
Topic 26

Dynamic Programming

"Thus, I thought dynamic programming 
was a good name. It was something not 
even a Congressman could object to. So I 
used it as an umbrella for my activities"

- Richard E. Bellman



Origins
A method for solving complex problems by 

breaking them into smaller, easier, sub 

problems

Term Dynamic Programming coined by 

mathematician Richard Bellman in early 

1950s
– employed by Rand Corporation

– Rand had many, large military contracts

– Secretary of Defense, Charles Wilson “against research, 

especially mathematical research”

– how could any one oppose "dynamic"?
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https://en.wikipedia.org/wiki/RAND_Corporation
https://en.wikipedia.org/wiki/Charles_Erwin_Wilson


Dynamic Programming

Break big problem up into smaller 

problems ...

Sound familiar?

Recursion?

N! = 1 for N == 0

N! = N * (N - 1)! for N > 0
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Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, …

F1 = 1

F2 = 1

FN = FN - 1 + FN - 2

Recursive Solution?
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https://en.wikipedia.org/wiki/Camposanto_Monumentale_di_Pisa
https://en.wikipedia.org/wiki/Fibonacci


Failing Spectacularly
Naïve recursive method

Clicker 1 - Order of this method?

A. O(1)    B. O(log N)    C. O(N)    D. O(N2)     E. O(2N)

CS314 Dynamic Programming 5

// pre: n > 0

// post: return the nth Fibonacci number

public int fib(int n) {

if (n <= 2) 

return 1;

else

return fib(n – 1) + fib (n – 2);

}



Failing Spectacularly
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Failing Spectacularly
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Clicker 2 - Failing Spectacularly

How long to calculate the 70th Fibonacci 

Number with this method? 

A. 37 seconds

B. 74 seconds

C. 740 seconds

D. 14,800 seconds

E. None of these
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Aside - Overflow
at 47th Fibonacci number overflows int

Could use BigInteger class instead
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private static final BigInteger one

= new BigInteger("1");

private static final BigInteger two

= new BigInteger("2");

public static BigInteger fib(BigInteger n) {

if (n.compareTo(two) <= 0) 

return one;

else {

BigInteger firstTerm = fib(n.subtract(two));

BigInteger secondTerm = fib(n.subtract(one));

return firstTerm.add(secondTerm);

}

}



Aside - BigInteger
Answers correct beyond 46th Fibonacci number

Even slower, math on BigIntegers, 

object creation, and garbage collection
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Slow Fibonacci 

Why so slow?

Algorithm keeps calculating the same 

value over and over

When calculating the 40th Fibonacci 

number the algorithm calculates the 4th

Fibonacci number 24,157,817 times!!!
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Fast Fibonacci 
Instead of starting with the big problem 

and working down to the small problems

... start with the small problem and 

work up to the big problem
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public static BigInteger fastFib(int n) {

BigInteger smallTerm = one;

BigInteger largeTerm = one;

for (int i = 3; i <= n; i++) {

BigInteger temp = largeTerm;

largeTerm = largeTerm.add(smallTerm);

smallTerm = temp;

}

return largeTerm;

}



Fast Fibonacci 
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Fast Fibonacci 
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Memoization
Store (cache) results from 

computations for later lookup

Memoization of Fibonacci Numbers
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public class FibMemo {

private static List<BigInteger> lookupTable;

private static final BigInteger ONE

= new BigInteger("1");

static {

lookupTable = new ArrayList<>();

lookupTable.add(null);

lookupTable.add(ONE);

lookupTable.add(ONE);

}



Fibonacci Memoization
public static BigInteger fib(int n) {

// check lookup table

if (n < lookupTable.size()) {

return lookupTable.get(n);

}

// Calculate nth Fibonacci.

// Don't repeat work. Start with the last known.

BigInteger smallTerm

= lookupTable.get(lookupTable.size() - 2);

BigInteger largeTerm

= lookupTable.get(lookupTable.size() - 1);

for(int i = lookupTable.size(); i <= n; i++) {

BigInteger temp = largeTerm;

largeTerm = largeTerm.add(smallTerm);

lookupTable.add(largeTerm); // memo

smallTerm = temp;

}

return largeTerm;

}



Dynamic Programming
When to use?

When a big problem can be broken up into sub 

problems.

Solution to original problem can be 

calculated from results of smaller problems.

– larger problems depend on previous solutions

Sub problems must have a natural ordering 

from smallest to largest (simplest to 

hardest)

Multiple techniques within DP
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DP Algorithms
Step 1: Define the *meaning* of the subproblems 

(in English for sure, Mathematically as well if you 
find it helpful).

Step 2: Show where the solution will be found.

Step 3: Show how to set the first subproblem.

Step 4: Define the order in which the subproblems 
are solved.

Step 5: Show how to compute the answer to each 
subproblem using the previously computed 
subproblems.  (This step is typically polynomial, 
once the other subproblems are solved.)
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Dynamic Programming Requires:

overlapping sub problems:

– problem can be broken down into sub problems 

– obvious with Fibonacci

– Fib(N) = Fib(N - 2) + Fib(N - 1) for N >= 3

optimal substructure:

– the optimal solution for a problem can be 

constructed from optimal solutions of its sub 

problems

– In Fibonacci just sub problems, no optimality

– min coins opt(36) = 112 + opt(24)   [1, 5, 12]

CS314 Dynamic Programming 19



Dynamic Programing Example
Another simple example

Finding the best solution involves finding the 

best answer to simpler problems

Given a set of coins with values (V1, V2, … VN) 

and a target sum S, find the fewest coins 

required to equal S

What is Greedy Algorithm approach?

Does it always work?

{1, 5, 12} and target sum = 15 (12, 1, 1, 1)

Could use recursive backtracking …
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Minimum Number of Coins
To find minimum number of coins to sum to 

15 with values {1, 5, 12} start with sum 0 

– recursive backtracking would likely start with 15

Let M(S) = minimum number of coins to sum 

to S

At each step look at target sum, 

coins available, and previous sums

– pick the smallest option
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Minimum Number of Coins
M(0) = 0 coins

M(1) = 1 coin (1 coin)

M(2) = 2 coins (1 coin + M(1))

M(3) = 3 coins (1 coin + M(2))

M(4) = 4 coins (1 coin + M(3))

M(5) = interesting, 2 options available:

1 + others   OR   single 5

if 1 then 1 + M(4) = 5, if 5 then 1 + M(0) = 1

clearly better to pick the coin worth 5
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Minimum Number of Coins
M(0) = 0

M(1) = 1 (1 coin)

M(2) = 2 (1 coin + M(1))

M(3) = 3 (1 coin + M(2))

M(4) = 4 (1 coin + M(3))

M(5) = 1 (1 coin + M(0))

M(6) = 2 (1 coin + M(5))

M(7) = 3 (1 coin + M(6))

M(8) = 4 (1 coin + M(7))

M(9) = 5 (1 coin + M(8))

M(10) = 2 (1 coin + M(5))

options: 1, 5

M(11) = 2 (1 coin + M(10))

options: 1, 5

M(12) = 1 (1 coin + M(0))

options: 1, 5, 12

M(13) = 2 (1 coin + M(12))

options: 1, 12

M(14) = 3 (1 coin + M(13))

options: 1, 12

M(15) = 3 (1 coin + M(10))

options: 1, 5, 12
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KNAPSACK PROBLEM -

RECURSIVE BACKTRACKING 

AND DYNAMIC PROGRAMMING
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Knapsack Problem
A variation of a bin packing problem

Similar to fair teams problem from 

recursion assignment

You have a set of items

Each item has a weight and a value

You have a knapsack with a weight limit

Goal: Maximize the value of the items you 

put in the knapsack without exceeding the 

weight limit
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Knapsack Example
Items:

Weight

Limit = 8

One greedy solution: Take the highest ratio 

item that will fit: (1, 6), (2, 11), and (4, 12)

Total value = 6 + 11 + 12 = 29

Clicker 3 - Is this optimal? A. No     B. Yes

Item 

Number

Weight 

of Item 

Value of 

Item

Value 

per unit 

Weight

1 1 6 6.0

2 2 11 5.5

3 4 1 0.25

4 4 12 3.0

5 6 19 3.167

6 7 12 1.714



Knapsack - Recursive Backtracking
private static int knapsack(ArrayList<Item> items, 

int current, int capacity) {

int result = 0;

if (current < items.size()) {

// don't use item

int withoutItem

= knapsack(items, current + 1, capacity);

int withItem = 0;

// if current item will fit, try it

Item currentItem = items.get(current);

if (currentItem.weight <= capacity) {

withItem += currentItem.value;

withItem += knapsack(items, current + 1, 

capacity - currentItem.weight);

}

result = Math.max(withoutItem, withItem);

}

return result;

}



Knapsack - Dynamic Programming
Recursive backtracking starts with max 

capacity and makes choice for items: 

choices are:

– take the item if it fits

– don't take the item

Dynamic Programming, start with 

simpler problems

Reduce number of items available

… AND Reduce weight limit on knapsack

Creates a 2d array of possibilities
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Knapsack - Optimal Function
OptimalSolution(items, weight) is best 

solution given a subset of items and a weight 

limit

2 options:

OptimalSolution does not select ith item

– select best solution for items 1 to i - 1with weight 

limit of w

OptimalSolution selects ith item

– New weight limit = w - weight of ith item

– select best solution for items 1 to i - 1with new 

weight limit 29



Knapsack Optimal Function
OptimalSolution(items, weight limit) =

0 if 0 items

OptimalSolution(items - 1, weight) if weight of 

ith item is greater than allowed weight

wi > w (In others ith item doesn't fit)

max of (OptimalSolution(items - 1, w), 

value of ith item + 

OptimalSolution(items - 1, w - wi)
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Knapsack - Algorithm
Create a 2d array to store

value of best option given

subset of items and 

possible weights

In our example 0 to 6 

items and weight limits of of 0 to 8

Fill in table using OptimalSolution Function
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Item 

Number

Weight 

of Item 

Value of 

Item

1 1 6

2 2 11

3 4 1

4 4 12

5 6 19

6 7 12



Knapsack Algorithm
Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit

M[0, w] = 0

For item = 1 to N

for weight = 1 to WeightLimit

if(weight of ith item > weight)

M[item, weight] = M[item - 1, weight]

else

M[item, weight] = max of

M[item - 1, weight] AND

value of item + M[item - 1, weight - weight of item]



Knapsack - Table
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Item Weight Value

1 1 6

2 2 11

3 4 1

4 4 12

5 6 19

6 7 12

items / capacity 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0
{1} 

{1,2}

{1, 2, 3}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 5, 6}



Knapsack - Completed Table
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items / weight 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0

{1} 

[1, 6]
0 6 6 6 6 6 6 6 6

{1,2} 

[2, 11]
0 6 11 17 17 17 17 17 17

{1, 2, 3}

[4, 1]
0 6 11 17 17 17 17 18 18

{1, 2, 3, 4} 

[4, 12]
0 6 11 17 17 18 23 29 29

{1, 2, 3, 4, 5}

[6, 19]
0 6 11 17 17 18 23 29 30

{1, 2, 3, 4, 5, 6}

[7, 12]
0 6 11 17 17 18 23 29 30



Knapsack - Items to Take
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items / weight 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0

{1}

[1, 6]
0 6 6 6 6 6 6 6 6

{1,2}

[2, 11]
0 6 11 17 17 17 17 17 17

{1, 2, 3}

[4, 1]
0 6 11 17 17 17 17 17 17

{1, 2, 3, 4} 

[4, 12]
0 6 11 17 17 18 23 29 29

{1, 2, 3, 4, 5}

[6, 19]
0 6 11 17 17 18 23 29 30

{1, 2, 3, 4, 5, 6}

[7, 12]
0 6 11 17 17 18 23 29 30



Dynamic Knapsack
// dynamic programming approach

public static int knapsack(ArrayList<Item> items, int maxCapacity) {

final int ROWS = items.size() + 1;

final int COLS = maxCapacity + 1;

int[][] partialSolutions = new int[ROWS][COLS];

// first row and first column all zeros

for(int item = 1; item <= items.size(); item++) {

for(int capacity = 1; capacity <= maxCapacity; capacity++) {

Item currentItem = items.get(item - 1);

int bestSoFar = partialSolutions[item - 1][capacity];

if( currentItem.weight <= capacity) {

int withItem = currentItem.value;

int capLeft = capacity - currentItem.weight;

withItem += partialSolutions[item - 1][capLeft];

if (withItem > bestSoFar) {

bestSoFar = withItem;

}

}

partialSolutions[item][capacity] = bestSoFar;

}

}

return partialSolutions[ROWS - 1][COLS - 1];

}



Dynamic vs. Recursive 

Backtracking Timing Data
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Number of items: 32. Capacity: 123

Recursive knapsack. Answer: 740, time: 10.0268025

Dynamic knapsack.   Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210

Recursive knapsack. Answer: 893, time: 23.0677814

Dynamic knapsack.   Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173

Recursive knapsack. Answer: 941, time: 89.8400178

Dynamic knapsack.   Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93

Recursive knapsack. Answer: 638, time: 81.0132219

Dynamic knapsack.   Answer: 638, time: 2.95601E-4



Clicker 4
Which approach to the knapsack problem 

uses more memory?

A. the recursive backtracking approach

B. the dynamic programming approach

C. they use about the same amount of memory
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