
Topic 26

Dynamic Programming

"Thus, I thought dynamic programming
was a good name. It was something not
even a Congressman could object to. So I
used it as an umbrella for my activities"

- Richard E. Bellman

Origins
A method for solving complex problems by

breaking them into smaller, easier, sub

problems

Term Dynamic Programming coined by

mathematician Richard Bellman in early

1950s
– employed by Rand Corporation

– Rand had many, large military contracts

– Secretary of Defense, Charles Wilson “against research,

especially mathematical research”

– how could any one oppose "dynamic"?

CS314 Dynamic Programming 2

https://en.wikipedia.org/wiki/RAND_Corporation
https://en.wikipedia.org/wiki/Charles_Erwin_Wilson

Dynamic Programming

Break big problem up into smaller

problems ...

Sound familiar?

Recursion?

N! = 1 for N == 0

N! = N * (N - 1)! for N > 0

CS314 Dynamic Programming 3

Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, …

F1 = 1

F2 = 1

FN = FN - 1 + FN - 2

Recursive Solution?

CS314 Dynamic Programming 4

https://en.wikipedia.org/wiki/Camposanto_Monumentale_di_Pisa
https://en.wikipedia.org/wiki/Fibonacci

Failing Spectacularly
Naïve recursive method

Clicker 1 - Order of this method?

A. O(1) B. O(log N) C. O(N) D. O(N2) E. O(2N)

CS314 Dynamic Programming 5

// pre: n > 0

// post: return the nth Fibonacci number

public int fib(int n) {

if (n <= 2)

return 1;

else

return fib(n – 1) + fib (n – 2);

}

Failing Spectacularly

CS314 Dynamic Programming 6

Failing Spectacularly

CS314 Dynamic Programming 7

Clicker 2 - Failing Spectacularly

How long to calculate the 70th Fibonacci

Number with this method?

A. 37 seconds

B. 74 seconds

C. 740 seconds

D. 14,800 seconds

E. None of these

CS314 Dynamic Programming 8

Aside - Overflow
at 47th Fibonacci number overflows int

Could use BigInteger class instead

CS314 Dynamic Programming 9

private static final BigInteger one

= new BigInteger("1");

private static final BigInteger two

= new BigInteger("2");

public static BigInteger fib(BigInteger n) {

if (n.compareTo(two) <= 0)

return one;

else {

BigInteger firstTerm = fib(n.subtract(two));

BigInteger secondTerm = fib(n.subtract(one));

return firstTerm.add(secondTerm);

}

}

Aside - BigInteger
Answers correct beyond 46th Fibonacci number

Even slower, math on BigIntegers,

object creation, and garbage collection

CS314 Dynamic Programming 10

Slow Fibonacci

Why so slow?

Algorithm keeps calculating the same

value over and over

When calculating the 40th Fibonacci

number the algorithm calculates the 4th

Fibonacci number 24,157,817 times!!!

CS314 Dynamic Programming 11

Fast Fibonacci
Instead of starting with the big problem

and working down to the small problems

... start with the small problem and

work up to the big problem

CS314 Dynamic Programming 12

public static BigInteger fastFib(int n) {

BigInteger smallTerm = one;

BigInteger largeTerm = one;

for (int i = 3; i <= n; i++) {

BigInteger temp = largeTerm;

largeTerm = largeTerm.add(smallTerm);

smallTerm = temp;

}

return largeTerm;

}

Fast Fibonacci

CS314 Dynamic Programming 13

Fast Fibonacci

CS314 Dynamic Programming 14

Memoization
Store (cache) results from

computations for later lookup

Memoization of Fibonacci Numbers

CS314 Dynamic Programming 15

public class FibMemo {

private static List<BigInteger> lookupTable;

private static final BigInteger ONE

= new BigInteger("1");

static {

lookupTable = new ArrayList<>();

lookupTable.add(null);

lookupTable.add(ONE);

lookupTable.add(ONE);

}

Fibonacci Memoization
public static BigInteger fib(int n) {

// check lookup table

if (n < lookupTable.size()) {

return lookupTable.get(n);

}

// Calculate nth Fibonacci.

// Don't repeat work. Start with the last known.

BigInteger smallTerm

= lookupTable.get(lookupTable.size() - 2);

BigInteger largeTerm

= lookupTable.get(lookupTable.size() - 1);

for(int i = lookupTable.size(); i <= n; i++) {

BigInteger temp = largeTerm;

largeTerm = largeTerm.add(smallTerm);

lookupTable.add(largeTerm); // memo

smallTerm = temp;

}

return largeTerm;

}

Dynamic Programming
When to use?

When a big problem can be broken up into sub

problems.

Solution to original problem can be

calculated from results of smaller problems.

– larger problems depend on previous solutions

Sub problems must have a natural ordering

from smallest to largest (simplest to

hardest)

Multiple techniques within DP
CS314 Dynamic Programming 17

DP Algorithms
Step 1: Define the *meaning* of the subproblems

(in English for sure, Mathematically as well if you
find it helpful).

Step 2: Show where the solution will be found.

Step 3: Show how to set the first subproblem.

Step 4: Define the order in which the subproblems
are solved.

Step 5: Show how to compute the answer to each
subproblem using the previously computed
subproblems. (This step is typically polynomial,
once the other subproblems are solved.)

CS314 Dynamic Programming 18

Dynamic Programming Requires:

overlapping sub problems:

– problem can be broken down into sub problems

– obvious with Fibonacci

– Fib(N) = Fib(N - 2) + Fib(N - 1) for N >= 3

optimal substructure:

– the optimal solution for a problem can be

constructed from optimal solutions of its sub

problems

– In Fibonacci just sub problems, no optimality

– min coins opt(36) = 112 + opt(24) [1, 5, 12]

CS314 Dynamic Programming 19

Dynamic Programing Example
Another simple example

Finding the best solution involves finding the

best answer to simpler problems

Given a set of coins with values (V1, V2, … VN)

and a target sum S, find the fewest coins

required to equal S

What is Greedy Algorithm approach?

Does it always work?

{1, 5, 12} and target sum = 15 (12, 1, 1, 1)

Could use recursive backtracking …
CS314 Dynamic Programming 20

Minimum Number of Coins
To find minimum number of coins to sum to

15 with values {1, 5, 12} start with sum 0

– recursive backtracking would likely start with 15

Let M(S) = minimum number of coins to sum

to S

At each step look at target sum,

coins available, and previous sums

– pick the smallest option

CS314 Dynamic Programming 21

Minimum Number of Coins
M(0) = 0 coins

M(1) = 1 coin (1 coin)

M(2) = 2 coins (1 coin + M(1))

M(3) = 3 coins (1 coin + M(2))

M(4) = 4 coins (1 coin + M(3))

M(5) = interesting, 2 options available:

1 + others OR single 5

if 1 then 1 + M(4) = 5, if 5 then 1 + M(0) = 1

clearly better to pick the coin worth 5

CS314 Dynamic Programming 22

Minimum Number of Coins
M(0) = 0

M(1) = 1 (1 coin)

M(2) = 2 (1 coin + M(1))

M(3) = 3 (1 coin + M(2))

M(4) = 4 (1 coin + M(3))

M(5) = 1 (1 coin + M(0))

M(6) = 2 (1 coin + M(5))

M(7) = 3 (1 coin + M(6))

M(8) = 4 (1 coin + M(7))

M(9) = 5 (1 coin + M(8))

M(10) = 2 (1 coin + M(5))

options: 1, 5

M(11) = 2 (1 coin + M(10))

options: 1, 5

M(12) = 1 (1 coin + M(0))

options: 1, 5, 12

M(13) = 2 (1 coin + M(12))

options: 1, 12

M(14) = 3 (1 coin + M(13))

options: 1, 12

M(15) = 3 (1 coin + M(10))

options: 1, 5, 12

CS314 Dynamic Programming 23

KNAPSACK PROBLEM -

RECURSIVE BACKTRACKING

AND DYNAMIC PROGRAMMING

CS314 Dynamic Programming 24

Knapsack Problem
A variation of a bin packing problem

Similar to fair teams problem from

recursion assignment

You have a set of items

Each item has a weight and a value

You have a knapsack with a weight limit

Goal: Maximize the value of the items you

put in the knapsack without exceeding the

weight limit

CS314 Dynamic Programming 25

Knapsack Example
Items:

Weight

Limit = 8

One greedy solution: Take the highest ratio

item that will fit: (1, 6), (2, 11), and (4, 12)

Total value = 6 + 11 + 12 = 29

Clicker 3 - Is this optimal? A. No B. Yes

Item

Number

Weight

of Item

Value of

Item

Value

per unit

Weight

1 1 6 6.0

2 2 11 5.5

3 4 1 0.25

4 4 12 3.0

5 6 19 3.167

6 7 12 1.714

Knapsack - Recursive Backtracking
private static int knapsack(ArrayList<Item> items,

int current, int capacity) {

int result = 0;

if (current < items.size()) {

// don't use item

int withoutItem

= knapsack(items, current + 1, capacity);

int withItem = 0;

// if current item will fit, try it

Item currentItem = items.get(current);

if (currentItem.weight <= capacity) {

withItem += currentItem.value;

withItem += knapsack(items, current + 1,

capacity - currentItem.weight);

}

result = Math.max(withoutItem, withItem);

}

return result;

}

Knapsack - Dynamic Programming
Recursive backtracking starts with max

capacity and makes choice for items:

choices are:

– take the item if it fits

– don't take the item

Dynamic Programming, start with

simpler problems

Reduce number of items available

… AND Reduce weight limit on knapsack

Creates a 2d array of possibilities
CS314 Dynamic Programming 28

Knapsack - Optimal Function
OptimalSolution(items, weight) is best

solution given a subset of items and a weight

limit

2 options:

OptimalSolution does not select ith item

– select best solution for items 1 to i - 1with weight

limit of w

OptimalSolution selects ith item

– New weight limit = w - weight of ith item

– select best solution for items 1 to i - 1with new

weight limit 29

Knapsack Optimal Function
OptimalSolution(items, weight limit) =

0 if 0 items

OptimalSolution(items - 1, weight) if weight of

ith item is greater than allowed weight

wi > w (In others ith item doesn't fit)

max of (OptimalSolution(items - 1, w),

value of ith item +

OptimalSolution(items - 1, w - wi)
CS314 Dynamic Programming 30

Knapsack - Algorithm
Create a 2d array to store

value of best option given

subset of items and

possible weights

In our example 0 to 6

items and weight limits of of 0 to 8

Fill in table using OptimalSolution Function

CS314 Dynamic Programming 31

Item

Number

Weight

of Item

Value of

Item

1 1 6

2 2 11

3 4 1

4 4 12

5 6 19

6 7 12

Knapsack Algorithm
Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit

M[0, w] = 0

For item = 1 to N

for weight = 1 to WeightLimit

if(weight of ith item > weight)

M[item, weight] = M[item - 1, weight]

else

M[item, weight] = max of

M[item - 1, weight] AND

value of item + M[item - 1, weight - weight of item]

Knapsack - Table

CS314 Dynamic Programming 33

Item Weight Value

1 1 6

2 2 11

3 4 1

4 4 12

5 6 19

6 7 12

items / capacity 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0
{1}

{1,2}

{1, 2, 3}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 5, 6}

Knapsack - Completed Table

CS314 Dynamic Programming 34

items / weight 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0

{1}

[1, 6]
0 6 6 6 6 6 6 6 6

{1,2}

[2, 11]
0 6 11 17 17 17 17 17 17

{1, 2, 3}

[4, 1]
0 6 11 17 17 17 17 18 18

{1, 2, 3, 4}

[4, 12]
0 6 11 17 17 18 23 29 29

{1, 2, 3, 4, 5}

[6, 19]
0 6 11 17 17 18 23 29 30

{1, 2, 3, 4, 5, 6}

[7, 12]
0 6 11 17 17 18 23 29 30

Knapsack - Items to Take

CS314 Dynamic Programming 35

items / weight 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0

{1}

[1, 6]
0 6 6 6 6 6 6 6 6

{1,2}

[2, 11]
0 6 11 17 17 17 17 17 17

{1, 2, 3}

[4, 1]
0 6 11 17 17 17 17 17 17

{1, 2, 3, 4}

[4, 12]
0 6 11 17 17 18 23 29 29

{1, 2, 3, 4, 5}

[6, 19]
0 6 11 17 17 18 23 29 30

{1, 2, 3, 4, 5, 6}

[7, 12]
0 6 11 17 17 18 23 29 30

Dynamic Knapsack
// dynamic programming approach

public static int knapsack(ArrayList<Item> items, int maxCapacity) {

final int ROWS = items.size() + 1;

final int COLS = maxCapacity + 1;

int[][] partialSolutions = new int[ROWS][COLS];

// first row and first column all zeros

for(int item = 1; item <= items.size(); item++) {

for(int capacity = 1; capacity <= maxCapacity; capacity++) {

Item currentItem = items.get(item - 1);

int bestSoFar = partialSolutions[item - 1][capacity];

if(currentItem.weight <= capacity) {

int withItem = currentItem.value;

int capLeft = capacity - currentItem.weight;

withItem += partialSolutions[item - 1][capLeft];

if (withItem > bestSoFar) {

bestSoFar = withItem;

}

}

partialSolutions[item][capacity] = bestSoFar;

}

}

return partialSolutions[ROWS - 1][COLS - 1];

}

Dynamic vs. Recursive

Backtracking Timing Data

CS314 Dynamic Programming 37

Number of items: 32. Capacity: 123

Recursive knapsack. Answer: 740, time: 10.0268025

Dynamic knapsack. Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210

Recursive knapsack. Answer: 893, time: 23.0677814

Dynamic knapsack. Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173

Recursive knapsack. Answer: 941, time: 89.8400178

Dynamic knapsack. Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93

Recursive knapsack. Answer: 638, time: 81.0132219

Dynamic knapsack. Answer: 638, time: 2.95601E-4

Clicker 4
Which approach to the knapsack problem

uses more memory?

A. the recursive backtracking approach

B. the dynamic programming approach

C. they use about the same amount of memory

CS314 Dynamic Programming 38

