 7.0+

– takes advantage of real world data

– real world data is usually partially sorted,

not totally random

Library Sort (2006)

– Like insertion sort,

but leaves gaps for later elements

Fast Sorting 22

CS314 Fast Sorting 23

Topic 18

Binary Trees

"A tree may grow a

thousand feet tall, but

its leaves will return to

its roots."

-Chinese Proverb

2

Definitions
A tree is an abstract data type

– one entry point, the root

– Each node is either a leaf or an

internal node

– An internal node has 1 or more

children, nodes that can be

reached directly from that

internal node.

– The internal node is said to be

the parent of its child nodes

root node

leaf nodes

internal

nodes

Binary TreesCS314

3

Properties of Trees
Only access point is the root

All nodes, except the root, have one parent

– like the inheritance hierarchy in Java

Traditionally trees drawn upside down

root

leavesBinary TreesCS314

4

Properties of Trees and Nodes
siblings: two nodes that

have the same parent

edge: the link from one

node to another

path length: the number of

edges that must be

traversed to get from one

node to another

root

siblings

edge

path length from root to this

node is 3

Binary TreesCS314

0

1 2

3

4 5

5

More Properties of Trees
depth: the path length from the root of the

tree to this node

height of a node: The maximum distance
(path length) of any leaf from this node

– a leaf has a height of 0

– the height of a tree is the height of the root of that
tree

descendants: any nodes that can be reached
via 1 or more edges from this node

ancestors: any nodes for which this node is a
descendant

Binary TreesCS314

6

Tree Visualization

DB C

FE

A

G H JI

K L M

N O

Binary TreesCS314

Clicker 1
What is the depth of the node that contains

M on the previous slide?

A. 0

B. 1

C. 2

D. 3

E. 4

Clicker 2 - Same tree, same choices

What is the height of the node

that contains D?
7Binary TreesCS314

8

Binary Trees
There are many variations on trees but we

will start with binary trees

binary tree: each node has at most two

children

– the possible children are usually referred to as

the left child and the right child

parent

left child right child

Binary TreesCS314

9

Full Binary Tree
full binary tree: a binary tree in which each

node has 2 or 0 children

Binary TreesCS314

Clicker 3
What is the maximum height of a full binary

tree with 11 nodes?

A. 3

B. 5

C. 7

D. 10

E. Not possible to have full binary tree with 11

nodes.

CS314 Binary Trees 10

11

Complete Binary Tree
complete binary tree: a binary tree in which

every level, except possibly the deepest is

completely filled. At depth n, the height of the

tree, all nodes are as far left as possible

Where would the next node go

to maintain a complete tree?
Binary TreesCS314

Clicker 4
What is the height of a complete binary tree

that contains N nodes?

A. O(1)

B. O(logN)

C. O(N1/2)

D. O(N)

E. O(NlogN)

Recall, order can be applied to any function.

It doesn't just apply to running time.

CS314 Binary Trees 12

13

Perfect Binary Tree
perfect binary tree: a binary tree with all leaf

nodes at the same depth. All internal nodes

have exactly two children.

a perfect binary tree has the maximum

number of nodes for a given height

a perfect binary tree has (2(n+1) - 1) nodes

where n is the height of the tree
– height = 0 -> 1 node

– height = 1 -> 3 nodes

– height = 2 -> 7 nodes

– height = 3 -> 15 nodes

Binary TreesCS314

14

A Binary Node class
public class Bnode<E> {

private E myData;

private Bnode<E> myLeft;

private Bnode<E> myRight;

public BNode();

public BNode(Bnode<E> left, E data,

Bnode<E> right)

public E getData()

public Bnode<E> getLeft()

public Bnode<E> getRight()

public void setData(E data)

public void setLeft(Bnode<E> left)

public void setRight(Bnode<E> right)

}

Binary TreesCS314

15

Binary Tree Traversals
Many algorithms require all nodes of a binary tree

be visited and the contents of each node processed

or examined.

There are 4 traditional types of traversals

– preorder traversal: process the root, then process all sub

trees (left to right)

– in order traversal: process the left sub tree, process the

root, process the right sub tree

– post order traversal: process the left sub tree, process

the right sub tree, then process the root

– level order traversal: starting from the root of a tree,

process all nodes at the same depth from left to right,

then proceed to the nodes at the next depth.
Binary TreesCS314

16

Results of Traversals
To determine the results of a traversal on a

given tree draw a path around the tree.

– start on the left side of the root and trace around

the tree. The path should stay close to the tree.

12

49 42

513

pre order: process when

pass down left side of node

12 49 13 5 42

in order: process when pass

underneath node

13 49 5 12 42

post order: process when

pass up right side of node

13 5 49 42 12 Binary TreesCS314

17

Clicker 5 - Tree Traversals

DC

Z

A

G H J

Q L

Binary Trees

What is a the result of a

post order traversal of

the tree to the left?

A. Z C G A Q H L D J

B. Z G C Q L H J D A

C. A C Z G D H Q L J

D. A C D Z G H J Q L

E. None of these

18

Implement Traversals
Implement preorder, inorder, and post order

traversal

– Big O time and space?

Implement a level order traversal using a

queue

– Big O time and space?

Implement a level order traversal without a

queue

– target depth

Binary TreesCS314

Breadth First Search

Depth First Search
from NIST - DADS

breadth first search: Any search algorithm that

considers neighbors of a vertex (node), that is,

outgoing edges (links) of the vertex's predecessor

in the search, before any outgoing edges of the

vertex

depth first search: Any search algorithm that

considers outgoing edges (links of children) of a

vertex (node) before any of the vertex's (node)

siblings, that is, outgoing edges of the vertex's

predecessor in the search. Extremes are searched

first.

http://xlinux.nist.gov/dads/

Clicker 6
Which traversal of a tree is a breadth first

search?

A. Level order traversal

B. Pre order traversal

C. In order traversal

D. Post order traversal

E. More than one of these

CS314 Binary Trees 20

Breadth First
A level order traversal of a tree could be

used as a breadth first search

Search all nodes in a level before going

down to the next level

CS314 Binary Trees 21

Breadth First Search of Tree

CS314 Binary Trees 22

C

A G X Z

W

B

Q P O U

K ZL

M R

Breadth First Search

CS314 Binary Trees 23

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 0 first
Find Node with B

Breadth First Search

CS314 Binary Trees 24

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 1
Find Node with B

Breadth First Search

CS314 Binary Trees 25

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 1
Find Node with B

Breadth First Search

CS314 Binary Trees 26

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 1
Find Node with B

Breadth First Search

CS314 Binary Trees 27

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 1
Find Node with B

Breadth First Search

CS314 Binary Trees 28

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 1 nextFind Node with B

Breadth First Search

CS314 Binary Trees 29

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 2 nextFind Node with B

Breadth First Search

CS314 Binary Trees 30

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 2 nextFind Node with B

Breadth First Search

CS314 Binary Trees 31

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 2 nextFind Node with B

Breadth First Search

CS314 Binary Trees 32

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 2 nextFind Node with B

Breadth First Search

CS314 Binary Trees 33

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 2 nextFind Node with B

Breadth First Search

CS314 Binary Trees 34

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 3 nextFind Node with B

Breadth First Search

CS314 Binary Trees 35

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 3 nextFind Node with B

Breadth First Search

CS314 Binary Trees 36

C

A G X Z

W

B

Q P O U

K ZL

M R

search level 3 nextFind Node with B

BFS - DFS
Breadth first search typically implemented

with a Queue

Depth first search typically implemented with

a stack, implicit with recursion or iteratively

with an explicit stack

which technique do I use?

– depends on the problem

CS314 Binary Trees 37

Depth First Search of Tree

CS314 Binary Trees 38

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 39

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 40

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 41

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 42

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 43

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 44

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 45

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 46

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 47

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 48

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 49

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 50

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 51

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Depth First Search of Tree

CS314 Binary Trees 52

C

A G X Z

W

B

Q P O U

K ZL

M R

Find B

Topic 19

Binary Search Trees

"Yes. Shrubberies are my trade. I am a
shrubber. My name is 'Roger the Shrubber'. I
arrange, design, and sell shrubberies."

-Monty Python and The Holy Grail

CS314 2

The Problem with Linked Lists
Accessing a item from a linked list takes

O(N) time for an arbitrary element

Binary trees can improve upon this and

reduce access to O(log N) time for the

average case

Expands on the binary search technique and

allows insertions and deletions

Worst case degenerates to O(N) but this can

be avoided by using balanced trees (AVL,

Red-Black)

Binary Search Trees

CS314 3

Binary Search Trees
A binary search tree is a binary tree in which every

node's left subtree holds values less than the

node's value, and every right subtree holds values

greater than the node's value.

A new node is added as a leaf.

parent

left child right child

root

17

11 19

< 17 > 17

Binary Search Trees

BST Insertion
Add the following values one at a time to an

initially empty binary search tree using the

simple algorithm:

50 90 20 78 10 20 28 -25

What is the resulting tree?

CS314 Binary Search Trees 4

Traversals
What is the result of an inorder traversal of

the resulting tree?

How could a preorder traversal be useful?

CS314 Binary Search Trees 5

Clicker 1
After adding N distinct elements in random

order to a Binary Search Tree what is the

expected height of the tree? (using the

simple insertion algorithm)

A. O(logN)

B. O(N1/2)

C. O(N)

D. O(NlogN)

E. O(N2)

CS314 6Binary Search Trees

Clicker 2
After adding N distinct elements to a Binary

Search Tree what is the worst case height

of the tree? (using the simple insertion

algorithm)

A. O(logN)

B. O(N1/2)

C. O(N)

D. O(NlogN)

E. O(N2) `

CS314 7Binary Search Trees

CS314 8

Worst Case Performance
Insert the following values into an initially

empty binary search tree using the simple,

naïve algorithm:

2 3 5 7 11 13 17

What is the height of the tree?

What is the worst case height of a BST?

Binary Search Trees

CS314 9

Node for Binary Search Trees
public class BSTNode<E extends Comparable<E> {

private Comparable<E> myData;

private BSTNode<E> myLeft;

private BSTNode<E> myRightC;

public BinaryNode(E item)

{ myData = item; }

public E getValue()

{ return myData; }

public BinaryNode<E> getLeft()

{ return myLeft; }

public BinaryNode<E> getRight()

{ return myRight; }

public void setLeft(BSTNode<E> b)

{ myLeft = b; }

// setRight not shown

} Binary Search Trees

CS314 10

More on Implementation
Many ways to implement BSTs

Using nodes is just one and even then many

options and choices

public class BinarySearchTree<E extends Comparable<E>> {

private BSTNode<E> root;

private int size;

Binary Search Trees

CS314 11

Add an Element, Recursive

Binary Search Trees

CS314 12

Add an Element, Iterative

Binary Search Trees

Clicker 3
What are the best case and worst case order

to add N distinct elements, one at a time, to

an initially empty binary search tree using the

simple add algorithm?

Best Worst

A. O(N) O(N)

B. O(NlogN) O(NlogN)

C. O(N) O(NlogN)

D. O(NlogN) O(N2)

E. O(N) O(N2)
13

// given int[] data

// no duplicates in

// data

BST<Integer> b =

new BST<Integer>();

for(int x : data)

b.add(x);

CS314 14

Performance of Binary Trees
For the three core operations (add, access,

remove) a binary search tree (BST) has an

average case performance of O(log N)

Even when using the naïve insertion /

removal algorithms

– no checks to maintain balance

– balance achieved based on the randomness of

the data inserted

Binary Search Trees

CS314 15

Remove an Element
Five (four?) cases

– not present

– node is a leaf, 0 children (easy)

– node has 1 child, left or right (easy)

– node has 2 children ("interesting")

Binary Search Trees

CS314 16

Properties of a BST

The minimum value is in the left
most node

The maximum value is in the right
most node

–useful when removing an element
from the BST

Binary Search Trees

CS314 17

Alternate Implementation
In class examples of dynamic data structures

have relied on null terminated ends.

– Use null to show end of list or no children

Alternative form

– use structural recursion and polymorphism

Binary Search Trees

CS314 18

BST Interface

public interface BST<E extends

Comparable<? super E>> {

public int size();

public boolean contains(E obj);

public BST<E> add(E obj);

}

Binary Search Trees

CS314 19

EmptyBST

public class EmptyBST<E extends Comparable<? super E>>

implements BST<E> {

private static final EmptyBST theOne = new EmptyBST();

private EmptyBST() {}

public static EmptyBST getEmptyBST(){ return theOne; }

public BST<E> add(E obj) { return new NEBST(obj); }

public boolean contains(E obj) { return false; }

public int size() { return 0; }

} Binary Search Trees

CS314 20

Non Empty BST – Part 1
public class NEBST <E extends Comparable<? super E>> implements BST<E> {

private E data;

private BST left;

private BST right;

public NEBST(E d) {

data = d;

right = EmptyBST.getEmptyBST();

left = EmptyBST.getEmptyBST();

}

public BST add(E obj) {

int direction = obj.compareTo(data);

if (direction < 0)

left = left.add(obj);

else if (direction > 0)

right = right.add (obj);

return this;

}
Binary Search Trees

CS314 21

Non Empty BST – Part 2

public boolean contains(E obj){

int dir = obj.compareTo(data);

if(dir == 0)

return true;

else if (dir < 0)

return left.contains(obj);

else

return right.contains(obj);

}

public int size() {

return 1 + left.size() + right.size();

}

} Binary Search Trees

Topic 23

Red Black Trees

"People in every direction
No words exchanged
No time to exchange
And all the little ants are marching
Red and Black antennas waving"

-Ants Marching, Dave Matthew's Band

"Welcome to L.A.'s Automated Traffic Surveillance and Control Operations

Center. See, they use video feeds from intersections and specifically

designed algorithms to predict traffic conditions, and thereby control traffic

lights. So all I did was come up with my own... kick ass algorithm to

sneak in, and now we own the place."

-Lyle, the Napster, (Seth Green), The Italian Job

Clicker 1
2000 elements are inserted one at a time

into an initially empty binary search tree

using the simplenaive algorithm. What is the

maximum possible height of the

resulting tree?

A. 1

B. 11

C. 21

D. 500

E. 1999
CS314

Red Black Trees
2

CS314

Red Black Trees
3

Binary Search Trees
Average case and worst case Big O for

– insertion

– deletion

– access

Balance is important. Unbalanced trees give

worse than log N times for the basic tree

operations

Can balance be guaranteed?

CS314

Red Black Trees
4

Red Black Trees
A BST with more complex algorithms to

ensure balance

Each node is labeled as Red or Black.

Path: A unique series of links (edges)

traverses from the root to each node.

– The number of edges (links) that must be

followed is the path length

In Red Black trees paths from the root to

elements with 0 or 1 child are of particular

interest

CS314

Red Black Trees
5

Paths to Single or Zero Child

Nodes

How many?
19

12 35

3 16 5621

1

CS314

Red Black Trees
6

Red Black Tree Rules

1. Is a binary search tree

2. Every node is colored either red or

black

3. The root of the whole tree is black

4. If a node is red its children must be

black. (a.k.a. the red rule)

5. Every path from a node to a null link

must contain the same number of black

nodes (a.k.a. the path rule)

CS314

Red Black Trees
7

Example of a Red Black Tree

The root of a Red Black tree is black

Every other node in the tree follows these rules:

– Rule 3: If a node is Red, all of its children are Black

– Rule 4: The number of Black nodes must be the same in all paths

from the root node to null nodes

19

12 35

3 16 5621

30

CS314

Red Black Trees
8

Red Black Tree?
19

12 35

0

-10

-5

50

75

135

Clicker 2
Is the tree on the previous slide a binary

search tree? Is it a red black tree?

BST? Red-Black?

A. No No

B. No Yes

C. Yes No

D. Yes Yes

CS314

Red Black Trees
9

CS314

Red Black Trees
10

Red Black Tree?

19

12 35

3 16

0

Perfect?

Full?

Complete?

Clicker 3
Is the tree on the previous slide a binary

search tree? Is it a red black tree?

BST? Red-Black?

A. No No

B. No Yes

C. Yes No

D. Yes Yes

CS314

Red Black Trees
11

CS314

Red Black Trees
12

Implications of the Rules
If a Red node has any children, it must have

two children and they must be Black. (Why?)

If a Black node has only one child that child

must be a Red leaf. (Why?)

Due to the rules there are limits on how

unbalanced a Red Black tree may become.

– on the previous example may we hang a new

node off of the leaf node that contains 0?

Properties of Red Black Trees
If a Red Black Tree is complete, with all

Black nodes except for Red leaves at the

lowest level the height will be minimal, ~log N

To get the max height for N elements there

should be as many Red nodes as possible

down one path and all other nodes are Black
– This means the max height would b approximately

2 * log N (don't use this as a formula)

– typically less than this

– see example on next slide

– interesting exercise, draw max height tree with N nodes

CS314

Red Black Trees
14

Max Height Red Black Tree

14

12 35

56

43 99

21
1 13

15 25

80 100

70

14 nodes, height 5

CS314

Red Black Trees
15

Maintaining the Red Black

Properties in a Tree
Insertions

Must maintain rules of Red Black Tree.

New Node always a leaf

– can't be black or we will violate rule 4

– therefore the new leaf must be red

– If parent is black, done (trivial case)

– if parent red, things get interesting because a red

leaf with a red parent violates rule 3

CS314

Red Black Trees
16

Insertions with Red Parent - Child

30

15 70

85

80 90

60
10 20

50 65
5

40 55

Must modify tree when insertion would result in

Red Parent - Child pair using color changes and

rotations.

CS314

Red Black Trees
17

Case 1
Suppose sibling of parent is Black.

– by convention null nodes are black

In the previous tree, true if we are inserting a

3 or an 8.

– What about inserting a 99? Same case?

Let X be the new leaf Node, P be its Red

Parent, S the Black sibling and G, P's and

S's parent and X's grandparent

– What color is G?

CS314

Red Black Trees
18

Case 1 - The Picture

G

P S

ED
X C

A B

Relative to G, X could be an inside or outside node.

Outside -> left left or right right moves

Inside -> left right or right left moves

CS314

Red Black Trees
19

Fixing the Problem

G

P S

ED
X C

A B
If X is an outside node a single

rotation between P and G fixes the problem.

A rotation is an exchange of roles between a parent

and child node. So P becomes G's parent. Also must

recolor P and G.

CS314

Red Black Trees
20

Single Rotation

P

X G

S
CA B

ED
Apparent rule violation?

Recall, S is null if X is a leaf, so no problem

If this occurs higher in the tree (why?) subtrees A, B,

and C will have one more black node than D and E.

CS314

Red Black Trees
21

Case 2
What if X is an inside node relative to G?

– a single rotation will not work

Must perform a double rotation

– rotate X and P

– rotate X and G
G

P S

ED
XA

B C

First Rotation
Rotate P and X, no color change

What does this actually do?

CS314

Red Black Trees
22

G

P

S

ED

X

A B

C

CS314

Red Black Trees
23

After Double Rotation

X

P G

S
CA B

ED

CS314

Red Black Trees
24

Case 3

Sibling is Red, not Black

G

P S

ED
X

B

C

A

Any problems?

CS314

Red Black Trees
25

Fixing Tree when S is Red
Must perform single rotation between parent,

P and grandparent, G, and then make

appropriate color changes

P

X G

E

C
BA S

D

CS314

Red Black Trees
26

More on Insert
Problem: What if on the previous example

G's parent (GG!) had been red?

Easier to never let Case 3 ever occur!

On the way down the tree, if we see a node X that
has 2 Red children, we make X Red and its two
children black.
– if recolor the root, recolor it to black

– the number of black nodes on paths below X remains
unchanged

– If X's parent was Red then we have introduced 2
consecutive Red nodes.(violation of rule)

– to fix, apply rotations to the tree, same as inserting node

CS314

Red Black Trees
27

Example of Inserting Sorted Numbers

1 2 3 4 5 6 7 8 9 10

1

Insert 1. A leaf so

red. Realize it is

root so recolor

to black.

1

CS314

Red Black Trees
28

Insert 2

1

2

make 2 red. Parent

is black so done.

CS314

Red Black Trees
29

Insert 3

1

2

3

Insert 3. Parent is red.

Parent's sibling is black

(null) 3 is outside relative

to grandparent. Rotate

parent and grandparent

2

1 3

On way down see

2 with 2 red children.

Recolor 2 red and

children black.

CS314

Red Black Trees
30

Insert 4

2

1 3

2

1 3

4

When adding 4

parent is black

so done.

Set root to black!

2

1 3

CS314

Red Black Trees
31

Insert 5

2

1 3

4

5

5's parent is red.

Parent's sibling is

black (null). 5 is

outside relative to

grandparent (3) so rotate

parent and grandparent then

recolor

CS314

Red Black Trees
32

Finish insert of 5

2

1 4

3 5

CS314

Red Black Trees
33

Insert 6

2

1 4

3 5

On way down see

4 with 2 red

children. Make

4 red and children

black. 4's parent is

black so no problem.

CS314

Red Black Trees
34

Finishing insert of 6

2

1 4

3 5

6

6's parent is black

so done.

CS314

Red Black Trees
35

Insert 7

2

1 4

3 5

6

7

7's parent is red.

Parent's sibling is

black (null). 7 is

outside relative to

grandparent (5) so

rotate parent and

grandparent then recolor

CS314

Red Black Trees
36

Finish insert of 7

2

1 4

3 6

5 7

CS314

Red Black Trees
37

Insert 8

2

1 4

3 6

5 7

The caveat!!!

Getting unbalanced

on that right subtree?!?

On way down see 6

with 2 red children.

Make 6 red and

children black. This

creates a problem

because 6's parent, 4, is

also red. Must perform

rotation.

CS314

Red Black Trees
38

Still Inserting 8

2

1 4

3 6

5 7

Recolored now

need to

rotate.

Recall, the subtrees

and the one extra

black node.

CS314

Red Black Trees
39

Finish inserting 8

4

2

3

6

5 71

8

Result of

rotation

CS314

Red Black Trees
40

Insert 9

4

2

3

6

5 71

8

9

On way down see 4 has two red children

so recolor 4 red and children black.

Realize 4 is the root so recolor black

CS314

Red Black Trees
41

Finish Inserting 9

4

2

3

6

5 81

7 9
After rotations and recoloring

CS314

Red Black Trees
42

Insert 10

4

2

3

6

5 81

7 9On way down see 8 has two

red children so change 8 to

red and children black 10

CS314

Red Black Trees
43

Insert 11

4

2

3

6

5 81

7 9

10

11

Again a rotation is

needed.

CS314

Red Black Trees
44

Finish inserting 11

4

2

3

6

5 81

7 10

9 11

Topic 20: Huffman Coding

The author should gaze at Noah, and ...

learn, as they did in the Ark, to crowd a

great deal of matter into a very small

compass.

Sydney Smith, Edinburgh Review

Agenda

• Encoding

• Compression

• Huffman Coding

2

Encoding

• UTCS

• 85 84 67 83

• 01010101 01010100 01000011 01010011

• What is stored in a jpg file? A text file? A Java file?
A png file? A pdf file? An mp3 file? An mp4 file? An
excel spreadsheet file? A zip file?

• open a bitmap in a text editor

3

ASCII - UNICODE

4

Text File

5

Text File???

6

Bitmap and JPEG File

7

Bitmap File????

8

JPEG File

9

JPEG VS BITMAP

• JPEG File

10

Encoding Schemes

• "It's all 1s and 0s"

• What do the 1s and 0s mean?

• 50 121 109

• ASCII -> 2ym

• Red Green Blue->

dark teal?

11

• Image file formats: bmp, png, jpg, gif, tiff,

svg, cgm, pgm

• XKCD, Standards: https://xkcd.com/927/

Why So Many Encoding /

Decoding Schemes?

12

https://xkcd.com/927/
https://en.wikipedia.org/wiki/Image_file_formats
https://xkcd.com/927/

Agenda

• Encoding

• Compression

• Huffman Coding

13

Compression

• Compression: Storing the same information

but in a form that takes less memory

• lossless and lossy compression

• Recall:

14

Lossy Artifacts

15

Compression

• 00000000000000000000000000000000

111111111111111111111111111111

• 0 00100000 1 00011110

16

Why Bother?

• Is compression really necessary?

5 Terabytes.

~5,000,000,000,0000 bytes 17

Clicker 1

• With computer storage so cheap, is

compression really necessary?

A. No

B. Yes

C. It Depends

18

Little Pipes and Big Pumps

Home Internet Access

• 400 Mbps roughly $115

per month

• 12 months * 3 years *

$115 =

• 400,000,000 bits /second

= 5 * 107 bytes / sec

CPU Capability

• $2,000 for a good laptop

or desktop

• Intel® Core™ i9-7900X

• Assume it lasts 3 years.

• Memory bandwidth

40 GB / sec

= 4.0 * 1010 bytes / sec

• on the order of

6.4 * 1011 instructions /

second

19

Mobile Devices?

Cellular Network

• Your mileage may vary …

• Mega bits per second

• AT&T

17 mbps download, 7 mbps

upload

• T-Mobile & Verizon

12 mbps download, 7 mbps

upload

• 17,000,000 bits per

second = 2.125 x 106

bytes per second
http://tinyurl.com/q6o7wan

iPhone CPU

• Apple A6 System on a

Chip

• Coy about IPS

• 2 cores

• Rough estimates:

1 x 1010 instructions per

second

20

http://tinyurl.com/q6o7wan

Little Pipes and Big Pumps

Data In

From Network

CPU

21

Agenda

• Encoding

• Compression

• Huffman Coding

22

23

Huffman Coding

• Proposed by Dr. David A. Huffman

– Graduate class in 1951 at MIT with Robert Fano

– term paper or final

– term paper: prove min bits needed for binary

coding of data

– A Method for the Construction of Minimum

Redundancy Codes

• Applicable to many forms of data transmission

– Our example: text files

– still used in fax machines, mp3 encoding, others

https://en.wikipedia.org/wiki/Robert_Fano

24

The Basic Algorithm

• Huffman coding is a form of statistical coding

• Not all characters occur with the same

frequency, in typical text files. (can be true

when reading raw bytes as well)

• Yet in ASCII all characters are allocated the

same amount of space

– 1 char = 1 byte, be it e or x

–fixed width encoding

25

The Basic Algorithm

• Any savings in tailoring codes to

frequency of character?

• Code word lengths are no longer fixed like

ASCII or Unicode

• Code word lengths vary and will be

shorter for the more frequently used

characters

• Examples use characters for clarity, but in

reality just read raw bytes from file.

26

The Basic Algorithm

1. Scan file to be compressed and determine

frequency of all values.

2. Sort or prioritize values based on

frequency in file.

3. Build Huffman code tree based on

prioritized values.

4. Perform a traversal of tree to determine

new codes for values.

5. Scan file again to create new file

using the new Huffman codes

27

Building a Tree
Scan the original text

• Consider the following short text

Eerie eyes seen near lake.

• Determine frequency of all numbers (values

or in this case characters) in the text

28

Building a Tree
Scan the original text

Eerie eyes seen near lake.

• What characters are present?

E e r i space

y s n a r l k .

29

Building a Tree
Scan the original text

Eerie eyes seen near lake.
• What is the frequency of each character in the

text?

Char Freq. Char Freq. Char Freq.
E 1 y 1 k 1
e 8 s 2 . 1
r 2 n 2
i 1 a 2
space 4 l 1

30

Building a Tree
Prioritize values from file

• Create binary tree nodes with a value

and the frequency for each value

• Place nodes in a priority queue

– The lower the frequency, the higher the

priority in the queue

31

• The queue after enqueueing all nodes

• Null Pointers are not shown

• sp = space

Building a Tree

E

1

i

1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

front back

32

Building a Tree

• While priority queue contains two or more

nodes

– Create new node

– Dequeue node and make it left child

– Dequeue next node and make it right child

– Frequency of new node equals sum of frequency of

left and right children

• New node does not contain value

– Enqueue new node back into the priority queue

33

Building a Tree

E

1

i

1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

34

Building a Tree

E
1

i
1

2

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

35

Building a Tree

E
1

i
1

k

1

l

1

y

1

.

1

a

2

n

2

r

2

s

2

sp

4

e

8
2

36

Building a Tree

E
1

i
1

y

1

.

1

a

2

n

2

r

2

s

2

sp

4

e

8
2

k
1

l
1

2

37

Building a Tree

E
1

i
1

y

1

.

1

a

2

n

2

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

38

Building a Tree

E
1

i
1

a

2

n

2

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

39

Building a Tree

E
1

i
1

a

2

n

2

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

40

Building a Tree

E
1

i
1

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

41

Building a Tree

E
1

i
1

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

42

Building a Tree

E
1

i
1

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

43

Building a Tree

E
1

i
1

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

44

Building a Tree

E
1

i
1

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4

45

Building a Tree

E
1

i
1

sp

4

e

82

k
1

l
1

2
y
1

.
1

2

a
2

n
2

4

r
2

s
2

4 4

46

Building a Tree

E
1

i
1

sp
4

e

82

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4 4

6

47

Building a Tree

E
1

i
1

sp
4

e

8
2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4 4 6

48

Building a Tree

E
1

i
1

sp
4

e

82

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

49

Building a Tree

E
1

i
1

sp
4

e

82

k
1

l
1

2

r
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6 8

50

Building a Tree

E
1

i
1

sp
4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10

51

Building a Tree

E
1

i
1

sp
4

e

8

2

k
1

l
1

2

y
1

.
1

2a
2

n
2

4

r
2

s
2

4 4
6

8 10

Clicker 2 - What is happening to the values with a

low frequency compared to values with a high freq.?

A. Smaller Depth B. Larger Depth

C. Something else

52

Building a Tree

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10

16

53

Building a Tree

E
1

i
1

sp
4

e
82

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10
16

54

Building a Tree

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10
16

26

55

Building a Tree

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10
16

26

•After

enqueueing

this node

there is only

one node left

in priority

queue.

56

Building a Tree

Dequeue the single node

left in the queue.

This tree contains the

new code words for each

character.

Frequency of root node

should equal number of

characters in text.

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10
16

26

Eerie eyes seen near lake. 4 spaces,

26 characters total

57

Encoding the File
Traverse Tree for Codes

• Perform a traversal of the tree

to obtain new code words

(sequence of 0's and 1's)

• left, append a 0 to code word

• right append a 1 to code word

• code word is only complete

when a leaf node is reached

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10
16

26

58

Encoding the File
Traverse Tree for Codes

Original Value New Code
E (0100 0101) 0000
i (0110 1001) 0001
k (0110 1011) 0010
l (0110 1100) 0011
y (0111 1001) 0100
. (0010 1110) 0101
space (0010 0000) 011
e (0110 0101) 10
a (0110 0001) 1100
n (0110 1110) 1101
r (0111 0010) 1110
s (0111 0011) 1111

Prefix free codes. The code for a value in never the prefix
of another code.

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10
16

26

59

Encoding the File

• Rescan original file and

encode file using new code

words

Eerie eyes seen near lake.

Char New Code
E 0000
i 0001
k 0010
l 0011
y 0100
. 0101
space 011
e 10
a 1100
n 1101
r 1110
s 1111

000010111000011001110

010010111101111111010

110101111011011001110

011001111000010100101

60

Encoding the File
Results

• Have we made things any

better?

• 84 bits to encode the file

• ASCII would take 8 * 26 =

208 bits

000010111000011001110

010010111101111111010

110101111011011001110

011001111000010100101

If modified code used 4 bits per

character are needed. Total bits

4 * 26 = 104. Savings not as great.

61

Decoding the File

• How does receiver know what the codes are?

• Tree constructed for each file.

– Considers frequency for each file

– Big hit on compression, especially for smaller files

• Tree predetermined

– based on statistical analysis of text files

or other file types

62

Clicker 3 - Decoding the File

• Once receiver has tree it
scans incoming bit stream

• 0  go left

• 1  go right

1010001001111000111111

11011100001010

A. elk nay sir

B. eek a snake

C. eek kin sly

D. eek snarl nil

E. eel a snarl

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10
16

26

Alex Fall 2022

63

Assignment Hints

• reading chunks not chars

• header format

• the pseudo eof value

• the GUI

64

Assignment Example

• "Eerie eyes seen near lake." will result in different

codes than those shown in slides due to:

– adding elements in order to PriorityQueue

– required pseudo eof value (PEOF)

65

Assignment Example

66

Char Freq. Char Freq. Char Freq.
E 1 y 1 k 1
e 8 s 2 . 1
r 2 n 2 PEOF 1
i 1 a 2
space 4 l 1

Assignment Example

67

.

1

y

1

E

1

i

1

k

1

l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8

Assignment Example

68

.

1

y

1

E

1

i

1

k

1

l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8

2

Assignment Example

69

.

1

y

1

E

1

i

1

k

1

l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8

2

Assignment Example

70

.

1

y

1

E

1

i

1

k

1

l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8

2 2

Assignment Example

71

.

1

y

1
E

1

i

1

k

1
l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8

2 2 2

Assignment Example

72

.

1

y

1
E

1

i

1

k

1
l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8

2 2 2 3

Assignment Example

73

.

1

y

1
E

1

i

1

k

1
l

1

PEOF

1

a

2
n

2

r

2

s

2

SP

4
e

8

2 2 2 3 4

Assignment Example

74

.

1

y

1

E

1

i

1

k

1
l

1

PEOF

1

a

2
n

2

r

2

s

2

SP

4
e

8

2

2 2 3 4 4

75

.

1

y

1

E

1

i

1

k

1

l

1 PEOF

1

a

2

n

2

r

2

s

2
SP

4

e

8
2

2 2

3

4 4
4 7

76

y

1

i

1

k

1

l

1
PEOF

1

a

2

SP

4

e

8

2 2
3

4
7

.

1

E

1

n

2

r

2

s

2

2

4 4

8

77

y

1

i

1

k

1

l

1 PEOF

1

a

2

SP

4

e

8

2 2

3

4 7

.

1

E

1

n

2

r

2

s

2

2

4 4

8 11

y

1

i

1

k

1

l

1 PEOF

1

a

2

SP

4

e

8

2 2

3

4 7

.

1

E

1

n

2

r

2

s

2

2

4 4

8

11 16

78

y

1

i

1

k

1

l

1 PEOF

1

a

2

SP

4

e

8

2 2

3

4 7

.

1

E

1

n

2

r

2

s

2

2

4 4

8

11 16

27

79

Codes

80

value: 32, equivalent char: , frequency: 4, new code 011

value: 46, equivalent char: ., frequency: 1, new code 11110

value: 69, equivalent char: E, frequency: 1, new code 11111

value: 97, equivalent char: a, frequency: 2, new code 0101

value: 101, equivalent char: e, frequency: 8, new code 10

value: 105, equivalent char: i, frequency: 1, new code 0000

value: 107, equivalent char: k, frequency: 1, new code 0001

value: 108, equivalent char: l, frequency: 1, new code 0010

value: 110, equivalent char: n, frequency: 2, new code 1100

value: 114, equivalent char: r, frequency: 2, new code 1101

value: 115, equivalent char: s, frequency: 2, new code 1110

value: 121, equivalent char: y, frequency: 1, new code 0011

value: 256, equivalent char: ?, frequency: 1, new code 0100

Altering files

• Tower bit map (Eclipse/Huffman/Data).

Alter the first 300 characters of line

16765 to this

81

~00~00~00~00~00~00~00~00~00~00~00~00~00

~00~00~00~00~00~00~00~00~00~00~00~00~00

~00~00~00~00~00~00~00~00~00~00~00~00~00

~00~00~00~00~00~00~00~00~00~00~00~00~00

~00~00~00~00~00~00~00~00~00~00~00~00~00

~00~00~00~00~00~00~00~00~00~00~00~00~00

~00~00~00~00~00~00~00~00~00~00~00~00~00

~00~00~00~00~00~00~00~00~00 xxx

Compression - Why Bother?

82

• Apostolos "Toli" Lerios

• Facebook Engineer

• Heads image storage group

• jpeg images already

compressed

• look for ways to compress even

more

• 1% less space = millions of

dollars in savings

Graphs

Topic 21
" Hopefully, you've played around a bit with The Oracle of Bacon at

Virginia and discovered how few steps are necessary to link just about

anybody who has ever been in a movie to Kevin Bacon, but could there be

some actor or actress who is even closer to the center of the Hollywood

universe?.

By processing all of the almost half of a million people in the Internet

Movie Database I discovered that there are currently 1160 people who are

better centers than Kevin Bacon! … By computing the average of these

numbers we see that the average (Sean) Connery Number is about 2.682

making Connery a better center than Bacon"

-Who is the Center of the Hollywood Universe?,

University of Virginia

That was in 2001.

In 2013 Harvey Keitel has become the center of the Hollywood

Universe. Connery is 136th.

Bacon has moved up to 370th.

http://oracleofbacon.org/
http://www.imdb.com/
http://oracleofbacon.org/center.php
https://oracleofbacon.org/center_list.php

CS314 2

An Early Problem in

Graph Theory

Leonhard Euler (1707 - 1783)

– One of the first mathematicians to study graphs

The Seven Bridges of Konigsberg Problem

– Konigsberg is now called Kaliningrad

A puzzle for the residents of the city

The river Pregel flows through the city

7 bridges crossed the river

Can you cross all bridges while crossing
each bridge only once? An Eulerian Circuit

Graphs

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Kaliningrad

CS314 3

Konigsberg and the River Pregel

Graphs

A

B

C

D

Clicker 1
How many solutions does the Seven Bridges

of Konigsberg Problem have?

A. 0

B. 1

C. 2

D. 3

E. >= 4

CS314 Graphs 4

CS314 5

How to Solve
Brute Force?

Euler's Solution

– Redraw the map as a graph

(really a multigraph as opposed

to a simple graph, 1 or 0 edges

per pair of vertices)

a

b

c

d

Graphs

CS314 6

Euler's Proposal
A connected graph has an Euler tour (cross

every edge exactly one time and end up at

starting node) if and only if every vertex has

an even number of edges

– Eulerian Circuit

Clicker 2 - What if we reduce the problem to

only crossing each edge (bridge) exactly

once?

– Doesn't matter if we end up where we started

– Eulerian Trail

A. 0 B. 1 C. 2 D. 3 E. >= 4
Graphs

CS314 7

Graph Definitions
A graph is comprised of a set of vertices

(nodes) and a set of edges (links, arcs)

connecting the vertices

– An edge connects 2 vertices

in a directed graph edges are one-way

– movement allowed from first node to second, but

not second to first

– directed graphs also called digraphs

in an undirected graph edges are two-way

– movement allowed in either direction

Graphs

Definitions
In a weighted graph the edge has cost or weight

that measures the cost of traveling along the edge

A path is a sequence of vertices connected by

edges

– The path length is the number of edges

– The weighted path length is the sum of the cost of the

edges in a path

A cycle is a path of length 1 or more that starts and

ends at the same vertex without repeating any

other vertices

– a directed acyclic graph is a directed graph with

no cycles

CS314 Graphs 8

CS314 9

Graphs We've Seen

link link link link

link link link

19

12 35

3 16 5621

Graphs

Example Graph
Scientists (and academics of ALL kinds) use

graphs to model all kinds of things.

CS314 Graphs 10

Arpanet 1969, 1971

Example Graph

CS314 Graphs 11

Roman

Transportation

Network

https://dhs.stanford.edu/spatial-humanities/visualization-of-network-distance/

Roman

Transportation Network

CS314 Graphs 12

Example Graph

CS314 Graphs 13

Enron emails 2001

http://hci.stanford.edu/~jheer/projects/enron/v1/
http://homes.cs.washington.edu/~jheer/projects/enron/
https://www.cs.cmu.edu/~./enron/

Example Graph

CS314 Graphs 14

US Airport Network

Example Graph

CS314 Graphs 15

Example Graph

"Jefferson" High School, Ohio Chains of Affection: The Structure of Adolescent Romantic

and Sexual Networks, 2005,

http://www.soc.duke.edu/~jmoody77/chains.pdf

CS314 17

How to store a graph as a data structure?



Representing Graphs

Graphs

CS314 18

Adjacency Matrix

Representation
 A Br Bl Ch Co E FG G Pa Pe S U V

A 0 1 1 1 0 0 0 0 1 0 0 1 0

Br 1 0 1 0 1 0 1 1 1 1 1 1 1

Bl 1 1 0 1 0 0 0 0 1 1 0 0 0

Ch 1 0 1 0 0 0 0 0 0 1 0 0 0

Co 0 1 0 0 0 1 0 0 0 1 0 0 1

E 0 0 0 0 1 0 0 0 0 1 0 0 0

FG 0 1 0 0 0 0 0 0 0 0 1 0 0

G 0 1 0 0 0 0 0 0 0 0 1 0 1

Pa 1 1 1 0 0 0 0 0 0 0 0 0 0

Pe 0 1 1 1 1 1 0 0 0 0 0 0 0

S 0 1 0 0 0 0 1 1 0 0 0 0 0

U 1 1 0 0 0 0 0 0 0 0 0 0 0

V 0 1 0 0 1 0 0 1 0 0 0 0 0

Country Code

Argentina A

Brazil Br

Bolivia Bl

Chile Ch

Colombia Co

Ecuador E

French

Guiana
FG

Guyana G

Paraguay Pa

Peru Pe

Suriname S

Uruguay U

Venezuela V

Graphs

Undirected Graph?
Use a ragged 2d array to save space

CS314 Graphs 19

CS314 20

The Map Coloring Problem
How many colors do you need to color a

map, so that no 2 countries that have a

common border (not a point) are colored the

same?

How to solve using Brute Force?

Graphs

Example

Source: https://en.wikipedia.org/wiki/Four_color_theorem 21

CS314 22



A Solution

Green

Green

Green

Blue

Yellow

Blue

Yellow

Blue

Yellow

Yellow

Blue

Red

Graphs

CS314 23

What About the Ocean?
A Br Bl Ch Co E FG G Pa Pe S U V Oc

A 0 1 1 1 0 0 0 0 1 0 0 1 0 1

Br 1 0 1 0 1 0 1 1 1 1 1 1 1 1

Bl 1 1 0 1 0 0 0 0 1 1 0 0 0 0

Ch 1 0 1 0 0 0 0 0 0 1 0 0 0 1

Co 0 1 0 0 0 1 0 0 0 1 0 0 1 1

E 0 0 0 0 1 0 0 0 0 1 0 0 0 1

FG 0 1 0 0 0 0 0 0 0 0 1 0 0 1

G 0 1 0 0 0 0 0 0 0 0 1 0 1 1

Pa 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Pe 0 1 1 1 1 1 0 0 0 0 0 0 0 1

S 0 1 0 0 0 0 1 1 0 0 0 0 0 1

U 1 1 0 0 0 0 0 0 0 0 0 0 0 1

V 0 1 0 0 1 0 0 1 0 0 0 0 0 1

Oc 1 1 0 1 1 1 1 1 0 1 1 1 1 0

Graphs

CS314 24



Make the Ocean Blue

Green

Green

Green

Blue

Yellow

Blue

Yellow

Blue
Yellow

Yellow

Red

Graphs

Red

Red

Red

More Definitions
A dense graph is one with a "large" number

of edges

– maximum number of edges?

A "sparse" graph is one in which the number

of edges is "much less" than the maximum

possible number of edges

– No standard cutoff for dense and sparse graphs

CS314 Graphs 25

Graph Representation
For dense graphs the adjacency matrix is a

reasonable choice

– For weighted graphs change booleans to double

or int

– Can the adjacency matrix handle

directed graphs?

Most graphs are sparse, not dense

For sparse graphs an adjacency list is an

alternative that uses less space

Each vertex keeps a list of edges to the

vertices it is connected to.
CS314 Graphs 26

Graph Implementation
public class Graph

private static final double INFINITY

= Double.MAX_VALUE;

private Map<String, Vertex> vertices;

public Graph() // create empty Graph

public void addEdge(String source,

String dest, double cost)

// find all paths from given vertex

public void findUnweightedShortestPaths

(String startName)

// called after findUnweightedShortestPath

public void printPath(String destName)

Graph Class
This Graph class stores vertices

Each vertex has an adjacency list

– what vertices does it connect to?

shortest path method finds all paths from

start vertex to every other vertex in graph

after shortest path method called queries

can be made for path length from start node

to destination node

CS314 Graphs 28

Vertex Class (nested in Graph)

CS314 Graphs 29

private static class Vertex

private String name;

private List<Edge> adjacent;

public Vertex(String n)

// for shortest path algorithms

private double distance;

private Vertex prev;

private int scratch;

// call before finding new paths

public void reset()

Edge Class (nested in Graph)

CS314 Graphs 30

private static class Edge

private Vertex dest;

private double cost;

private Edge(Vertex d, double c)

Unweighted Shortest Path
Given a vertex, S (for start) find the shortest

path from S to all other vertices in the graph

Graph is unweighted (set all edge costs to 1)

CS314 Graphs 31

S

V5

V3

V1 V6

V4

V2

V7

V8

6 Degrees of Wikipedia
https://www.sixdegreesofwikipedia.com/

CS314 Graphs 32

https://www.sixdegreesofwikipedia.com/

Word Ladders
Agree upon dictionary

Start word and end word of

same length

Change one letter at a time to

form step

Step must also be a word

Example: Start = silly, end =

funny

CS314 Graphs 33

silly

sully

sulky

hulky

hunky

funky

funny

Clicker 3 - Graph Representation
What are the vertices and when does

an edge exist between two vertices?

Vertices Edges

A. Letters Words

B. Words Words that share one or more letters

C. Letters Words that share one or more letters

D. Words Words that differ by one letter

E. Words Letters

CS314 Graphs 34

CS314 Graphs 35

smart

swart

start

smarm

smalt

scart

Portion of Graph

Clicker 4 - Size of Graph
Number of vertices and edges depends on dictionary

Modified Scrabble dictionary, 5 letter words

Words are vertices

– 8660 words, 7915 words that are one letter different from

at least one other word

Edge exists between words if they are one letter

different

– 24,942 edges

Is this graph sparse or dense?

A. Sparse

B. Dense
CS314 Graphs 36

Max number of edges =

N * (N - 1) / 2

37,493,470

Clicker 5 - Unweighted Shortest

Path Algorithm

Problem: Find the shortest word ladder

between two words if one exists

What kind of search should we use?

A. Breadth First Search

B. Depth First Search

C. Either one

CS314 Graphs 37

Unweighted Shortest Path Algorithm

Set distance of start to itself to 0

Create a queue and add the start vertex

while the queue is not empty

– remove front

– loop through all edges of current vertex

• get vertex edge connects to

• if this vertex has not been visited (have not found path

to the destination of the edge)

– sets its distance to current distance + 1

– sets its previous vertex to current vertex

– add new vertex to queue

CS314 Graphs 38

CS314 Graphs 39

smart

swart

start

smarm

smalt

scart

Portion of Graph

CS314 Graphs 40

smart

swart

start

smarm

smalt

scart

Start at "smart" and enqueue it

[smart]

CS314 Graphs 41

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart]

CS314 Graphs 42

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start]

CS314 Graphs 43

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start, scart]

CS314 Graphs 44

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start, scart, smalt]

CS314 Graphs 45

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start, scart, smalt, smarm]

CS314 Graphs 46

smart

swart

start

smarm

smalt

scart

Done with smart, dequeue (swart)

[start, scart, smalt, smarm]

CS314 Graphs 47

smart

swart

start

smarm

smalt

scart

loop through edges of swart (start already present)

[start, scart, smalt, smarm]

CS314 Graphs 48

smart

swart

start

smarm

smalt

scart

loop through edges of swart (scart already present)

[start, scart, smalt, smarm]

CS314 Graphs 49

smart

swart

start

smarm

smalt

scart

loop through edges of swart

[start, scart, smalt, smarm, swarm]

swarm

CS314 Graphs 50

smart

swart

start

smarm

smalt

scart

loop through edges of swart

[start, scart, smalt, smarm, swarm, sware]

swarm

sware

Unweighted Shortest Path
Implement method

demo

how is path printed?

The diameter of a graph is the longest shortest

past in the graph

How to find?

How to find center of graph?

– many measures of centrality

– ours: vertex connected to the largest number of

other vertices with the shortest average path length
CS314 Graphs 51

Positive Weighted Shortest Path

Edges in graph are weighted and all weights

are positive

Similar solution to unweighted shortest path

Dijkstra's algorithm

Edsger W. Dijkstra, 1930–2002

UT Professor 1984 - 2000

Algorithm developed in 1956

and published in 1959.

CS314 Graphs 52

Dijkstra on Creating the Algorithm

 What is the shortest way to travel from Rotterdam to Groningen, in

general: from given city to given city. It is the algorithm for the

shortest path, which I designed in about twenty minutes. One

morning I was shopping in Amsterdam with my young fiancée, and

tired, we sat down on the café terrace to drink a cup of coffee and I

was just thinking about whether I could do this, and I then designed

the algorithm for the shortest path. As I said, it was a twenty-minute

invention. In fact, it was published in ’59, three years later. The

publication is still readable, it is, in fact, quite nice. One of the

reasons that it is so nice was that I designed it without pencil

and paper. I learned later that one of the advantages of designing

without pencil and paper is that you are almost forced to avoid all

avoidable complexities. Eventually that algorithm became, to my

great amazement, one of the cornerstones of my fame.

 — Edsger Dijkstra, in an interview with Philip L. Frana,

Communications of the ACM, 2001 (wiki page on the algorithm)

https://en.wikipedia.org/wiki/Dijkstra's_algorithm

Vertex Class (nested in Graph)

CS314 Graphs 54

private static class Vertex

private String name;

private List<Edge> adjacent;

public Vertex(String n)

// for shortest path algorithms

private double distance;

private Vertex prev;

private int scratch;

// call before finding new paths

public void reset()

Dijkstra's Algorithm
Pick the start vertex

Set the distance of the start vertex to 0 and all

other vertices to INFINITY

While there are unvisited vertices:

– Let the current vertex be the vertex with the lowest cost

path from start to it that has not yet been visited

– mark current vertex as visited

– for each edge from the current vertex

• if the sum of the cost of the current vertex and the cost of the

edge is less than the cost of the destination vertex

– update the cost of the destination vertex

– set the previous of the destination vertex to the current vertex

– enqueue this path (not vertex) to the priority queue

– THIS IS NOT VISITING THE NEIGHBORING VERTEX
55

Dijkstra's Algorithm
Example of a Greedy Algorithm

– A Greedy Algorithm does what appears to be the

best thing at each stage of solving a problem

Gives best solution in Dijkstra's Algorithm

Does NOT always lead to best answer

Fair teams:

– (10, 10, 8, 8, 8), 2 teams

Making change with fewest coins

(1, 5, 10) 15 cents

(1, 5, 12) 15 cents
CS314 Graphs 56

57

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Clicker 6 - What is the cost of the lowest

cost path from A to E?

A. 5

B. 17

C. 20

D. 28

E. 37

58

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A is start vertex

Set cost of A to 0, all others to INFINITY

Place A in a priority queue

0

∞

∞

∞

∞

∞

∞

59

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(A,0)] pq

dequeue (A,0)

Mark A as visited

∞

∞

0

∞

∞

∞

∞

60

[] pq

current vertex A:

loop through A's edges

if sum of cost from A to dest is less than current cost

update cost and prev

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

∞

∞

0

∞

∞

∞

∞

61

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[] pq

A -> B, 0 + 1 < INFINITY

[(B,1)] pq

∞

∞

∞

∞

∞

1

0

62

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(B,1)] pq

A -> C, 0 + 7 < INFINITY

[(B,1), (C, 7)] pq

0

1

7

∞

∞

∞

∞

63

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(B,1), (C, 7)] pq

A -> G, 0 + 17 < INFINITY

[(B,1), (C, 7), (G, 17)] pq

0

1

7

17

∞

∞

∞

64

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(B,1), (C, 7), (G, 17)] pq

current vertex B:

loop through B's edges

if sum of cost from B to edge is less than current cost

update cost and prev

0

1

7

17

∞

∞

∞

65

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(C, 7), (G, 17)] pq

B -> C, 1 + 3 < 7

update C's cost and previous

[(C, 4), (C, 7), (G, 17)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

∞

∞

∞

66

[(C, 4), (C, 7), (G, 17)] pq

B -> D, 1 + 21 < INFINITY

[(C, 4), (C, 7), (G, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

∞

67

[(C, 4), (C, 7), (G, 17), (D, 22)] pq

current vertex is C, cost 4

loop through C's edges

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

∞

68

[(C, 7), (G, 17), (D, 22)] pq

C -> A, 7 + 4 !< 0, skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

∞

69

[(C, 7), (G, 17), (D, 22)] pq

C -> B, 4 + 3 !< 1, skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

∞

70

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(C, 7), (G, 17), (D, 22)] pq

C -> F, 4 + 3 < INFINITY

[(C, 7), (F, 7), (G, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

7

71

[(C, 7), (F, 7), (G, 17), (D, 22)] pq

current vertex is C

Already visited so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

7

72

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(F, 7), (G, 17), (D, 22)] pq

current vertex is F

loop through F's edges

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

7

73

[(G, 17), (D, 22)] pq

F -> C, 7 + 3 !< 4, so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

7

74

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(G, 17), (D, 22)] pq

F -> D, 7 + 4 < 22

update D's cost and previous

[(D, 11), (G, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

11

∞

7

Aside - Implementing Dijkstra's
Create a Path class to allow for multiple

paths and distances (costs) to a given vertex

private static class Path

implements Comparable<Path> {

private Vertex dest;

private double cost;

Use a priority queue of Paths to store the

vertices and distances

CS314 Graphs 75

Why? References!!!
Slide 74 and 78, adding new, lower cost path

to Vertex D

Abstractly: [(G, 17), (D, 22)] becomes

[(D, 11) (G, 17), (D, 22)]

What does priority queue store? References

to Vertex Objects

[,]

76distance 17

Vertex

name G

distance 22

Vertex

name D

Lower Cost Path to D
New, lower cost path to D. Alter Vertex D's

distance to 11 and add to priority queue

 [, ,]

PROBLEMS?????

Abstractly [(D, 11), (G, 17), (D, 11)] 77

distance 17

Vertex

name G

distance 11

Vertex

name D

78

[(D, 11), (G, 17), (D, 22)] pq

current vertex is D

loop through D's edges

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

11

∞

7

79

[(G, 17), (D, 22)] pq

D -> B, 11 + 21 !< 1, so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

11

∞

7

80

[(G, 17), (D, 22)] pq

D -> E, 11 + 6 < INFINITY

update E's cost and previous

[(G, 17), (E, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

11

17

7

81

[(G, 17), (E, 17), (D, 22)] pq

D -> F, 4 + 11 !< 7, so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

11

17

7

82

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(G, 17), (E, 17), (D, 22)] pq

D -> G, 11 + 5 < 17

update G's cost and previous

[(G, 16), (G, 17), (E, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

16

11

17

7

83

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(G, 17), (E, 17), (D, 22)] pq

current vertex is G

loop though edges, already visited all neighbors

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

16

11

17

7

84

[(E, 17), (D, 22)] pq

current vertex is E

loop though edges, already visited all neighbors

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

16

11

17

7

85

No unvisited vertices.

Each Vertex stores cost (distance) of lowest cost

path from start Vertex to itself and previous vertex

in path from start vertex to itself.

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

16

11

17

7

Alternatives to Dijkstra's Algorithm
A*, pronounced "A Star"

A heuristic, goal of finding shortest weighted path

from single start vertex to goal vertex

Uses actual distance like Dijkstra's but also

estimates remaining cost or distance

– distance is set to current distance from start PLUS the

estimated distance to the goal

For example when finding a path between towns,

estimate the remaining distance as the straight-line

(as the crow flies) distance between current

location and goal.

CS314 Graphs 86

Spanning Tree
Spanning Tree: A tree of edges that

connects all the vertices in a graph

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Clicker 7 -

Minimum Spanning Tree
Minimum Spanning Tree: A spanning tree in

a weighted graph with the lowest total cost
used in network design, taxonomy, Image registration,

and more!

88

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7
Cost of spanning

tree shown?

A. 6

B. 7

C. 29

D. 61

E. None of These

Prim's Algorithm
Initially created by Vojtěch Jarník

Rediscovered by Prim (of Sweetwater, TX)

and Dijkstra

Pick a vertex arbitrarily from graph

– In other words, it doesn't matter which one

Add lowest cost edge between the tree and

a vertex that is not part of the tree UNTIL

every vertex is part of the tree

Greedy Algorithm, very similar to Dijkstra's

CS314 Graphs 89

https://en.wikipedia.org/wiki/Vojt%C4%9Bch_Jarn%C3%ADk

Prim's Algorithm

CS314 Graphs 90

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Pick D as root

5 8 4

Prim's Algorithm

CS314 Graphs 91

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?

2 from D to A (or C)

5 8 4

Prim's Algorithm

CS314 Graphs 92

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?

2 from D to C (OR from A to B)

5 8 4

Prim's Algorithm

CS314 Graphs 93

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?

2 from A to B

5 8 4

Prim's Algorithm

CS314 Graphs 94

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?

5 from D to G

5 8 4

Prim's Algorithm

CS314 Graphs 95

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?

1 from G to F

5 8 4

Prim's Algorithm

CS314 Graphs 96

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?

6 from G to E

5 8 4

Prim's Algorithm

CS314 Graphs 97

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Pick D as root

Prim's Algorithm

CS314 Graphs 98

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

4 from D to F

Prim's Algorithm

CS314 Graphs 99

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

3 from F to C

Prim's Algorithm

CS314 Graphs 100

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

3 from C to B

Prim's Algorithm

CS314 Graphs 101

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

1 from B to A

Prim's Algorithm

CS314 Graphs 102

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

5 from D to G

Prim's Algorithm

CS314 Graphs 103

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

6 from D to E

Prim's Algorithm

CS314 Graphs 104

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Cost of Spanning Tree?

Other Graph Algorithms
Lots!
http://en.wikipedia.org/wiki/Category:Graph_algorithms

CS314 Graphs 105

http://en.wikipedia.org/wiki/Category:Graph_algorithms

Topic 22

Hash Tables

"hash collision n. [from the techspeak] (var. `hash clash') When

used of people, signifies a confusion in associative memory or

imagination, especially a persistent one (see thinko).

True story: One of us was once on the phone with a friend

about to move out to Berkeley. When asked what he expected

Berkeley to be like, the friend replied: 'Well, I have this mental

picture of naked people throwing Molotov cocktails, but I think

that's just a collision in my hash tables.'"

-The Hacker's Dictionary

https://www.eps.mcgill.ca/jargon/jargon.html#thinko

CS314 Hash Tables 2

Programming Pearls by Jon Bentley

Jon was senior programmer on a

large programming project.

Senior programmer spend a lot of

time helping junior programmers.

Junior programmer to Jon: "I need

help writing a sorting algorithm."

CS314 Hash Tables 3

A Problem
From Programming Pearls (Jon in Italics)

Why do you want to write your own sort at all? Why not use a sort

provided by your system?

I need the sort in the middle of a large system, and for obscure

technical reasons, I can't use the system file-sorting program.

What exactly are you sorting? How many records are in the file?

What is the format of each record?

The file contains at most ten million records; each record is a

seven-digit integer.

Wait a minute. If the file is that small, why bother going to disk at

all? Why not just sort it in main memory?

Although the machine has many megabytes of main memory,

this function is part of a big system. I expect that I'll have only

about a megabyte free at that point.

Is there anything else you can tell me about the records?

Each one is a seven-digit positive integer with no other associated

data, and no integer can appear more than once.

System Sort

CS314 Hash Tables 4

Starting Other Programs

CS314 Hash Tables 5

Starting Other Programs

CS314 Hash Tables 6

CS314 Hash Tables 7

Clicker 1 and 2
When did this conversation take place?

A. circa 1965

B. circa 1975

C. circa 1985

D. circa 1995

E. circa 2005

What were they sorting?

A. SSNs. B. Random values C. Street Addresses

D. Personal Incomes E. Phone Numbers

CS314 Hash Tables 8

A Solution

/* phase 1: initialize set to empty */
for i = [0, n)

bit[i] = 0

/* phase 2: insert present elements into the set */
for each num_in_file in the input file

bit[num_in_file] = 1

/* phase 3: write sorted output */
for i = [0, n)

if bit[i] == 1 write i on the output file

CS314 Hash Tables 9

Some Structures so Far
ArrayLists

– O(1) access

– O(N) insertion (average case), better at end

– O(N) deletion (average case)

LinkedLists
– O(N) access

– O(N) insertion (average case), better at front and back

– O(N) deletion (average case), better at front and back

Binary Search Trees
– O(log N) access if balanced

– O(log N) insertion if balanced

– O(log N) deletion if balanced

10

Why are Binary Trees Better?
Divide and Conquer - splitting problem into

smaller problems

Can we reduce the work by a bigger factor?

3? 10? More?

An ArrayList does this in a way when

accessing elements

– but must use an integer value

– each position holds a single element

– given the index in an array, I can access that

element rather quickly

– determining the address of the element

requires a multiply op and an add op

Hash Tables
Hash Tables maintaining the fast access of

arrays but improve the order for insertion,

and deletion compare to array based lists.

Hash tables use an array and hash functions

to determine the index for each element.

CS314 Hash Tables 12

Hash Functions
Hash: "From the French hatcher,

which means 'to chop'. "

to hash to mix randomly or shuffle (To cut

up, to slash or hack about; to mangle)

Hash Function: Take a piece of data and

transforms it to a different piece of data

(typically smaller), usually a single integer.

– A function or algorithm

– The input need not be integers!

CS314 Hash Tables 13

Hash Function

"Mike Scott"

Manchester, VT

mscott61729@gmail.com

12
hash

function

"Olivia"

5/17/1971

555389085

"Kelly"

"Isabelle"

Hash Functions
Like a fingerprint

134 Megabytes

CS314 Hash Tables 14

Hash Function
SHA 512 Hash code

CS314 Hash Tables 15

CS314 Hash Tables 16

Simple Example
Assume we are using names as our key

– take 3rd letter of name, take int value of letter

(a = 0, b = 1, ...), divide by 6 and take remainder

What does "Bellers" hash to?

L -> 11 -> 11 % 6 = 5

CS314 Hash Tables 17

Result of Hash Function
Mike = (10 % 6) = 4

Kelly = (11 % 6) = 5

Olivia = (8 % 6) = 2

Isabelle = (0 % 6) = 0

David = (21 % 6) = 3

Margaret = (17 % 6) = 5 (uh oh)

Wendy = (13 % 6) = 1

This is an imperfect hash function. A perfect hash
function yields a one to one mapping from the keys
to the hash values.

What is the maximum number of values this
function can hash perfectly?

Clicker 3 - Hash Function
Assume the hash function for String adds up

the Unicode value for each character.
public int hashcode(String s) {

int result = 0;

for (int i = 0; i < s.length(); i++)

result += s.charAt(i);

return result;

}

Hashcode for "DAB" and "BAD"?
A. 301 103

B. 4 4

C. 412 214

D. 5 5

E. 199 199
18

CS314 Hash Tables 19

More on Hash Functions
transform the key (which may not be an

integer) into an integer value

The transformation can use one of four

techniques

– Mapping

– Folding

– Shifting

– Casting

CS314 Hash Tables 20

Hashing Techniques
Mapping

– As seen in the example

– integer values or things that can be easily

converted to integer values in key

Folding

– partition key into several parts and the integer

values for the various parts are combined

– the parts may be hashed first

– combine using addition, multiplication, shifting,

logical exclusive OR

CS314 Hash Tables 21

Shifting
More complicated with shifting

int hashVal = 0;

int i = str.length() - 1;

while(i > 0)

{ hashVal = (hashVal << 1) + (int) str.charAt(i);

i--;

}

different answers for "dog" and "god"

Shifting may give a better range of hash values
when compared to just folding

Casts

Very simple
– essentially casting as part of fold and shift when working

with chars.

CS314 Hash Tables 22

The Java String class

hashCode method
public int hashCode() {

int h = hash;

if (h == 0 && value.length > 0) {

char[] val = value;

for (int i = 0; i < val.length; i++) {

h = 31 * h + val[i];

}

hash = h;

}

return h;

}

CS314 Hash Tables 23

Mapping Results
Transform hashed key value into a legal index in

the hash table

Hash table is normally uses an array as its

underlying storage container

Normally get location on table by taking result of

hash function, dividing by size of table, and taking

remainder

index = key mod n

n is size of hash table

empirical evidence shows a prime number is best

10 element hash table, move up to 11 or 13 elements

CS314 Hash Tables 24

Mapping Results

"Isabelle" 230492619

hashCode

method

230492619 % 997 = 177

0 1 2 3177............ 996

"Isabelle"

CS314 Hash Tables 25

Handling Collisions
What to do when inserting an element and

already something present?

CS314 Hash Tables 26

Open Addressing
Could search forward or backwards

for an open space

Linear probing:
– move forward 1 spot. Open?, 2 spots, 3

spots

– reach the end?

– When removing, insert a blank

– null if never occupied, blank if once
occupied

Quadratic probing
– 1 spot, 2 spots, 4 spots, 8 spots, 16 spots

Resize when load factor reaches
some limit

CS314 Hash Tables 27

Closed Addressing: Chaining
Each element of hash table be

another data structure

– linked list, balanced binary tree

– More space, but somewhat easier

– everything goes in its spot

What happens when resizing?

– Why don't things just collide again?

CS314 Hash Tables 28

Hash Tables in Java
hashCode method in Object

hashCode and equals

– "If two objects are equal according to the equals

(Object) method, then calling the hashCode

method on each of the two objects must produce

the same integer result. "

– if you override equals you need to override

hashCode

Overriding one of equals and hashCode, but not

the other, can cause logic errors that are difficult to

track down if objects added to hash tables.

CS314 Hash Tables 29

Hash Tables in Java
HashTable class

HashSet class

– implements Set interface with internal storage

container that is a HashTable

– compare to TreeSet class, internal storage

container is a Red Black Tree

HashMap class

– implements the Map interface, internal storage

container for keys is a hash table

Comparison
Compare these data structures for speed:

Java HashSet

Java TreeSet

our naïve Binary Search Tree

our HashTable

Insert random ints

CS314 Hash Tables 30

Clicker 4
What will be order from fastest to slowest?

A. HashSet TreeSet HashTable314 BST

B. HashSet HashTable314 TreeSet BST

C. TreeSet HashSet BST HashTable314

D. HashTable314 HashSet BST TreeSet

E. None of these

CS314 Hash Tables 31

Topic 25

Tries
“In 1959, (Edward) Fredkin recommended

that BBN (Bolt, Beranek and Newman, now

BBN Technologies) purchase the very first

PDP-1 to support research projects at

BBN. The PDP-1 came with no software

whatsoever.

Fredkin wrote a PDP-1 assembler called FRAP (Free

of Rules Assembly Program);”

Tries were first described by René de la Briandais in

File searching using variable length keys.

https://en.wikipedia.org/wiki/Edward_Fredkin

Clicker 1
How would you pronounce “Trie”

A. “tree”

B. “tri – ee”

C. “try”

D. “tiara”

E. something else

CS314 Tries 2

Tries aka Prefix Trees
Pronunciation:

From retrieval

Name coined by Computer Scientist

Edward Fredkin

Retrieval so “tree”

… but that is very confusing so most people

pronounce it “try”

CS314 Tries 3

CS314 Tries 4

Predictive Text and AutoComplete

Search engines and texting applications

guess what you want after typing only a few

characters

AutoComplete
So do other programs such as IDEs

CS314 Tries 5

Searching a Dictionary
How?

Could search a set for all values that start

with the given prefix.

Naively O(N) (search the whole data

structure).

Could improve if possible to do a binary

search for prefix and then localize search to

that location.

CS314 Tries 6

Tries
A general tree

Root node (or possibly a list of root nodes)

Nodes can have many children

– not a binary tree

In simplest form each node stores a

character and a data structure (list?) to refer

to its children

Stores all the words or phrases

in a dictionary.

How?
CS314 Tries 7

René de la Briandais Original Paper

CS314 Tries 8

https://dl.acm.org/citation.cfm?id=1457895
https://dl.acm.org/citation.cfm?id=1457895

????

CS314 Tries 9

????

CS314 Tries 10

Picture of a Dinosaur

https://thebrag.com/why-cant-some-people-see-magic-eye-pictures-an-investigation/

Fall 2022 - Ryan P.

CS314 Tries 11

Created with Procreate: https://procreate.art/

Can

CS314 Tries 12

Candy

CS314 Tries 13

Fox

CS314 Tries 14

Clicker 2
Is “fast” in the dictionary represented by this

Trie?

A. No

B. Yes

C. It depends

CS314 Tries 15

Clicker 3
Is “fist” in the dictionary represented by this

Trie?

A. No

B. Yes

C. It depends

CS314 Tries 16

Tries

CS314 Tries 17

Another example

of a Trie

Each node stores:

– A char

– A boolean

indicating if the

string ending at

that node is a word

– A list of children

Predictive Text and AutoComplete

CS314 Tries 18

As characters are entered

we descend the Trie

… and from the current

node …

… we can descend to

terminators and leaves to

see all possible words

based on current prefix

b, e, e -> bee, been, bees

https://www.youtube.com/watch?v=T3wiGSXbeQE

Stores words and

phrases.

– other values

possible, but typically

Strings

The whole word or

phrase is not actually

stored in a

single node.

… rather the path in

the tree represents

the word.

Tries

Implementing a Trie
public class Trie {

private TNode root;

private int size; // number of words

private int numNodes;

public Trie() {

root = new TNode();

numNodes = 1;

CS314 Tries 20

TNode Class

Basic implementation uses a LinkedList of

TNode objects for children

Other options?

– ArrayList?

– Something more exotic?

CS314 Tries 21

private static class TNode {

private boolean word;

private char ch;

private LinkedList<TNode> children;

Basic Operations
Adding a word to the Trie

Getting all words with given prefix

Demo in IDE

CS314 Tries 22

Compressed Tries
Some words, especially long ones, lead to a

chain of nodes with single child, followed by

single child:

b s

e i u

a

r

l

l

d o

y

y

e

l

l

t

o

c

k

p

Compressed Trie
Reduce number of nodes, by having nodes

store Strings

A chain of single child followed by single

child (followed by single child …) is

compressed to a single node with that String

Does not have to be a chain that terminates

in a leaf node

– Can be an internal chain of nodes

CS314 Tries 24

Original, Uncompressed

CS314 Tries 25

b s

e i u

a

r

l

l

d s

y

y

e

l

l

t

o

c

k

p

Compressed Version

CS314 Tries 26

b s

e id u

ar ll sy y

ell to

ck p

8 fewer nodes compared to uncompressed version

s – t – o – c - k

Data Structures
Data structures we have studied

– arrays, array based lists, linked lists, maps, sets,

stacks, queues, trees, binary search trees,

graphs, hash tables, red-black trees, priority

queues, heaps, tries

Most program languages have some built in

data structures, native or library

Must be familiar with performance of data

structures

– best learned by implementing them yourself

CS314 Heaps 27

Data Structures
We have not covered every data structure

Heaps

http://en.wikipedia.org/wiki/List_of_data_structures

Data Structures
deque, b-trees, quad-trees, binary space

partition trees, skip list, sparse list, sparse

matrix, union-find data structure, Bloom

filters, AVL trees, 2-3-4 trees, and more!

Must be able to learn new and apply new

data structures

CS314 Heaps 29

Topic 24

Heaps

"You think you know when you can learn,
are more sure when you can write,
even more when you can teach,
but certain when you can program."

- Alan Perlis

Priority Queue
Recall priority queue

– elements enqueued based on priority

– dequeue removes the highest priority item

Options?

– List? Binary Search Tree? Clicker 1

Linked List enqueue BST enqueue

A. O(N) O(1)

B. O(N) O(logN)

C. O(N) O(N)

D. O(logN) O(logN)

E. O(1) O(logN)
CS314 Heaps 2

Another Option
The heap data structure

– not to be confused with the runtime heap (portion

of memory for dynamically allocated variables)

A complete binary tree

– all levels have maximum number of nodes

except deepest where nodes are filled in from

left to right

Maintains the heap order property

– in a min heap the value in the root of any subtree

is less than or equal to all other values in the

subtree
CS314 Heaps 3

Clicker 2
In a max heap with no duplicates where is

the largest value?

A. the root of the tree

B. in the left-most node

C. in the right-most node

D. a node in the lowest level

E. none of these

CS314 Heaps 4

Example Min Heap

CS314 Heaps 5

12

17 15

19 52 37 25

45 21

Add Operation
Add new element to next open spot in array

Swap with parent if new value is less

than parent

Continue back up the tree as long as the

new value is less than new parent node

CS314 Heaps 6

Add Example
Add 15 to heap (initially next left most node)

CS314 Heaps 7

12

17 15

19 52 37 25

45 21 15

Add Example
Swap 15 and 52

CS314 Heaps 8

12

17 15

19 15 37 25

45 21 52

Enqueue Example
Swap 15 and 17, then stop

CS314 Heaps 9

12

15 15

19 17 37 25

45 21 52

Add Example
Insert the following values 1 at a time into a

min heap:

16 9 5 8 13 8 8 5 5 19 27 9 3

CS314 Heaps 10

Internal Storage
Interestingly heaps are often implemented

with an array instead of nodes

CS314 Heaps 11

12

17 15

19 52 37 25

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 17 15 19 52 37 25 45 21

for element at index i:

parent index: i / 2

left child index: i * 2

right child index: i * 2 + 1

CS314 Heaps 12

In Honor of

Elijah,

The Meme King,

Spring 2020

PriorityQueue Class

CS314 Heaps 13

public class PriorityQueue<E extends Comparable<? super E>>

{

private int size;

private E[] con;

public PriorityQueue() {

con = getArray(2);

}

private E[] getArray(int size) {

return (E[]) (new Comparable[size]);

}

PriorityQueue enqueue / add

14

public void enqueue(E val) {

if (size >= con.length - 1)

enlargeArray(con.length * 2);

size++;

int indexToPlace = size;

while (indexToPlace > 1

&& val.compareTo(con[indexToPlace / 2]) < 0) {

con[indexToPlace] = con[indexToPlace / 2]; // swap

indexToPlace /= 2; // change indexToPlace to parent

}

con[indexToPlace] = val;

}

private void enlargeArray(int newSize) {

E[] temp = getArray(newSize);

System.arraycopy(con, 1, temp, 1, size);

con = temp;

}

Enqueue / add Example

With Array Shown
Add 15 to heap

(initially next

left most node)
12

17 15

19 52 37 25

45 21 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 17 15 19 52 37 25 45 21 15

10 / 2 = 5 (index of parent)

Enqueue Example

With Array Shown
Swap 15 and 52

12

17 15

19 15 37 25

45 21 52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 17 15 19 15 37 25 45 21 52

5 / 2 = 2 (index of parent)

Enqueue Example

With Array Shown
Swap 15 and 17

12

17

15

19

15

37 25

45 21 52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 15 15 19 17 37 25 45 21 52

2 / 2 = 1 (index of parent)

Enqueue Example

With Array Shown
15 !< 12 -> DONE

12

17

15

19

15

37 25

45 21 52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 15 16 19 17 37 25 45 21 52

2 / 1 = 1 (index of parent)

Remove -> remove 12

CS314 Heaps 19

12

17

15

19

15

37 25

45 21 52

Remove / Dequeue
min value / front of queue is in root of tree

swap value from last node to root and move

down swapping with smaller child unless

values is smaller than both children

CS314 Heaps 20

Dequeue Example
Swap 35

into root

(save 12

to return)

12

15 13

17 23 45 53

45 21 35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 15 13 17 23 45 53 45 21 35

Dequeue Example
Swap 35

into root

(save 12

to return)

35

15 13

17 23 45 53

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

35 15 13 17 23 45 53 45 21

Dequeue Example
Min child?

1 * 2 = 2 -> 15

1 * 2 + 1 = 3 -> 13

Swap with 13

35

15 13

17 23 45 53

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

35 15 13 17 23 45 53 45 21

Dequeue Example

13

15 35

17 23 45 53

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 15 35 17 23 45 53 45 21

Dequeue Example

13

15 35

17 23 45 53

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 15 35 17 23 45 53 45 21

Min child?

3 * 2 = 6 -> 45

3 * 2 + 1 = 7 -> 53

Less than or equal to

both of my children!

Stop!

Dequeue Code

26

public E dequeue() {

E top = con[1];

int hole = 1;

boolean done = false;

while (hole * 2 < size && ! done) {

int child = hole * 2;

// see which child is smaller

if (con[child].compareTo(con[child + 1]) > 0)

child++; // child now points to smaller

// is replacement value bigger than child?

if (con[size].compareTo(con[child]) > 0) {

con[hole] = con[child];

hole = child;

}

else

done = true;

}

con[hole] = con[size];

size--;

return top;

}

Clicker 3 - PriorityQueue Comparison

Run a Stress test of PQ implemented with

Heap and PQ implemented with

BinarySearchTree

What will result be?

A. Heap takes half the time or less of BST

B. Heap faster, but not twice as fast

C. About the same

D. BST faster, but not twice as fast

E. BST takes half the time or less of Heap

CS314 Heaps 27

Topic 26

Dynamic Programming

"Thus, I thought dynamic programming
was a good name. It was something not
even a Congressman could object to. So I
used it as an umbrella for my activities"

- Richard E. Bellman

Origins
A method for solving complex problems by

breaking them into smaller, easier, sub

problems

Term Dynamic Programming coined by

mathematician Richard Bellman in early

1950s
– employed by Rand Corporation

– Rand had many, large military contracts

– Secretary of Defense, Charles Wilson “against research,

especially mathematical research”

– how could any one oppose "dynamic"?

CS314 Dynamic Programming 2

https://en.wikipedia.org/wiki/RAND_Corporation
https://en.wikipedia.org/wiki/Charles_Erwin_Wilson

Dynamic Programming

Break big problem up into smaller

problems ...

Sound familiar?

Recursion?

N! = 1 for N == 0

N! = N * (N - 1)! for N > 0

CS314 Dynamic Programming 3

Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, …

F1 = 1

F2 = 1

FN = FN - 1 + FN - 2

Recursive Solution?

CS314 Dynamic Programming 4

https://en.wikipedia.org/wiki/Camposanto_Monumentale_di_Pisa
https://en.wikipedia.org/wiki/Fibonacci

Failing Spectacularly
Naïve recursive method

Clicker 1 - Order of this method?

A. O(1) B. O(log N) C. O(N) D. O(N2) E. O(2N)

CS314 Dynamic Programming 5

// pre: n > 0

// post: return the nth Fibonacci number

public int fib(int n) {

if (n <= 2)

return 1;

else

return fib(n – 1) + fib (n – 2);

}

Failing Spectacularly

CS314 Dynamic Programming 6

Failing Spectacularly

CS314 Dynamic Programming 7

Clicker 2 - Failing Spectacularly

How long to calculate the 70th Fibonacci

Number with this method?

A. 37 seconds

B. 74 seconds

C. 740 seconds

D. 14,800 seconds

E. None of these

CS314 Dynamic Programming 8

Aside - Overflow
at 47th Fibonacci number overflows int

Could use BigInteger class instead

CS314 Dynamic Programming 9

private static final BigInteger one

= new BigInteger("1");

private static final BigInteger two

= new BigInteger("2");

public static BigInteger fib(BigInteger n) {

if (n.compareTo(two) <= 0)

return one;

else {

BigInteger firstTerm = fib(n.subtract(two));

BigInteger secondTerm = fib(n.subtract(one));

return firstTerm.add(secondTerm);

}

}

Aside - BigInteger
Answers correct beyond 46th Fibonacci number

Even slower, math on BigIntegers,

object creation, and garbage collection

CS314 Dynamic Programming 10

Slow Fibonacci

Why so slow?

Algorithm keeps calculating the same

value over and over

When calculating the 40th Fibonacci

number the algorithm calculates the 4th

Fibonacci number 24,157,817 times!!!

CS314 Dynamic Programming 11

Fast Fibonacci
Instead of starting with the big problem

and working down to the small problems

... start with the small problem and

work up to the big problem

CS314 Dynamic Programming 12

public static BigInteger fastFib(int n) {

BigInteger smallTerm = one;

BigInteger largeTerm = one;

for (int i = 3; i <= n; i++) {

BigInteger temp = largeTerm;

largeTerm = largeTerm.add(smallTerm);

smallTerm = temp;

}

return largeTerm;

}

Fast Fibonacci

CS314 Dynamic Programming 13

Fast Fibonacci

CS314 Dynamic Programming 14

Memoization
Store (cache) results from

computations for later lookup

Memoization of Fibonacci Numbers

CS314 Dynamic Programming 15

public class FibMemo {

private static List<BigInteger> lookupTable;

private static final BigInteger ONE

= new BigInteger("1");

static {

lookupTable = new ArrayList<>();

lookupTable.add(null);

lookupTable.add(ONE);

lookupTable.add(ONE);

}

Fibonacci Memoization
public static BigInteger fib(int n) {

// check lookup table

if (n < lookupTable.size()) {

return lookupTable.get(n);

}

// Calculate nth Fibonacci.

// Don't repeat work. Start with the last known.

BigInteger smallTerm

= lookupTable.get(lookupTable.size() - 2);

BigInteger largeTerm

= lookupTable.get(lookupTable.size() - 1);

for(int i = lookupTable.size(); i <= n; i++) {

BigInteger temp = largeTerm;

largeTerm = largeTerm.add(smallTerm);

lookupTable.add(largeTerm); // memo

smallTerm = temp;

}

return largeTerm;

}

Dynamic Programming
When to use?

When a big problem can be broken up into sub

problems.

Solution to original problem can be

calculated from results of smaller problems.

– larger problems depend on previous solutions

Sub problems must have a natural ordering

from smallest to largest (simplest to

hardest)

Multiple techniques within DP
CS314 Dynamic Programming 17

DP Algorithms
Step 1: Define the *meaning* of the subproblems

(in English for sure, Mathematically as well if you
find it helpful).

Step 2: Show where the solution will be found.

Step 3: Show how to set the first subproblem.

Step 4: Define the order in which the subproblems
are solved.

Step 5: Show how to compute the answer to each
subproblem using the previously computed
subproblems. (This step is typically polynomial,
once the other subproblems are solved.)

CS314 Dynamic Programming 18

Dynamic Programming Requires:

overlapping sub problems:

– problem can be broken down into sub problems

– obvious with Fibonacci

– Fib(N) = Fib(N - 2) + Fib(N - 1) for N >= 3

optimal substructure:

– the optimal solution for a problem can be

constructed from optimal solutions of its sub

problems

– In Fibonacci just sub problems, no optimality

– min coins opt(36) = 112 + opt(24) [1, 5, 12]

CS314 Dynamic Programming 19

Dynamic Programing Example
Another simple example

Finding the best solution involves finding the

best answer to simpler problems

Given a set of coins with values (V1, V2, … VN)

and a target sum S, find the fewest coins

required to equal S

What is Greedy Algorithm approach?

Does it always work?

{1, 5, 12} and target sum = 15 (12, 1, 1, 1)

Could use recursive backtracking …
CS314 Dynamic Programming 20

Minimum Number of Coins
To find minimum number of coins to sum to

15 with values {1, 5, 12} start with sum 0

– recursive backtracking would likely start with 15

Let M(S) = minimum number of coins to sum

to S

At each step look at target sum,

coins available, and previous sums

– pick the smallest option

CS314 Dynamic Programming 21

Minimum Number of Coins
M(0) = 0 coins

M(1) = 1 coin (1 coin)

M(2) = 2 coins (1 coin + M(1))

M(3) = 3 coins (1 coin + M(2))

M(4) = 4 coins (1 coin + M(3))

M(5) = interesting, 2 options available:

1 + others OR single 5

if 1 then 1 + M(4) = 5, if 5 then 1 + M(0) = 1

clearly better to pick the coin worth 5

CS314 Dynamic Programming 22

Minimum Number of Coins
M(0) = 0

M(1) = 1 (1 coin)

M(2) = 2 (1 coin + M(1))

M(3) = 3 (1 coin + M(2))

M(4) = 4 (1 coin + M(3))

M(5) = 1 (1 coin + M(0))

M(6) = 2 (1 coin + M(5))

M(7) = 3 (1 coin + M(6))

M(8) = 4 (1 coin + M(7))

M(9) = 5 (1 coin + M(8))

M(10) = 2 (1 coin + M(5))

options: 1, 5

M(11) = 2 (1 coin + M(10))

options: 1, 5

M(12) = 1 (1 coin + M(0))

options: 1, 5, 12

M(13) = 2 (1 coin + M(12))

options: 1, 12

M(14) = 3 (1 coin + M(13))

options: 1, 12

M(15) = 3 (1 coin + M(10))

options: 1, 5, 12

CS314 Dynamic Programming 23

KNAPSACK PROBLEM -

RECURSIVE BACKTRACKING

AND DYNAMIC PROGRAMMING

CS314 Dynamic Programming 24

Knapsack Problem
A variation of a bin packing problem

Similar to fair teams problem from

recursion assignment

You have a set of items

Each item has a weight and a value

You have a knapsack with a weight limit

Goal: Maximize the value of the items you

put in the knapsack without exceeding the

weight limit

CS314 Dynamic Programming 25

Knapsack Example
Items:

Weight

Limit = 8

One greedy solution: Take the highest ratio

item that will fit: (1, 6), (2, 11), and (4, 12)

Total value = 6 + 11 + 12 = 29

Clicker 3 - Is this optimal? A. No B. Yes

Item

Number

Weight

of Item

Value of

Item

Value

per unit

Weight

1 1 6 6.0

2 2 11 5.5

3 4 1 0.25

4 4 12 3.0

5 6 19 3.167

6 7 12 1.714

Knapsack - Recursive Backtracking
private static int knapsack(ArrayList<Item> items,

int current, int capacity) {

int result = 0;

if (current < items.size()) {

// don't use item

int withoutItem

= knapsack(items, current + 1, capacity);

int withItem = 0;

// if current item will fit, try it

Item currentItem = items.get(current);

if (currentItem.weight <= capacity) {

withItem += currentItem.value;

withItem += knapsack(items, current + 1,

capacity - currentItem.weight);

}

result = Math.max(withoutItem, withItem);

}

return result;

}

Knapsack - Dynamic Programming
Recursive backtracking starts with max

capacity and makes choice for items:

choices are:

– take the item if it fits

– don't take the item

Dynamic Programming, start with

simpler problems

Reduce number of items available

… AND Reduce weight limit on knapsack

Creates a 2d array of possibilities
CS314 Dynamic Programming 28

Knapsack - Optimal Function
OptimalSolution(items, weight) is best

solution given a subset of items and a weight

limit

2 options:

OptimalSolution does not select ith item

– select best solution for items 1 to i - 1with weight

limit of w

OptimalSolution selects ith item

– New weight limit = w - weight of ith item

– select best solution for items 1 to i - 1with new

weight limit 29

Knapsack Optimal Function
OptimalSolution(items, weight limit) =

0 if 0 items

OptimalSolution(items - 1, weight) if weight of

ith item is greater than allowed weight

wi > w (In others ith item doesn't fit)

max of (OptimalSolution(items - 1, w),

value of ith item +

OptimalSolution(items - 1, w - wi)
CS314 Dynamic Programming 30

Knapsack - Algorithm
Create a 2d array to store

value of best option given

subset of items and

possible weights

In our example 0 to 6

items and weight limits of of 0 to 8

Fill in table using OptimalSolution Function

CS314 Dynamic Programming 31

Item

Number

Weight

of Item

Value of

Item

1 1 6

2 2 11

3 4 1

4 4 12

5 6 19

6 7 12

Knapsack Algorithm
Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit

M[0, w] = 0

For item = 1 to N

for weight = 1 to WeightLimit

if(weight of ith item > weight)

M[item, weight] = M[item - 1, weight]

else

M[item, weight] = max of

M[item - 1, weight] AND

value of item + M[item - 1, weight - weight of item]

Knapsack - Table

CS314 Dynamic Programming 33

Item Weight Value

1 1 6

2 2 11

3 4 1

4 4 12

5 6 19

6 7 12

items / capacity 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0
{1}

{1,2}

{1, 2, 3}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 5, 6}

Knapsack - Completed Table

CS314 Dynamic Programming 34

items / weight 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0

{1}

[1, 6]
0 6 6 6 6 6 6 6 6

{1,2}

[2, 11]
0 6 11 17 17 17 17 17 17

{1, 2, 3}

[4, 1]
0 6 11 17 17 17 17 18 18

{1, 2, 3, 4}

[4, 12]
0 6 11 17 17 18 23 29 29

{1, 2, 3, 4, 5}

[6, 19]
0 6 11 17 17 18 23 29 30

{1, 2, 3, 4, 5, 6}

[7, 12]
0 6 11 17 17 18 23 29 30

Knapsack - Items to Take

CS314 Dynamic Programming 35

items / weight 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0

{1}

[1, 6]
0 6 6 6 6 6 6 6 6

{1,2}

[2, 11]
0 6 11 17 17 17 17 17 17

{1, 2, 3}

[4, 1]
0 6 11 17 17 17 17 17 17

{1, 2, 3, 4}

[4, 12]
0 6 11 17 17 18 23 29 29

{1, 2, 3, 4, 5}

[6, 19]
0 6 11 17 17 18 23 29 30

{1, 2, 3, 4, 5, 6}

[7, 12]
0 6 11 17 17 18 23 29 30

Dynamic Knapsack
// dynamic programming approach

public static int knapsack(ArrayList<Item> items, int maxCapacity) {

final int ROWS = items.size() + 1;

final int COLS = maxCapacity + 1;

int[][] partialSolutions = new int[ROWS][COLS];

// first row and first column all zeros

for(int item = 1; item <= items.size(); item++) {

for(int capacity = 1; capacity <= maxCapacity; capacity++) {

Item currentItem = items.get(item - 1);

int bestSoFar = partialSolutions[item - 1][capacity];

if(currentItem.weight <= capacity) {

int withItem = currentItem.value;

int capLeft = capacity - currentItem.weight;

withItem += partialSolutions[item - 1][capLeft];

if (withItem > bestSoFar) {

bestSoFar = withItem;

}

}

partialSolutions[item][capacity] = bestSoFar;

}

}

return partialSolutions[ROWS - 1][COLS - 1];

}

Dynamic vs. Recursive

Backtracking Timing Data

CS314 Dynamic Programming 37

Number of items: 32. Capacity: 123

Recursive knapsack. Answer: 740, time: 10.0268025

Dynamic knapsack. Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210

Recursive knapsack. Answer: 893, time: 23.0677814

Dynamic knapsack. Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173

Recursive knapsack. Answer: 941, time: 89.8400178

Dynamic knapsack. Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93

Recursive knapsack. Answer: 638, time: 81.0132219

Dynamic knapsack. Answer: 638, time: 2.95601E-4

Clicker 4
Which approach to the knapsack problem

uses more memory?

A. the recursive backtracking approach

B. the dynamic programming approach

C. they use about the same amount of memory

CS314 Dynamic Programming 38

Topic 27
Functional Programming

Functional Programming with Java 8

“It's a long-standing principle of programming style that
the functional elements of a program should not be too
large. If some component of a program grows beyond the stage
where it's readily comprehensible, it becomes a mass of
complexity which conceals errors as easily as a big city conceals
fugitives. Such software will be hard to read, hard to test,
and hard to debug.” – Paul Graham

Copyright (c) Pearson 2016.
All rights reserved.

2

What is FP?

• functional programming: A style of programming that
emphasizes the use of functions (methods) to decompose a
complex task into subtasks.

– Examples of functional languages:
LISP, Scheme, ML, Haskell, Erlang, F#, Clojure, ...

• Java is considered an object-oriented language, not a functional
language.

• But Java 8 added several language features to facilitate a partial
functional programming style.

– Popular contemporary languages tend to be
Multi Paradigm Languages

3

Java 8 FP features

• 1. Effect-free programming

• 2. First-class functions

• 3. Processing structured data via functions

• 4. Function closures

• 5. Higher-order operations on collections

4

Effect-free code (19.1)

• side effect: A change to the state of an object or program
variable produced by a call on a function (i.e., a method).

– example: modifying the value of a variable

– example: printing output to System.out

– example: reading/writing data to a file, collection, or network

int result = f(x) + f(x);

int result = 2 * f(x);

• Are the two above statements equivalent?

– Yes, if the function f() has no side effects.

– One goal of functional programming is to minimize side effects.

5

Code w/ side effects

public class SideEffect {

public static int x;

public static int f(int n) {

x = x * 2;

return x + n;

}

// what if it were 2 * f(x)?

public static void main(String[] args) {

x = 5;

int result = f(x) + f(x);

System.out.println(result);

}

}

6

First-class functions (19.2)

• first-class citizen: An element of a programming language
that is tightly integrated with the language and supports the
full range of operations generally available to other entities in
the language.

• In functional programming, functions (methods) are treated as
first-class citizens of the languages.

– can store a function in a variable

– can pass a function as a parameter to another function

– can return a function as a value from another function

– can create a collection of functions

– ...

7

Lambda expressions

• lambda expression ("lambda"): Expression that describes a
function by specifying its parameters and return value.

– Java 8 adds support for lambda expressions.

– Essentially an anonymous function (aka method)

• Syntax:

(parameters) -> expression

• Example:

(x) -> x * x // squares a number

– The above is roughly equivalent to:

public static int squared(int x) {

return x * x;

}

8

MathMatrix add / subtract

• Recall the MathMatrix class:
public MathMatrix add(MathMatrix rhs) {

int[][] res = new int[cells.length][cells[0].length];

for (int r = 0; r < res.length; r++)

for (int c = 0; c < res[0].length; c++)

res[r][c] = cells[r][c] + rhs.cells[r][c];

return new MathMatrix(res);

}

public MathMatrix subtract(MathMatrix rhs) {

int[][] res = new int[cells.length][cells[0].length];

for (int r = 0; r < res.length; r++)

for (int c = 0; c < res[0].length; c++)

res[r][c] = cells[r][c] - rhs.cells[r][c];

return new MathMatrix(res);

}

9

MathMatrix add / subtract

•GACK!!!

•How do we generalize the idea of "add or
subtract"?

–How much work would it be to add
other operators?

–Can functional programming help remove the
repetitive code?

10

Code w/ lambdas

• We can represent the math operation as a lambda:

public MathMatrix add(MathMatrix rhs) {

return getMat(rhs, (x, y) -> x + y);

}

public MathMatrix subtract(MathMatrix rhs) {

return getMat(rhs, (x, y) -> x - y);

}

11

getMat method

private MathMatrix getMat(MathMatrix rhs,

IntBinaryOperator operator) {

int[][] res = new int[cells.length][cells[0].length];

for (int r = 0; r < cells.length; r++) {

for (int c = 0; c < cells[0].length; c++) {

int temp1 = cells[r][c];

int temp2 = rhs.cells[r][c];

res[r][c] = operator.applyAsInt(temp1, temp2);

}

}

return new MathMatrix(res);

}

// IntBinaryOperator Documentation

https://docs.oracle.com/javase/8/docs/api/java/util/function/IntBinaryOperator.html

12

Clicker 1

•Which of the following is a lambda
that checks if x divides evenly into y?

A. (x, y) -> y / x == 0

B. (x, y) -> x / y == 0

C. (x, y) -> y % x == 0

D. (x, y) -> x % y == 0

E. (x, y) -> y * x == 0

13

Streams (19.3)

• stream: A sequence of elements from a data source that
supports aggregate operations.

• Streams operate on a data source and modify it:

– example: print each element of a collection

– example: sum each integer in a file

– example: concatenate strings together into one large string

– example: find the largest value in a collection

– ...

14

Code w/o streams

• Non-functional programming sum code:

// compute the sum of the squares of integers 1-5

int sum = 0;

for (int i = 1; i <= 5; i++) {

sum += i * i;

}

15

The map modifier

• The map modifier applies a lambda to each stream element:

– higher-order function: Takes a function as an argument.

• Abstracting away loops (and data structures)

// compute the sum of the squares of integers 1-5

int sum = IntStream.range(1, 6)

.map(n -> n * n)

.sum();

// the stream operations are as follows:

IntStream.range(1, 6) -> [1, 2, 3, 4, 5]

-> map -> [1, 4, 9, 16, 25]

-> sum -> 55

https://docs.oracle.com/javase/8/docs/api/java/util/stream/IntStream.html

16

The filter modifier

• The filter stream modifier removes/keeps elements of the

stream using a boolean lambda:

// compute the sum of squares of odd integers

int sum =

IntStream.of(3, 1, 4, 1, 5, 9, 2, 6, 5, 3)

.filter(n -> n % 2 != 0)

.map(n -> n * n)

.sum();

// the stream operations are as follows:

IntStream.of -> [3, 1, 4, 1, 5, 9, 2, 6, 5, 3]

-> filter -> [3, 1, 1, 5, 9, 5, 3]

-> map -> [9, 1, 1, 25, 81, 25, 9]

-> sum -> 151

17

Streams and methods

• using streams as part of a regular method:

// Returns true if the given integer is prime.

// Assumes n >= 2.

public static boolean isPrime(int n) {

return IntStream.range(1, n + 1)

.filter(x -> n % x == 0)

.count() == 2;

}

• How to make this method faster?

18

The reduce modifier

• The reduce modifier (method) combines elements of a stream

using a lambda combination function.

– Accepts two parameters: an initial value and a lambda to combine
that initial value with each subsequent value in the stream.

// Returns n!, or 1 * 2 * 3 * ... * (n-1) * n.

// Assumes n is non-negative.

public static int factorial(int n) {

return IntStream.range(2, n + 1)

.reduce(1, (a, b) -> a * b);

}

19

Stream operators
Method name Description

anyMatch(f) returns true if any elements of stream match given predicate

allMatch(f) returns true if all elements of stream match given predicate

average() returns arithmetic mean of numbers in stream

collect(f) convert stream into a collection and return it

count() returns number of elements in stream

distinct() returns unique elements from stream

filter(f) returns the elements that match the given predicate

forEach(f) performs an action on each element of stream

limit(size) returns only the next size elements of stream

map(f) applies the given function to every element of stream

noneMatch(f) returns true if zero elements of stream match given predicate

20

Stream operators
Method name Description

parallel() returns a multithreaded version of this stream

peek(f) examines the first element of stream only

reduce(f) applies the given binary reduction function to stream elements

sequential() single-threaded, opposite of parallel()

skip(n) omits the next n elements from the stream

sorted() returns stream's elements in sorted order

sum() returns sum of elements in stream

toArray() converts stream into array

Static method Description

concat(s1, s2) glues two streams together

empty() returns a zero-element stream

iterate(seed, f) returns an infinite stream with given start element

of(values) converts the given values into a stream

range(start, end) returns a range of integer values as a stream

21

Clicker 2

• What is output by the following code?

A.(-2, 5, 5, 10, -6)

B.6

C.(-1, 2.5, 2.5, 5, -3)

D.9

E.20

int x1 = IntStream.of(-2, 5, 5, 10, -6)

.map(x -> x / 2)

.filter(y -> y > 0)

.sum();

System.out.print(x1);

22

Optional results

• Some stream terminators like max return an "optional" result
because the stream might be empty or not contain the result:

// print largest multiple of 10 in list

// (does not compile!)

int largest =

IntStream.of(55, 20, 19, 31, 40, -2, 62, 30)

.filter(n -> n % 10 == 0)

.max();

System.out.println(largest);

23

Optional results fix

• To extract the optional result, use a "get as" terminator.

– Converts type OptionalInt to Integer

// print largest multiple of 10 in list

// (this version compiles and works.)

int largest =

IntStream.of(55, 20, 19, 31, 40, -2, 62, 30)

.filter(n -> n % 10 == 0)

.max()

.getAsInt();

System.out.println(largest);

24

Ramya, Spring 2018

•“Okay, but why?”

•Programming with Streams is an
alternative to writing out the
loops ourselves

•Streams “abstract away” the loop
structures we have spent so much
time writing

•Why didn’t we just start with these?

25

Stream exercises

• Write a method sumAbsVals that uses stream operations to

compute the sum of the absolute values of an array of
integers. For example, the sum of {-1, 2, -4, 6, -9} is
22.

• Write a method largestEven that uses stream operations to

find and return the largest even number from an array of
integers. For example, if the array is {5, -1, 12, 10, 2,
8}, your method should return 12. You may assume that the

array contains at least one even integer.

26

Closures (19.4)

• bound/free variable: In a lambda expression, parameters
are bound variables while variables in the outer containing
scope are free variables.

• function closure: A block of code defining a function along
with the definitions of any free variables that are defined in the
containing scope.

// free variables: min, max, multiplier

// bound variables: x, y

int min = 10;

int max = 50;

int multiplier = 3;

compute((x, y) -> Math.max(x, min) *

Math.max(y, max) * multiplier);

27

• An array can be converted into a stream with Arrays.stream:

// compute sum of absolute values of even ints

int[] numbers = {3, -4, 8, 4, -2, 17,

9, -10, 14, 6, -12};

int sum = Arrays.stream(numbers)

.map(n -> Math.abs(n))

.filter(n -> n % 2 == 0)

.distinct()

.sum();

(19.4) Higher Order
Operations on Collections

(Streams and Arrays)

28

Method references

ClassName::methodName

• A method reference lets you pass a method where a lambda
would otherwise be expected:

// compute sum of absolute values of even ints

int[] numbers = {3, -4, 8, 4, -2, 17,

9, -10, 14, 6, -12};

int sum = Arrays.stream(numbers)

.map(Math::abs)

.filter(n -> n % 2 == 0)

.distinct()

.sum();

29

Streams and lists

• A collection can be converted into a stream by calling its
stream method:

// compute sum of absolute values of even ints

ArrayList<Integer> list =

new ArrayList<Integer>();

list.add(-42);

list.add(-17);

list.add(68);

list.stream()

.map(Math::abs)

.forEach(System.out::println);

30

Streams and strings

// convert into set of lowercase words

List<String> words = Arrays.asList(

"To", "be", "or", "Not", "to", "be");

Set<String> words2 = words.stream()

.map(String::toLowerCase)

.collect(Collectors.toSet());

System.out.println("word set = " + words2);

output:

word set = [not, be, or, to]

31

Streams and files

// find longest line in the file

int longest = Files.lines(Paths.get("haiku.txt"))

.mapToInt(String::length)

.max()

.getAsInt();

stream operations:

Files.lines -> ["haiku are funny",

"but sometimes they don't make sense",

"refrigerator"]

-> mapToInt -> [15, 35, 12]

-> max -> 35

32

Stream exercises

• Write a method fiveLetterWords that accepts a file name as
a parameter and returns a count of the number of unique lines
in the file that are exactly five letters long. Assume that each
line in the file contains at least one word.

• Write a method using streams that finds and prints the first 5
perfect numbers. (Recall a perfect number is equal to the sum
of its unique integer divisors, excluding itself.)

