Topic 26
 Dynamic Programming

"Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities"

- Richard E. Bellman

Origins

- A method for solving complex problems by breaking them into smaller, easier, sub problems
- Term Dynamic Programming coined by mathematician Richard Bellman in early 1950s
- employed by Rand Corporation
- Rand had many, large military contracts
- Secretary of Defense, Charles Wilson "against research, especially mathematical research"
- how could any one oppose "dynamic"?
- Break big problem up into smaller problems ...

-Sound familiar?

- Recursion?
$\mathrm{N}!=1$ for $\mathrm{N}=0$
$\mathrm{N}!=\mathrm{N}$ * $(\mathrm{N}-1)$! for $\mathrm{N}>0$

Fibonacci Numbers

- $1,1,2,3,5,8,13,21,34,55,89,114, \ldots$
- $F_{1}=1$
- $F_{2}=1$
- $F_{N}=F_{N-1}+F_{N-2}$
- Recursive Solution?

34

Failing Spectacularly

- Naïve recursive method
// pre: n > 0
// post: return the nth Fibonacci number public int fib(int n) \{ if ($n<=2$)
return 1;
else
return fib (n - 1) + fib (n - 2);
- Clicker 1 - Order of this method?
$\begin{array}{llll}\text { A. } O(1) & \text { B. } O(\log N) & \text { C. } O(N) & \text { D. } O\left(N^{2}\right)\end{array} \quad$ E. $O\left(2^{N}\right)$

Failing Spectacularly

1th fibonnaci number: 1 - Time: 4.467E-6 2th fibonnaci number: 1 - Time: 4.47E-7 3th fibonnaci number: 2 - Time: 4.46E-7 4th fibonnaci number: 3 - Time: 4.46E-7
5th fibonnaci number: 5 - Time: 4.47E-7
6th fibonnaci number: 8 - Time: 4.47E-7
7th fibonnaci number: 13 - Time: 1.34E-6
8th fibonnaci number: 21 - Time: 1.787E-6
9th fibonnaci number: 34 - Time: 2.233E-6
10th fibonnaci number: 55 - Time: 3.573E-6
11th fibonnaci number: 89 - Time: 1.2953E-5
12th fibonnaci number: 144 - Time: 8.934E-6
13th fibonnaci number: 233 - Time: 2.9033E-5
14th fibonnaci number: 377 - Time: 3.7966E-5
15th fibonnaci number: 610 - Time: 5.0919E-5
16th fibonnaci number: 987 - Time: 7.1464E-5
17th fibonnaci number: 1597 - Time: 1.08984E-4

Failing Spectacularly

36th fibonnaci number: 14930352 37th 38th 39th 40th 41th 42th 43th 44th 45th 46th 47 th 48th 49th 50th 51th
fibonnaci number: 39088169 fibonnaci number: 63245986 fibonnaci number: 102334155 -
fibonnaci number: 24157817 - Time: 0.071195386 165580141 - Time: 0.498588795 267914296 - Time: 0.793824734 433494437 - Time: 1.323325593 701408733 - Time: 2.098209943 1134903170 - Time: 3.392917489 1836311903 - Time: 5.506675921 -1323752223 - Time: 8.803592621 512559680 - Time: 14.295023778
-811192543 - Time: 23.030062974
-298632863 - Time: 37.217244704
-1109825406 - Time: 60.224418869

Clicker 2 - Failing Spectacularly

50th fibonnaci number: -298632863- Time: 37.217

- How long to calculate the $70^{\text {th }}$ Fibonacci Number with this method?
A. 37 seconds
B. 74 seconds
C. 740 seconds
D. 14,800 seconds
E. None of these

Aside - Overflow

- at $47^{\text {th }}$ Fibonacci number overflows int
 - Could use BigInteger class instead

```
private static final BigInteger one
    = new BigInteger("1");
private static final BigInteger two
    = new BigInteger("2");
public static BigInteger fib(BigInteger n) {
    if (n.compareTo(two) <= 0)
        return one;
    else {
        BigInteger firstTerm = fib(n.subtract(two));
        BigInteger secondTerm = fib(n.subtract(one));
        return firstTerm.add(secondTerm);
    }
}
```


Aside - BigInteger

- Answers correct beyond 46 ${ }^{\text {th }}$ Fibonacci number

- Even slower, math on BigIntegers, object creation, and garbage collection

37th fibonnaci number: 24157817 - Time: 2.406739213
38th fibonnaci number: 39088169 - Time: 3.680196724
39th fibonnaci number: 63245986 - Time: 5.941275208
40th fibonnaci number: 102334155 - Time: 9.63855468
41th fibonnaci number: 165580141 - Time: 15.659745756
42th fibonnaci number: 267914296 - Time: 25.404417949
43th fibonnaci number: 433494437 - Time: 40.867030512
44th fibonnaci number: 701408733 -
45th fibonnaci number: 1134903170 46th fibonnaci number: 1836311903 47th fibonnaci number: 2971215073

Slow Fibonacci

'Why so slow?

- Algorithm keeps calculating the same value over and over
- When calculating the $40^{\text {th }}$ Fibonacci number the algorithm calculates the $4^{\text {th }}$ Fibonacci number $\mathbf{2 4 , 1 5 7 , 8 1 7}$ times!!!

Fast Fibonacci

- Instead of starting with the big problem and working down to the small problems - ... start with the small problem and work up to the big problem

```
public static BigInteger fastFib(int n) {
BigInteger smallTerm = one;
BigInteger largeTerm = one;
for (int i = 3; i <= n; i++) {
    BigInteger temp = largeTerm;
    largeTerm = largeTerm.add(smalITerm);
    smallTerm = temp;
}
return largeTerm;
}

\section*{Fast Fibonacci}

1th fibonnaci number: 1 - Time: 4.467E-6
2th fibonnaci number: 1 - Time: 4.47E-7
3th fibonnaci number: 2 - Time: 7.146E-6
4th fibonnaci number: 3 - Time: 2.68E-6
5th fibonnaci number: 5- Time: 2.68E-6
6th fibonnaci number: 8 - Time: 2.679E-6
7th fibonnaci number: 13 - Time: 3.573E-6
8th fibonnaci number: 21 - Time: 4.02E-6
9th fibonnaci number: 34 - Time: 4.466E-6
10th fibonnaci number: 55 - Time: 4.467E-6
11th fibonnaci number: 89 - Time: 4.913E-6
12th fibonnaci number: 144 - Time: 6.253E-6
13th fibonnaci number: 233 - Time: 6.253E-6
14th fibonnaci number: 377 - Time: 5.806E-6
15th fibonnaci number: 610 - Time: 6.7E-6
16th fibonnaci number: 987 - Time: 7.146E-6
17th fibonnaci number: 1597 - Time: 7.146E-6

\section*{Fast Fibonacci}

45th fibonnaci 46th fibonnaci 47th fibonnaci 48th fibonnaci 49th fibonnaci 50th fibonnaci number: 12586269025 51th fibonnaci number: 20365011074 52th fibonnaci number: 32951280099 -

Time: 1.7419E-5
Time: 1.6972E-5
Time: 1.6973E-5
Time: 2.3673E-5
Time: 1.9653E-5
Time: 2.01E-5
Time: 1.9207E-5
Time: 2.0546E-5

67th fibonnaci number: 44945570212853 - Time: 2.3673E-5 68th fibonnaci number: 72723460248141 - Time: 2.3673E-5 69th fibonnaci number: 117669030460994 - Time: 2.412E-5 70th fibonnaci number: 190392490709135 - Time: 2.4566E-5 71th fibonnaci number: 308061521170129 - Time: 2.4566E-5 72th fibonnaci number: 498454011879264 - Time: 2.5906E-5 73th fibonnaci number: 806515533049393 74th fibonnaci number: 1304969544928657 Time: 2.5459E-5 Time: 2.546E-5

\section*{Memoization}
- Store (cache) results from computations for later lookup
- Memoization of Fibonacci Numbers
```

public class FibMemo {
private static List<BigInteger> lookupTable;
private static final BigInteger ONE
= new BigInteger("1");
static {
lookupTable = new ArrayList<>();
lookupTable.add (null);
lookupTable.add (ONE) ;
lookupTable.add (ONE) ;
CS314 }

Fibonacci Memoization

```
public static BigInteger fib(int n) {
    // check lookup table
    if (n < lookupTable.size()) {
        return lookupTable.get(n);
    }
    // Calculate nth Fibonacci.
    // Don't repeat work. Start with the last known.
    BigInteger smallTerm
        = lookupTable.get(lookupTable.size() - 2);
    BigInteger largeTerm
            = lookupTable.get(lookupTable.size() - 1);
    for(int i = lookupTable.size(); i <= n; i++) {
        BigInteger temp = largeTerm;
        largeTerm = largeTerm.add(smallTerm);
        lookupTable.add(largeTerm); // memo
        smallTerm = temp;
    }
    return largeTerm;
}
```


Dynamic Programming

- When to use?
- When a big problem can be broken up into sub problems.
- Solution to original problem can be calculated from results of smaller problems.
- larger problems depend on previous solutions
' Sub problems must have a natural ordering from smallest to largest (simplest to hardest)
- Multiple techniques within DP

DP Algorithms

- Step 1: Define the *meaning* of the subproblems (in English for sure, Mathematically as well if you find it helpful).
- Step 2: Show where the solution will be found.
- Step 3: Show how to set the first subproblem.
- Step 4: Define the order in which the subproblems are solved.
- Step 5: Show how to compute the answer to each subproblem using the previously computed subproblems. (This step is typically polynomial, once the other subproblems are solved.)

Dynamic Programming Requires:

' overlapping sub problems:

- problem can be broken down into sub problems
- obvious with Fibonacci
$-\operatorname{Fib}(\mathrm{N})=\operatorname{Fib}(\mathrm{N}-2)+\operatorname{Fib}(\mathrm{N}-1)$ for $\mathrm{N}>=3$
' optimal substructure:
- the optimal solution for a problem can be constructed from optimal solutions of its sub problems
- In Fibonacci just sub problems, no optimality $-\min$ coins opt(36) $=1_{12}+\operatorname{opt}(24) \quad[1,5,12]$

Dynamic Programing Example

- Another simple example
- Finding the best solution involves finding the best answer to simpler problems
' Given a set of coins with values ($\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots \mathrm{~V}_{\mathrm{N}}$) and a target sum S, find the fewest coins required to equal S
- What is Greedy Algorithm approach?
- Does it always work?
' $\{1,5,12\}$ and target sum = $15(12,1,1,1)$
- Could use recursive backtracking ...

Minimum Number of Coins

- To find minimum number of coins to sum to 15 with values $\{1,5,12\}$ start with sum 0 - recursive backtracking would likely start with 15
- Let $\mathrm{M}(\mathrm{S})=$ minimum number of coins to sum to S
- At each step look at target sum, coins available, and previous sums
- pick the smallest option

Minimum Number of Coins

- $M(0)=0$ coins
- $M(1)=1$ coin (1 coin)
- $M(2)=2$ coins (1 coin $+M(1)$)
- $M(3)=3$ coins (1 coin $+M(2)$)
- $M(4)=4$ coins (1 coin $+M(3)$)
- $\mathrm{M}(5)$ = interesting, 2 options available:

1 + others OR single 5
if 1 then $1+\mathrm{M}(4)=5$, if 5 then $1+\mathrm{M}(0)=1$ clearly better to pick the coin worth 5

Minimum Number of Coins

- $M(0)=0$
- $M(1)=1$ (1 coin)
- $M(2)=2(1$ coin $+M(1))$
- $M(3)=3(1$ coin $+M(2))$
- $M(4)=4$ (1 coin $+M(3)$)
- $M(5)=1(1$ coin $+M(0))$
- $M(6)=2(1$ coin $+M(5))$
- $M(7)=3(1$ coin $+M(6))$
- $M(8)=4(1$ coin $+M(7))$
- $M(9)=5(1$ coin $+M(8))$
- $M(10)=2(1$ coin $+M(5))$ options: 1,5
- $M(11)=2(1$ coin $+M(10))$ options: 1,5
- $M(12)=1(1$ coin $+M(0))$ options: 1, 5, 12
- $M(13)=2(1$ coin $+M(12))$ options: 1, 12
- $\mathrm{M}(14)=3$ (1 coin + M(13)) options: 1, 12
- $M(15)=3(1$ coin $+M(10))$ options: 1, 5, 12

KNAPSACK PROBLEM RECURSIVE BACKTRACKING AND DYNAMIC PROGRAMMING

Knapsack Problem

- A variation of a bin packing problem
- Similar to fair teams problem from recursion assignment
- You have a set of items
- Each item has a weight and a value
- You have a knapsack with a weight limit
- Goal: Maximize the value of the items you put in the knapsack without exceeding the weight limit

Knapsack Example

- Items:
- Weight Limit $=8$

Item Number	Weight of Item	Value of Item	Value per unit Weight
1	1	6	6.0
2	2	11	5.5
3	4	1	0.25
4	4	12	3.0
5	6	19	3.167
6	7	12	1.714

- One greedy solution: Take the highest ratio item that will fit: $(1,6),(2,11)$, and $(4,12)$
- Total value $=6+11+12=29$
- Clicker 3 - Is this optimal? A. No B. Yes

Knapsack - Recursive Backtracking

```
private static int knapsack(ArrayList<Item> items,
    int current, int capacity) {
int result = 0;
if (current < items.size()) {
    // don't use item
    int withoutItem
            = knapsack(items, current + 1, capacity);
    int withItem = 0;
    // if current item will fit, try it
    Item currentItem = items.get(current);
    if (currentItem.weight <= capacity) {
    withItem += currentItem.value;
    withItem += knapsack(items, current + 1,
                                    capacity - currentItem.weight);
    }
    result = Math.max(withoutItem, withItem);
}
return result;

\title{
Knapsack - Dynamic Programming
}
- Recursive backtracking starts with max capacity and makes choice for items: choices are:
- take the item if it fits
- don't take the item
- Dynamic Programming, start with simpler problems
- Reduce number of items available
- ... AND Reduce weight limit on knapsack
- Creates a 2d array of possibilities

\section*{Knapsack - Optimal Function}
- OptimalSolution(items, weight) is best solution given a subset of items and a weight limit
- 2 options:
- OptimalSolution does not select ith item
- select best solution for items 1 to \(i-1\) with weight limit of w
- OptimalSolution selects \(\mathrm{i}^{\text {th }}\) item
- New weight limit \(=w-\) weight of \(i^{\text {th }}\) item
- select best solution for items 1 to \(i-1\) with new weight limit

\section*{Knapsack Optimal Function}

OptimalSolution(items, weight limit) =
0 if 0 items

OptimalSolution(items - 1, weight) if weight of ith item is greater than allowed weight \(w_{i}>\mathrm{w}\) (In others \(\mathrm{i}^{\text {th }}\) item doesn't fit)
max of (OptimalSolution(items - 1, w), value of \(i^{\text {ith }}\) item +
OptimalSolution(items - 1, w- wion

\section*{Knapsack - Algorithm}
- Create a 2d array to store value of best option given subset of items and possible weights
- In our example 0 to 6
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Item \\
Number
\end{tabular} & \begin{tabular}{l} 
Weight \\
of Item
\end{tabular} & \begin{tabular}{l} 
Value of \\
Item
\end{tabular} \\
\hline 1 & 1 & 6 \\
\hline 2 & 2 & 11 \\
\hline 3 & 4 & 1 \\
\hline 4 & 4 & 12 \\
\hline 5 & 6 & 19 \\
\hline 6 & 7 & 12 \\
\hline
\end{tabular} items and weight limits of of 0 to 8
- Fill in table using OptimalSolution Function

\section*{Knapsack Algorithm}

Given N items and WeightLimit
Create Matrix M with \(\mathrm{N}+1\) rows and WeightLimit + 1 columns

For weight \(=0\) to WeightLimit
\(\mathrm{M}[0, \mathrm{w}]=0\)
For item \(=1\) to N
for weight \(=1\) to WeightLimit
if(weight of ith item > weight)
M[item, weight] = M[item - 1, weight]
else
M[item, weight] = max of
M[item - 1, weight] AND
value of item \(+M[\) item - 1 , weight - weight of item]


\section*{Knapsack - Completed Table}
\(\left.\begin{array}{|l|r|r|r|r|r|r|r|r|r|r|}\hline \text { Items / weight } & 0 & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline\} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \begin{array}{l}\{1\} \\ {[1,6]}\end{array} & 0 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\ \hline\{1,2\} \\ {[2,11]}\end{array}\right)\)

\section*{Knapsack - Items to Take}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline items / weight & 0 & 1 & & 2 & 3 & & 4 & 5 & 6 & 7 & 8 \\
\hline \{\} & & & 0 & & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \[
\begin{aligned}
& \{1\} \\
& {[1,6]}
\end{aligned}
\] & & & & & & 6 & 6 & 6 & 6 & 6 & 6 \\
\hline \[
\begin{aligned}
& \{1,2\} \\
& \hline[2,11]
\end{aligned}
\] & & & 6 & & & 17 & 17 & 17 & 17 & 17 & 17 \\
\hline \[
\begin{aligned}
& \{1,2,3\} \\
& {[4,1]}
\end{aligned}
\] & & & & & & 17 & 17 & 17 & 17 & 17 & 17 \\
\hline \begin{tabular}{l}
\[
\{1,2,3,4\}
\] \\
[4, 12]
\end{tabular} & & & & & & 17 & 17 & 18 & 23 & 29 & 29 \\
\hline \[
\begin{aligned}
& \{1,2,3,4,5\} \\
& {[6,19]}
\end{aligned}
\] & & & 6 & & & 17 & 17 & 18 & 23 & & (30) \\
\hline \[
\begin{aligned}
& \{1,2,3,4,5,6\} \\
& {[7,12]}
\end{aligned}
\] & & & 6 & & & 17 & 17 & 18 & 23 & 29 & 30 \\
\hline
\end{tabular}

\section*{Dynamic Knapsack}
```

// dynamic programming approach
public static int knapsack(ArrayList<Item> items, int maxCapacity) {
final int ROWS = items.size() + 1;
final int COLS = maxCapacity + 1;
int[][] partialSolutions = new int[ROWS][COLS];
// first row and first column all zeros
for(int item = 1; item <= items.size(); item++) {
for(int capacity = 1; capacity <= maxCapacity; capacity++) {
Item currentItem = items.get(item - 1);
int bestSoFar = partialSolutions[item - 1][capacity];
if(currentItem.weight <= capacity) {
int withItem = currentItem.value;
int capLeft = capacity - currentItem.weight;
withItem += partialSolutions[item - 1][capLeft];
if (withItem > bestSoFar) {
bestSoFar = withItem;
}
}
partialSolutions[item][capacity] = bestSoFar;
}
}
return partialSolutions[ROWS - 1][COLS - 1];

Dynamic vs. Recursive Backtracking Timing Data

Number of items: 32. Capacity: 123
Recursive knapsack. Answer: 740, time: 10.0268025
Dynamic knapsack. Answer: 740, time: 3.43999E-4
Number of items: 33. Capacity: 210
Recursive knapsack. Answer: 893, time: 23.0677814
Dynamic knapsack. Answer: 893, time: 6.76899E-4
Number of items: 34. Capacity: 173
Recursive knapsack. Answer: 941, time: 89.8400178
Dynamic knapsack. Answer: 941, time: 0.0015702
Number of items: 35. Capacity: 93
Recursive knapsack. Answer: 638, time: 81.0132219
Dynamic knapsack. Answer: 638, time: 2.95601E-4

Clicker 4

- Which approach to the knapsack problem uses more memory?
A. the recursive backtracking approach
B. the dynamic programming approach
C. they use about the same amount of memory

