Topic 26 Dynamic Programming

"Thus, I thought *dynamic programming* was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities" - Richard E. Bellman

Origins

- A method for solving complex problems by breaking them into smaller, easier, sub problems
- Term Dynamic Programming coined by mathematician Richard Bellman in early 1950s
 - employed by <u>Rand Corporation</u>
 - Rand had many, large military contracts
 - Secretary of Defense, <u>Charles Wilson</u> "against research, especially mathematical research"
 - how could any one oppose "dynamic"?

Dynamic Programming

Break big problem up into smaller problems ...

- Sound familiar?
- Recursion?
 N! = 1 for N == 0
 N! = N * (N 1)! for N > 0

Fibonacci Numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, ... F₁ = 1

- $F_2 = 1$ • $F_N = F_{N-1} + F_{N-2}$
- Recursive Solution?

Failing Spectacularly

Naïve recursive method

```
// pre: n > 0
// post: return the nth Fibonacci number
public int fib(int n) {
    if (n <= 2)
        return 1;
    else
        return fib(n - 1) + fib (n - 2);
}</pre>
```

Clicker 1 - Order of this method?
 A. O(1) B. O(log N) C. O(N) D. O(N²) E. O(2^N)

Failing Spectacularly

1th fibonnaci number: 1 - Time: 4.467E-6
2th fibonnaci number: 1 - Time: 4.47E-7
3th fibonnaci number: 2 - Time: 4.46E-7
4th fibonnaci number: 3 - Time: 4.46E-7
5th fibonnaci number: 5 - Time: 4.47E-7
6th fibonnaci number: 8 - Time: 4.47E-7
7th fibonnaci number: 13 - Time: 1.34E-6
8th fibonnaci number: 21 - Time: 1.787E-6
9th fibonnaci number: 34 - Time: 2.233E-6
10th fibonnaci number: 55 - Time: 3.573E-6
11th fibonnaci number: 89 - Time: 1.2953E-5
12th fibonnaci number: 144 - Time: 8.934E-6
13th fibonnaci number: 233 - Time: 2.9033E-5
14th fibonnaci number: 377 - Time: 3.7966E-5
15th fibonnaci number: 610 - Time: 5.0919E-5
16th fibonnaci number: 987 - Time: 7.1464E-5
17th fibonnaci number: 1597 - Time: 1.08984E-4

Failing Spectacularly

36th	fibonnaci	number:	14930352 - Time: 0.045372057
37th	fibonnaci	number:	24157817 - Time: 0.071195386
38th	fibonnaci	number:	39088169 - Time: 0.116922086
39th	fibonnaci	number:	63245986 - Time: 0.186926245
40th	fibonnaci	number:	102334155 - Time: 0.308602967
41th	fibonnaci	number:	165580141 - Time: 0.498588795
42th	fibonnaci	number:	267914296 - Time: 0.793824734
43th	fibonnaci	number:	433494437 - Time: 1.323325593
44th	fibonnaci	number:	701408733 - Time: 2.098209943
45th	fibonnaci	number:	1134903170 - Time: 3.392917489
46th	fibonnaci	number:	1836311903 - Time: 5.506675921
47th	fibonnaci	number:	-1323752223 - Time: 8.803592621
48th	fibonnaci	number:	512559680 - Time: 14.295023778
49th	fibonnaci	number:	-811192543 - Time: 23.030062974
50th	fibonnaci	number:	-298632863 - Time: 37.217244704
51th	fibonnaci	number:	-1109825406 - Time: 60.224418869

Clicker 2 - Failing Spectacularly

50th fibonnaci number: -298632863 - Time: 37.217

- How long to calculate the 70th Fibonacci Number with this method?
- A. 37 seconds
- B. 74 seconds
- C. 740 seconds
- D. 14,800 seconds
- E. None of these

Aside - Overflow

at 47th Fibonacci number overflows int

Could use BigInteger class instead

```
private static final BigInteger one
       = new BigInteger("1");
private static final BigInteger two
       = new BigInteger("2");
public static BigInteger fib(BigInteger n) {
       if (n.compareTo(two) <= 0)</pre>
              return one;
       else {
              BigInteger firstTerm = fib(n.subtract(two));
              BigInteger secondTerm = fib(n.subtract(one));
              return firstTerm.add(secondTerm);
       }
```

Aside - BigInteger

- Answers correct beyond 46th Fibonacci number
- Even slower, math on BigIntegers, object creation, and garbage collection

37th fibonnaci number: 38th fibonnaci number: fibonnaci number: 39th 40th fibonnaci number: 41th fibonnaci number: fibonnaci number: 42th 43th fibonnaci number: fibonnaci number: 44th 45th fibonnaci number: 46th fibonnaci number: 47th fibonnaci number: 24157817 -39088169 -63245986 -102334155 -165580141 -267914296 -433494437 -701408733 -

- 1134903170 -
- 1836311903 -
- 2971215073 -

- Time: 2.406739213
- Time: 3.680196724
- Time: 5.941275208
- Time: 9.63855468
- Time: 15.659745756
- Time: 25.404417949
 - Time: 40.867030512
- Time: 66.391845965
 - Time: 106.964369924
 - Time: 178.981819822
 - Time: 287.052365326

Slow Fibonacci

- Why so slow?
- Algorithm keeps calculating the same value over and over
- When calculating the 40th Fibonacci number the algorithm calculates the 4th Fibonacci number <u>24,157,817</u> times!!!

Fast Fibonacci

- Instead of starting with the big problem and working down to the small problems
- ... start with the small problem and work up to the big problem

```
public static BigInteger fastFib(int n) {
    BigInteger smallTerm = one;
    BigInteger largeTerm = one;
    for (int i = 3; i <= n; i++) {
        BigInteger temp = largeTerm;
        largeTerm = largeTerm.add(smallTerm);
        smallTerm = temp;
    }
    return largeTerm;</pre>
```

Fast Fibonacci

			-					
1th	fibonnaci	number:	1	_	Time:	4.4	67E-6	
2th	fibonnaci	number:	1	-	Time:	4.4	7E-7	
3th	fibonnaci	number:	2	-	Time:	7.1	46E-6	
4th	fibonnaci	number:	3	-	Time:	2.6	8E-6	
5th	fibonnaci	number:	5	_	Time:	2.6	8E-6	
6th	fibonnaci	number:	8	-	Time:	2.6	79E-6	
7th	fibonnaci	number:	13	- 8	Time:	3.	573E-6	
8th	fibonnaci	number:	21	_	Time:	4.	02E-6	
9th	fibonnaci	number:	34	_	Time:	4.	466E-6	
10th	fibonnac:	i number:	5	5 -	- Time	e: 4	.467E-	6
11th	fibonnac:	i number:	8	9 -	- Time	e: 4	.913E-	6
12th	fibonnac:	i number:	1	44	- Tin	ne:	6.253E	-6
13th	fibonnac:	i number:	2	.33	- Tin	ne:	6.253E	-6
14th	fibonnac:	i number:	3	377	- Tin	ne:	5.806E	-6
15th	fibonnac:	i number:	6	510	- Tin	ne:	6.7E-6	
16th	fibonnac:	i number:	9	87	- Tin	ne:	7 . 146E	-6
17th	n fibonnac:	i number:	1	597	/ – Ti	me:	7.146	E-6

Fast Fibonacci

	45th	fibonnaci	number:	: 1134903170 - Time: 1.7419E-5
	46th	fibonnaci	number:	: 1836311903 - Time: 1.6972E-5
	47th	fibonnaci	number:	: 2971215073 - Time: 1.6973E-5
	48th	fibonnaci	number:	: 4807526976 - Time: 2.3673E-5
	49th	fibonnaci	number:	: 7778742049 - Time: 1.9653E-5
	50th	fibonnaci	number:	: 12586269025 - Time: 2.01E-5
	51th	fibonnaci	number:	: 20365011074 - Time: 1.9207E-5
	52th	fibonnaci	number:	: 32951280099 - Time: 2.0546E-5
	67th	fibonnaci	number:	44945570212853 - Time: 2.3673E-5
	68th	fibonnaci	number:	72723460248141 - Time: 2.3673E-5
	69th	fibonnaci	number:	117669030460994 - Time: 2.412E-5
•	70th	fibonnaci	number:	190392490709135 - Time: 2.4566E-5
•	71th	fibonnaci	number:	308061521170129 - Time: 2.4566E-5
•	72th	fibonnaci	number:	498454011879264 - Time: 2.5906E-5
•	73th	fibonnaci	number:	806515533049393 - Time: 2.5459E-5
'	74th	fibonnaci	number:	1304969544928657 - Time: 2.546E-5

200th fibonnaci number: 280571172992510140037611932413038677189525 - Time: 1.0273E-5

Memoization

- Store (cache) results from computations for later lookup
- Memoization of Fibonacci Numbers

```
public class FibMemo {
      private static List<BigInteger> lookupTable;
      private static final BigInteger ONE
             = new BigInteger("1");
      static {
             lookupTable = new ArrayList<>();
             lookupTable.add(null);
             lookupTable.add(ONE);
             lookupTable.add(ONE);
CS314
                     Dynamic Programming
```

Fibonacci Memoization

```
public static BigInteger fib(int n) {
    // check lookup table
    if (n < lookupTable.size()) {</pre>
        return lookupTable.get(n);
    // Calculate nth Fibonacci.
    // Don't repeat work. Start with the last known.
    BigInteger smallTerm
        = lookupTable.get(lookupTable.size() - 2);
    BigInteger largeTerm
        = lookupTable.get(lookupTable.size() - 1);
    for(int i = lookupTable.size(); i <= n; i++) {</pre>
        BigInteger temp = largeTerm;
        largeTerm = largeTerm.add(smallTerm);
        lookupTable.add(largeTerm); // memo
        smallTerm = temp;
    }
    return largeTerm;
```

Dynamic Programming

- When to use?
- When a big problem can be broken up into sub problems.
- Solution to original problem can be calculated from results of smaller problems.
 - larger problems depend on previous solutions
- Sub problems must have a natural ordering from smallest to largest (simplest to hardest)
- Multiple techniques within DP

DP Algorithms

- Step 1: Define the *meaning* of the subproblems (in English for sure, Mathematically as well if you find it helpful).
- Step 2: Show where the solution will be found.
- Step 3: Show how to set the first subproblem.
- Step 4: Define the order in which the subproblems are solved.
- Step 5: Show how to compute the answer to each subproblem using the previously computed subproblems. (This step is typically polynomial, once the other subproblems are solved.)

Dynamic Programming Requires:

- overlapping sub problems:
 - problem can be broken down into sub problems
 - obvious with Fibonacci
 - -Fib(N) = Fib(N 2) + Fib(N 1) for N >= 3
- optimal substructure:
 - the optimal solution for a problem can be constructed from optimal solutions of its sub problems
 - In Fibonacci just sub problems, no optimality
 - $-\min \operatorname{coins} \operatorname{opt}(36) = 1_{12} + \operatorname{opt}(24)$ [1, 5, 12]

Dynamic Programing Example

- Another simple example
- Finding the best solution involves finding the best answer to simpler problems
- Given a set of coins with values (V₁, V₂, ... V_N) and a target sum S, find the fewest coins required to equal S
- What is Greedy Algorithm approach?
- Does it always work?
- {1, 5, 12} and target sum = 15 (12, 1, 1, 1)
- CS314 Could use recursive backtracking ... Dynamic Programming

Minimum Number of Coins

- To find minimum number of coins to sum to 15 with values {1, 5, 12} start with sum 0
 - recursive backtracking would likely start with 15
- Let M(S) = minimum number of coins to sum to S
- At each step look at target sum, coins available, and previous sums
 - pick the smallest option

Minimum Number of Coins

- ► M(0) = 0 coins
- M(1) = 1 coin (1 coin)
- M(2) = 2 coins (1 coin + M(1))
- M(3) = 3 coins (1 coin + M(2))
- M(4) = 4 coins (1 coin + M(3))
- M(5) = interesting, 2 options available: 1 + others OR single 5
 if 1 then 1 + M(4) = 5, if 5 then 1 + M(0) = 1
 clearly better to pick the coin worth 5

Minimum Number of Coins

- M(0) = 0
- M(1) = 1 (1 coin)
- M(2) = 2 (1 coin + M(1))
- M(3) = 3 (1 coin + M(2))
- M(4) = 4 (1 coin + M(3))
- M(5) = 1 (1 coin + M(0))
- M(6) = 2 (1 coin + M(5))
- M(7) = 3 (1 coin + M(6))
- M(8) = 4 (1 coin + M(7))
- M(9) = 5 (1 coin + M(8))
- M(10) = 2 (1 coin + M(5)) options: 1, 5

- M(11) = 2 (1 coin + M(10)) options: 1, 5
- M(12) = 1 (1 coin + M(0)) options: 1, 5, 12
- M(13) = 2 (1 coin + M(12)) options: 1, 12
- M(14) = 3 (1 coin + M(13)) options: 1, 12
- M(15) = 3 (1 coin + M(10)) options: 1, 5, 12

KNAPSACK PROBLEM -RECURSIVE BACKTRACKING AND DYNAMIC PROGRAMMING

Knapsack Problem

- A variation of a *bin packing* problem
- Similar to fair teams problem from recursion assignment
- You have a set of items
- Each item has a weight and a value
- You have a knapsack with a weight limit
- Goal: Maximize the <u>value</u> of the items you put in the knapsack without exceeding the weight limit

Knapsack Example

Items:	ltem Number	Weight of Item	Value of Item	Value per unit Weight
	1	1	6	6.0
	2	2	11	5.5
▶ Weight	3	4	1	0.25
	4	4	12	3.0
Limit = 8	5	6	19	3.167
	6	7	12	1.714

- One greedy solution: Take the highest ratio item that will fit: (1, 6), (2, 11), and (4, 12)
- Total value = 6 + 11 + 12 = 29
- Clicker 3 Is this optimal? A. No B. Yes

Knapsack - Recursive Backtracking

```
private static int knapsack(ArrayList<Item> items,
        int current, int capacity) {
    int result = 0;
    if (current < items.size()) {</pre>
        // don't use item
        int withoutItem
            = knapsack(items, current + 1, capacity);
        int withItem = 0;
        // if current item will fit, try it
        Item currentItem = items.get(current);
        if (currentItem.weight <= capacity) {
            withItem += currentItem.value;
            withItem += knapsack(items, current + 1,
                    capacity - currentItem.weight);
        }
        result = Math.max(withoutItem, withItem);
    return result;
```

Knapsack - Dynamic Programming

- Recursive backtracking starts with max capacity and makes choice for items: choices are:
 - take the item if it fits
 - don't take the item
- Dynamic Programming, start with simpler problems
- Reduce number of items available
- AND Reduce weight limit on knapsack
- Creates a 2d array of possibilities

Knapsack - Optimal Function

- OptimalSolution(items, weight) is best solution given a subset of items and a weight limit
- 2 options:
- OptimalSolution does not select ith item
 - select best solution for items 1 to i 1 with weight limit of w
- OptimalSolution selects ith item
 - New weight limit = w weight of ith item
 - select best solution for items 1 to i 1 with new weight limit

Knapsack Optimal Function

OptimalSolution(items, weight limit) =

0 if 0 items

OptimalSolution(items - 1, weight) if weight of ith item is greater than allowed weight $w_i > w$ (In others ith item doesn't fit)

max of (OptimalSolution(items - 1, w), value of ith item + OptimalSolution(items - 1, w - w_i) CS314 Dynamic Programming

Knapsack - Algorithm

Item

1

2

3

4

5

Number

 Create a 2d array to store value of best option given subset of items and possible weights

In our example 0 to 6
items and weight limits of of 0 to 8

Fill in table using OptimalSolution Function

Value of

Item

6

11

1

12

19

12

Weight

of Item

1

2

4

4

6

7

Knapsack Algorithm

Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit M[0, w] = 0

```
For item = 1 to N
for weight = 1 to WeightLimit
if(weight of ith item > weight)
M[item, weight] = M[item - 1, weight]
else
M[item, weight] = max of
M[item - 1, weight] AND
value of item + M[item - 1, weight - weight of item]
```

Knar	ltem	Weight	Value						
ixinap	1	1	6						
	2	2	11						
	3	4	1						
		4	4	12					
		5	6	19					
		6	7	12					
items / capacity	items / capacity 0 1 2 3 4 5								
0	0	0	0	0	0	0	0	0	0
{1 }									
{1 , <u>2</u> }									
{1, 2, <u>3</u> }									
{1, 2, 3, <u>4</u> }									
{1, 2, 3, 4, <u>5</u> }									
{1, 2, 3, 4, 5, <u>6</u> }									

Knapsack - Completed Table

items / weight	0	1	2	3	4	5	6	7	8
{ }	0	0	0	0	0	0	0	0	0
{1} [1, 6]	0	6	6	6	6	6	6	6	6
{1,2} [2, 11]	0	6	11	17	17	17	17	17	17
{1, 2, 3} [4, 1]	0	6	11	17	17	17	17	18	18
{1, 2, 3, 4} [4, 12]	0	6	11	17	17	18	23	29	29
{1, 2, 3, 4, 5} [6, 19]	0	6	11	17	17	18	23	29	30
{1, 2, 3, 4, 5, 6} [7, 12]	0	6	11	17	17	18	23	29	30

Knapsack - Items to Take

items / weight	0	1	2	3	4	5	6	7	8
{ }	0	0	0	0	0	0	0	0	0
{1} [1, 6]	0	6	6	6	6	6	6	6	6
{1,2} [2, 11]	0	6	11	17	17	17	17	17	17
{1, 2, 3} [4, 1]	0	6		17	17	17	17	17	17
{1, 2, 3, 4} [4, 12]	0	6	(11)	17	17	18	23	29	29
{1, 2, 3, 4, 5} [6, 19]	0	6	11	17	17	18	23	29	30
{1, 2, 3, 4, 5, 6} [7, 12]	0	6	11	17	17	18	23	29	30

Dynamic Knapsack

```
// dynamic programming approach
public static int knapsack(ArrayList<Item> items, int maxCapacity) {
    final int ROWS = items.size() + 1;
    final int COLS = maxCapacity + 1;
    int[][] partialSolutions = new int[ROWS][COLS];
    // first row and first column all zeros
    for(int item = 1; item <= items.size(); item++) {</pre>
        for(int capacity = 1; capacity <= maxCapacity; capacity++) {</pre>
            Item currentItem = items.get(item - 1);
            int bestSoFar = partialSolutions[item - 1][capacity];
            if( currentItem.weight <= capacity) {
                int withItem = currentItem.value;
                int capLeft = capacity - currentItem.weight;
                withItem += partialSolutions[item - 1][capLeft];
                if (withItem > bestSoFar) {
                    bestSoFar = withItem;
                 }
            }
            partialSolutions[item][capacity] = bestSoFar;
        }
    }
    return partialSolutions[ROWS - 1][COLS - 1];
```

Dynamic vs. Recursive Backtracking Timing Data

Number of items: 32. Capacity: 123 Recursive knapsack. Answer: 740, time: 10.0268025 Dynamic knapsack. Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210 Recursive knapsack. Answer: 893, time: 23.0677814 Dynamic knapsack. Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173 Recursive knapsack. Answer: 941, time: 89.8400178 Dynamic knapsack. Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93 Recursive knapsack. Answer: 638, time: 81.0132219 Dynamic knapsack. Answer: 638, time: 2.95601E-4

Clicker 4

- Which approach to the knapsack problem uses more memory?
- A. the recursive backtracking approach
- B. the dynamic programming approach
- C. they use about the same amount of memory