
Topic 13

Recursive Backtracking
"In ancient times, before computers were invented,
alchemists studied the mystical properties of
numbers. Lacking computers, they had to rely on
dragons to do their work for them. The dragons
were clever beasts, but also lazy and bad-tempered.
The worst ones would sometimes burn their keeper
to a crisp with a single fiery belch. But most dragons
were merely uncooperative, as violence required too
much energy. This is the story of how Martin, an
alchemist’s apprentice, discovered recursion by
outsmarting a lazy dragon."

- David S. Touretzky, Common Lisp: A Gentle Introduction to
Symbolic Computation

Devon: 2022 - 2023

CS314

Recursive Backtracking
2

Backtracking
Start

Success!

Success!

Failure

Problem space consists of states (nodes) and actions

(paths that lead to new states). When in a node can

can only see paths to connected nodes

If a node only leads to failure go back to its "parent"

node. Try other alternatives. If these all lead to failure

then more backtracking may be necessary.

Escaping a Maze

Which door should we take?

A view from above

CS314

Recursive Backtracking
3

Current

Room

Doors

Exit out there,

some where …

we hope

Escaping a Maze

Try door to the east

CS314

Recursive Backtracking
4

First

room

Doors

Exit out there,

some where …

we hope

Current

Room

A dead end!

Escaping a Maze

Back we go

CS314

Recursive Backtracking
5

Doors

Exit out there,

some where …

we hope

Current

Room
A dead end!

Escaping a Maze

What if we knew the exit was to the south?

CS314

Recursive Backtracking
6

Doors

Exit out there,

some where

to the south!

Current

Room

Escaping a Maze

Start over. What if we knew the exit was to

the south?

CS314

Recursive Backtracking
7

Doors

Exit out there,

some where

to the south!
Current

Room A dead end!

Escaping a Maze

What if we knew the exit was to the south?

CS314

Recursive Backtracking
8

Doors

Exit out there,

some where

to the south!

Current

Room

A dead end!

Escaping a Maze

What if we knew the exit was to the south?

CS314

Recursive Backtracking
9

Doors

Exit out there,

some where

to the south!

A dead end!

Escaping a Maze

What if we knew the exit was to the south?

CS314

Recursive Backtracking
10

Doors

Exit out there,

some where

to the south!

Current

Room

A dead end!

Escaping a Maze

CS314

Recursive Backtracking
11

Doors

Exit out there,

some where

to the south!

Current

Room

A dead end!

A dead end!

Escaping a Maze

CS314

Recursive Backtracking
12

Doors

Exit out there,

some where

to the south!

Current

Room

A dead end!

A dead end!

Escaping a Maze

CS314

Recursive Backtracking
13

Doors

Exit out there,

some where

to the south!

Current

Room

A dead end!

A dead end!

Escaping a Maze

CS314

Recursive Backtracking
14

Doors

Exit out there,

some where

to the south!

OUT!! A dead end!

A dead end!

CS314

Recursive Backtracking
15

Recursive Backtracking
Pseudo code for recursive backtracking

algorithms – looking for a solution

If at a solution, report success
for (every possible choice from current state)

Make that choice and take one step along path
Use recursion to try to solve the problem for the new state
If the recursive call succeeds, report the success to the

previous level
Otherwise Back out of the current choice to restore the

state at the start of the loop.

Report failure

CS314

Recursive Backtracking
16

Another Concrete Example

Sudoku

9 by 9 matrix with some

numbers filled in

all numbers must be between

1 and 9

Goal: Each row, each column,

and each mini matrix must

contain the numbers between

1 and 9 once each

– no duplicates in rows, columns,

or mini matrices

CS314

Recursive Backtracking
17

Solving Sudoku – Brute Force
A brute force algorithm is a

simple but generally

inefficient approach

Try all combinations until

you find one that works

This approach isn’t clever,

but computers are fast

Then try and improve on

the brute force results

CS314

Recursive Backtracking
18

Solving Sudoku
Brute force Sudoku Soluton

– if not open cells, solved

– scan cells from left to right,

top to bottom for first open

cell

– When an open cell is found

start cycling through digits 1

to 9.

– When a digit is placed check

that the set up is legal

– now solve the board

1

Clicker 1
After placing a number in a cell is the

remaining problem very similar to the original

problem?

A. No

B. Yes

CS314

Recursive Backtracking
19

CS314

Recursive Backtracking
20

Solving Sudoku – Later Steps
1 1 2 1 2 4

1 2 4 8 1 2 4 8 9

uh oh!

CS314

Recursive Backtracking
21

Sudoku – A Dead End
We have reached a dead end in our search

With the current set up none of the nine

digits work in the top right corner

1 2 4 8 9

CS314

Recursive Backtracking
22

Backing Up
When the search reaches a dead

end in backs up to the previous

cell it was trying to fill and goes

onto to the next digit

We would back up to the cell with

a 9 and that turns out to be a dead

end as well so we back up again

– so the algorithm needs to remember

what digit to try next

Now in the cell with the 8. We try

and 9 and move forward again.

1 2 4 8 9

1 2 4 9

CS314

Recursive Backtracking
23

Characteristics of Brute Force

and Backtracking

Brute force algorithms are slow

The first pass attempts typically don't employ

a lot of logic

But, brute force algorithms are fairly easy to

implement as a first pass solution

– many backtracking algorithms are brute force

algorithms

CS314

Recursive Backtracking
24

Key Insights
After trying placing a digit in a cell we want to solve

the new sudoku board

– Isn't that a smaller (or simpler version) of the same

problem we started with?!?!?!?

After placing a number in a cell the we need to

remember the next number to try in case things

don't work out.

We need to know if things worked out (found a

solution) or they didn't, and if they didn't try the next

number

If we try all numbers and none of them work in our

cell we need to report back that things didn't work

Clicker 2
Grace 2019 Asked: When we reach the base

case in the solveSudoku method (9 x 9

board) and before we return true, how many

stack frames are on the program stack of the

solveSudoku method? Pick the closest

answer.

A. <= 9

B. 82

C. 819

D. 981

E. cannot determine 25

CS314

Recursive Backtracking
26

Recursive Backtracking
Problems such as Suduko can be solved

using recursive backtracking

recursive because later versions of the

problem are just slightly simpler versions of

the original

backtracking because we may have to try

different alternatives

CS314

Recursive Backtracking
27

Recursive Backtracking - Repeated

Pseudo code for recursive backtracking
algorithms – looking for a solution

If at a solution, report success
for (every possible choice from current state)

Make that choice and take one step along path
Use recursion to try to solve the problem for the new state
If the recursive call succeeds, report the success to the

previous level
Otherwise Back out of the current choice to restore the

state at the start of the loop.

Report failure

CS314

Recursive Backtracking
28

Goals of Backtracking
Possible goals

– Find a path to success

– Find all paths to success

– Find the best path to success

Not all problems are exactly alike, and

finding one success node may not be the

end of the search
Start

Success!

Success!

CS314

Recursive Backtracking
29

The 8 N Queens Problem

CS314

Recursive Backtracking
30

The 8 Queens Problem
A classic chess puzzle

– Place 8 queen pieces on a chess board so that

none of them can attack one another

CS314

Recursive Backtracking
31

The N Queens Problem
Place N Queens on an N by N chessboard so that

none of them can attack each other

Number of possible placements?

In 8 x 8
64 * 63 * 62 * 61 * 60 * 59 * 58 * 57

= 178,462, 987, 637, 760 / 8!

= 4,426,165,368

n choose k

– How many ways can you choose k things from a

set of n items?

– In this case there are 64 squares and we want to choose
8 of them to put queens on

Clicker 3

For a safe solution, how many queens can

be placed in a given column?

A. 0

B. 1

C. 2

D. 3

E. Any number

CS314

Recursive Backtracking
32

CS314

Recursive Backtracking
33

Reducing the Search Space
The previous calculation includes set ups like this

one

Includes lots of set ups with
multiple queens in the same
column

How many queens can there be
in one column?

Number of set ups
8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 = 16,777,216

We have reduced search space by two orders of
magnitude by applying some logic

Q

Q

Q

Q

Q

Q

Q

Q

Solving N Queens Approach

CS314

Recursive Backtracking
34

CS314

Recursive Backtracking
35

A Solution to 8 Queens
 If number of queens is fixed and I realize there can't be

more than one queen per column I can iterate through the

rows for each column
for(int r0 = 0; r0 < 8; r0++){

board[r0][0] = 'q';

for(int r1 = 0; r1 < 8; r1++){

board[r1][1] = 'q';

for(int r2 = 0; r2 < 8; r2++){

board[r2][2] = 'q';

// a little later

for(int r7 = 0; r7 < 8; r7++){

board[r7][7] = 'q';

if(queensAreSafe(board))

printSolution(board);

board[r7][7] = ' '; //pick up queen

}

board[r6][6] = ' '; // pick up queen

CS314

Recursive Backtracking
36

N Queens
The problem with N queens is you don't

know how many for loops to write.

Do the problem recursively

Write recursive code with class and demo

– show backtracking with breakpoint and

debugging option

CS314

Recursive Backtracking
37

Recursive Backtracking
You must practice!!!

Learn to recognize problems that fit the

pattern

Is a kickoff method needed?

All solutions or a solution?

Reporting results and acting on results

Minesweeper

CS314

Recursive Backtracking
38

Minesweeper Reveal

Algorithm
Minesweeper

click a cell

– if bomb game over

– if cell that has 1 or more bombs on border

then reveal the number of bombs that border cell

– if a cell that has 0 bombs on border

then reveal that cell as a blank and click on the 8

surrounding cells

CS314

Recursive Backtracking
39

CS314

Recursive Backtracking
40

Another Backtracking Problem

A Simple Maze

Search maze until way

out is found. If no way

out possible report that.

CS314

Recursive Backtracking
41

The Local View

North

East

West

Behind me, to the South

is a door leading South

Which way do

I go to get

out?

CS314

Recursive Backtracking
42

Modified Backtracking

Algorithm for Maze
 If the current square is outside, return TRUE to indicate that a solution has been

found.

If the current square is marked, return FALSE to indicate that this path has been

tried.

Mark the current square.

for (each of the four compass directions)

{ if (this direction is not blocked by a wall)

{ Move one step in the indicated direction from the current square.

Try to solve the maze from there by making a recursive call.

If this call shows the maze to be solvable, return TRUE to indicate that

fact.

}

}

Unmark the current square.

Return FALSE to indicate that none of the four directions led to a solution.

CS314

Recursive Backtracking
43

Backtracking in Action

The crucial part of the

algorithm is the for loop

that takes us through the

alternatives from the current

square. Here we have moved

to the North.

for (dir = North; dir <= West; dir++)

{ if (!WallExists(pt, dir))

{if (SolveMaze(AdjacentPoint(pt, dir)))

return(TRUE);

}

CS314

Recursive Backtracking
44

Backtracking in Action

Here we have moved

North again, but there is

a wall to the North .

East is also

blocked, so we try South.

That call discovers that

the square is marked, so

it just returns.

CS314

Recursive Backtracking
45

So the next move we

can make is West.

Where is this leading?

CS314

Recursive Backtracking
46

This path reaches

a dead end.

Time to backtrack!

Remember the

program stack!

CS314

Recursive Backtracking
47

The recursive calls

end and return until

we find

ourselves back here.

CS314

Recursive Backtracking
48

And now we try

South

CS314

Recursive Backtracking
49

Path Eventually Found

CS314

Recursive Backtracking
50

More Backtracking Problems

CS314

Recursive Backtracking
51

Other Backtracking Problems
Knight's Tour

Regular Expressions

Knapsack problem / Exhaustive Search

– Filling a knapsack. Given a choice of items with

various weights and a limited carrying capacity

find the optimal load out. 50 lb. knapsack. items

are 1 40 lb, 1 32 lb. 2 22 lbs, 1 15 lb, 1 5 lb. A

greedy algorithm would choose the 40 lb item

first. Then the 5 lb. Load out = 45lb. Exhaustive

search 22 + 22 + 5 = 49.

CS314

Recursive Backtracking
52

The CD problem
We want to put songs on a Compact Disc.

650MB CD and a bunch of songs of various

sizes.

If there are no more songs to consider return result

else{

Consider the next song in the list.

Try not adding it to the CD so far and use recursion to evaluate best

without it.

Try adding it to the CD, and use recursion to evaluate best with it

Whichever is better is returned as absolute best from here

}

CS314

Recursive Backtracking
53

Another Backtracking Problem
Airlines give out frequent flier miles as a way to get

people to always fly on their airline.

Airlines also have partner airlines. Assume if you

have miles on one airline you can redeem those

miles on any of its partners.

Further assume if you can redeem miles on a

partner airline you can redeem miles on any of its

partners and so forth...

– Airlines don't usually allow this sort of thing.

Given a list of airlines and each airlines partners

determine if it is possible to redeem miles on a

given airline A on another airline B.

CS314

Recursive Backtracking
54

Airline List – Part 1
Delta

– partners: Air Canada, Aero Mexico, OceanAir

United

– partners: Aria, Lufthansa, OceanAir, Quantas, British Airways

Northwest

– partners: Air Alaska, BMI, Avolar, EVA Air

Canjet

– partners: Girjet

Air Canda

– partners: Areo Mexico, Delta, Air Alaska

Aero Mexico

– partners: Delta, Air Canda, British Airways

CS314

Recursive Backtracking
55

Airline List - Part 2
Ocean Air

– partners: Delta, United, Quantas, Avolar

AlohaAir
– partners: Quantas

Aria
– partners: United, Lufthansa

Lufthansa
– partners: United, Aria, EVA Air

Quantas
– partners: United, OceanAir, AlohaAir

BMI
– partners: Northwest, Avolar

Maxair
– partners: Southwest, Girjet

CS314

Recursive Backtracking
56

Airline List - Part 3
Girjet

– partners: Southwest, Canjet, Maxair

British Airways
– partners: United, Aero Mexico

Air Alaska
– partners: Northwest, Air Canada

Avolar
– partners: Northwest, Ocean Air, BMI

EVA Air
– partners: Northwest, Luftansa

Southwest
– partners: Girjet, Maxair

CS314

Recursive Backtracking
57

Problem Example
 If I have miles on Northwest can I redeem them on Aria?

Partial graph:

Northwest

BMI

Air Alaska

EVA Air

Avolar

Ocean Air

