Topic 26 Dynamic Programming

"Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities"

- Richard E. Bellman

Origins

- A method for solving complex problems by breaking them into smaller, easier, sub problems
- Term Dynamic Programming coined by mathematician Richard Bellman in early 1950s
- employed by Rand Corporation
- Rand had many, large military contracts
- Secretary of Defense, Charles Wilson "against research, especially mathematical research"
- how could any one oppose "dynamic"?

Fibonacci Numbers

- $1,1,2,3,5,8,13,21,34,55,89,114, \ldots$
- $F_{1}=1$
- $F_{2}=1$
- $\mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{N}-1}+\mathrm{F}_{\mathrm{N}-2}$
- Recursive Solution?

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 13^{13} \\
\hline
\end{array}
$$

Failing Spectacularly

- Naïve recursive method

```
// pre: n > 0
// post: return the nth Fibonacci number
public int fib(int n) {
    if (n <= 2)
            return 1;
    else
            return fib(n - 1) + fib (n - 2);
}
```

- Clicker 1 - Order of this method?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{N})$
C. $\mathrm{O}(\mathrm{N})$
D. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
E. $O\left(2^{N}\right)$
CS314
Dynamic Programming

Failing Spectacularly

```
1th fibonnaci number: 1 - Time: 4.467E-6
2th fibonnaci number: 1 - Time: 4.47E-7
3th fibonnaci number: 2 - Time: 4.46E-7
4th fibonnaci number: 3 - Time: 4.46E-7
5th fibonnaci number: 5 - Time: 4.47E-7
6th fibonnaci number: 8 - Time: 4.47E-7
7th fibonnaci number: 13 - Time: 1.34E-6
8th fibonnaci number: 21 - Time: 1.787E-6
9th fibonnaci number: 34 - Time: 2.233E-6
10th fibonnaci number: 55 - Time: 3.573E-6
11th fibonnaci number: 89 - Time: 1.2953E-5
12th fibonnaci number: 144 - Time: 8.934E-6
13th fibonnaci number: 233 - Time: 2.9033E-5
14th fibonnaci number: 377 - Time: 3.7966E-5
15th fibonnaci number: 610 - Time: 5.0919E-5
16th fibonnaci number: 987 - Time: 7.1464E-5
17th fibonnaci number: 1597 - Time: 1.08984E-4
```


Failing Spectacularly

```
36th fibonnaci number: 14930352 - Time: 0.045372057
37th fibonnaci number: 24157817 - Time: 0.071195386
38th fibonnaci number: 39088169 - Time: 0.116922086
39th fibonnaci number: 63245986 - Time: 0.186926245
40th fibonnaci number: 102334155 - Time: 0.308602967
41th fibonnaci number: 165580141 - Time: 0.498588795
42th fibonnaci number: 267914296 - Time: 0.793824734
43th fibonnaci number: 433494437 - Time: 1.323325593
44th fibonnaci number: 701408733 - Time: 2.098209943
45th fibonnaci number: 1134903170 - Time: 3.392917489
46th fibonnaci number: 1836311903 - Time: 5.506675921
47th fibonnaci number: -1323752223 - Time: 8.803592621
48th fibonnaci number: 512559680 - Time: 14.295023778
49th fibonnaci number: -811192543 - Time: 23.030062974
50th fibonnaci number: -298632863 - Time: 37.217244704
51th fibonnaci number: -1109825406 - Time: 60.2244188694930352 -Time: 0.045372057Time: 0.071195386Time: 0.116922086Time: 0.186926245
```

```Time: 0.498588795
```

```Time: 1.323325593Time: 2.098209943
```

```Time: 5.50291749Time: 8.8035926211me: 14.29502378
```

```Time: 37. 21724470
```

Time: 60.224418869

Clicker 2 - Failing Spectacularly

50th fibomaci number: -298638663 - Tine: 37.217

- How long to calculate the $70^{\text {th }}$ Fibonacci Number with this method?

A. 37 seconds
B. 74 seconds
C. 740 seconds
D. 14,800 seconds
E. None of these

Aside - Overflow

' at $47^{\text {th }}$ Fibonacci number overflows int

- Could use BigInteger class instead

```
private static final BigInteger one
    = new BigInteger("1");
private static final BigInteger two
    = new BigInteger("2");
public static BigInteger fib(BigInteger n) {
    if (n.compareTo(two) <= 0)
        return one;
    else {
        BigInteger firstTerm = fib(n.subtract(two));
        BigInteger secondTerm = fib(n.subtract(one));
        return firstTerm.add(secondTerm);
    }
}

\section*{Aside - BigInteger}
- Answers correct beyond \(46^{\text {th }}\) Fibonacci number
- Even slower, math on BigIntegers, object creation, and garbage collection
37th fibonnaci number: 24157817 - Time: 2.406739213
38th fibonnaci number: \(39088169-\) Time: 3.680196724
39th fibonnaci number: 63245986 - Time: 5.941275208
40th fibonnaci number: 102334155 - Time: 9.63855468
41th fibonnaci number: 165580141 - Time: 15.659745756
42th fibonnaci number: 267914296 - Time: 25.404417949
43th fibonnaci number: 433494437 - Time: 40.867030512
44th fibonnaci number: 701408733 - Time: 66.391845965
45th fibonnaci number: 1134903170 - Time: 106.964369924
46th fibonnaci number: 1836311903 - Time: 178.981819822
47th fibonnaci number: \(2971215073-\) Time: 287.052365326
cs314
Dynamic Programming

\section*{Fast Fibonacci}
- Instead of starting with the big problem and working down to the small problems
- ... start with the small problem and work up to the big problem
```

public static BigInteger fastFib(int n) {
BigInteger smallTerm = one;
BigInteger largeTerm = one;
for (int i = 3; i <= n; i++) {
BigInteger temp = largeTerm;
largeTerm = largeTerm.add(smallTerm);
smallTerm = temp;
}
return largeTerm;

```
\}

\section*{Fast Fibonacci}
```

1th fibonnaci number: 1 - Time: 4.467E-6
2th fibonnaci number: 1 - Time: 4.47E-7
3th fibonnaci number: 2 - Time: 7.146E-6
4th fibonnaci number: 3 - Time: 2.68E-6
5th fibonnaci number: 5 - Time: 2.68E-6
6th fibonnaci number: 8 - Time: 2.679E-6
7th fibonnaci number: 13 - Time: 3.573E-6
8th fibonnaci number: 21 - Time: 4.02E-6
9th fibonnaci number: 34 - Time: 4.466E-6
10th fibonnaci number: 55 - Time: 4.467E-6
11th fibonnaci number: 89 - Time: 4.913E-6
12th fibonnaci number: 144 - Time: 6.253E-6
13th fibonnaci number: 233 - Time: 6.253E-6
14th fibonnaci number: 377 - Time: 5.806E-6
15th fibonnaci number: 610 - Time: 6.7E-6
16th fibonnaci number: 987 - Time: 7.146E-6
17th fibonnaci number: 1597 - Time: 7.146E-6

```

\section*{Fast Fibonacci}
\(\left|\begin{array}{|l}\text { 45th fibonnaci number: } 1134903170 \text { - Time: } 1.7419 \mathrm{E}-5 \\ \text { 46th fibonnaci number: } 1836311903 \text { - Time: } 1.6972 \mathrm{E}-5 \\ \text { 47th fibonnaci number: } 2971215073 \text { - Time: } 1.6973 \mathrm{~F}-5 \\ \text { 48th fibonnaci number: } 4807526976 \text { - Time: 2.3673E-5 } \\ \text { 49th fibonnaci number: 7778742049- Time: 1.9653E-5 } \\ \text { 50th fibonnaci number: } 12586269025 \text { - Time: } 2.01 \mathrm{E}-5 \\ \text { 51th fibonnaci number: } 20365011074 \text { - Time: } 1.9207 \mathrm{E}-5 \\ \text { 52th fibonnaci number: } 32951280099 \text { - Time: } 2.0546 \mathrm{E}-5\end{array}\right|\)


200th fibonnaci number: 280571172992510140037611932413038677189525 - Time: 1.0273E-

\section*{Memoization}

\section*{- Store (cache) results from} computations for later lookup

\section*{- Memoization of Fibonacci Numbers}
public class FibMemo \(\{\)
private static List<BigInteger> lookupTable;
private static final BigInteger ONE
\(=\) new BigInteger ("1");
static \(\{\)
lookupTable = new ArrayList<>();
lookupTable.add(null);
lookupTable.add (ONE);
lookupTable.add (ONE);

\section*{Fibonacci Memoization}
```

public static BigInteger fib(int n)
// check lookup table
if (n < lookupTable.size()) {
return lookupTable.get(n);
}
// Calculate nth Fibonacci
// Don't repeat work. Start with the last known.
BigInteger smallTerm
= lookupTable.get(lookupTable.size() - 2);
BigInteger largeTerm
= lookupTable.get(lookupTable.size() - 1);
for(int i = lookupTable.size(); i <= n; i++) {
BigInteger temp = largeTerm;
largeTerm = largeTerm.add(smallTerm);
lookupTable.add(largeTerm); // memo
smallTerm = temp;
}
return largeTerm;
}

```

\section*{Dynamic Programming}
- When to use?
- When a big problem can be broken up into sub problems.
- Solution to original problem can be calculated from results of smaller problems. - larger problems depend on previous solutions
- Sub problems must have a natural ordering from smallest to largest (simplest to hardest)
- Multiple techniques within DP

\section*{DP Algorithms}
- Step 1: Define the *meaning* of the subproblems (in English for sure, Mathematically as well if you find it helpful).
- Step 2: Show where the solution will be found.
- Step 3: Show how to set the first subproblem.
- Step 4: Define the order in which the subproblems are solved.
- Step 5: Show how to compute the answer to each subproblem using the previously computed subproblems. (This step is typically polynomial, once the other subproblems are solved.)

\section*{Dynamic Programing Example}
- Another simple example
- Finding the best solution involves finding the best answer to simpler problems
- Given a set of coins with values \(\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots \mathrm{~V}_{\mathrm{N}}\right)\) and a target sum \(S\), find the fewest coins required to equal \(S\)
- What is Greedy Algorithm approach?
- Does it always work?
- \(\{1,5,12\}\) and target sum \(=15(12,1,1,1)\)
- Could use recursive backtracking .. CS314

Dynamic Programming

\section*{Minimum Number of Coins}
- To find minimum number of coins to sum to 15 with values \(\{1,5,12\}\) start with sum 0
- recursive backtracking would likely start with 15
- Let \(\mathrm{M}(\mathrm{S})=\) minimum number of coins to sum to \(S\)
- At each step look at target sum, coins available, and previous sums
- pick the smallest option

\section*{Minimum Number of Coins}
- \(M(0)=0\)
- \(M(1)=1\) (1 coin)
- \(M(2)=2(1\) coin \(+M(1))\)
- \(M(3)=3(1\) coin \(+M(2))\)
- \(M(4)=4(1\) coin \(+M(3))\)
- \(M(5)=1(1\) coin \(+M(0))\)
- \(M(6)=2(1\) coin \(+M(5))\)
- \(M(7)=3(1\) coin \(+M(6))\)
- \(M(8)=4(1\) coin \(+M(7))\)
- \(M(9)=5(1\) coin \(+M(8))\)
- \(M(10)=2(1\) coin \(+M(5))\) options: 1, 5
- \(M(11)=2(1\) coin \(+M(10))\) options: 1, 5
- \(M(12)=1(1\) coin \(+M(0))\) options: 1, 5, 12
- \(M(13)=2(1\) coin \(+M(12))\) options: 1, 12
- M(14) = 3 (1 coin + M(13)) options: 1, 12
- \(M(15)=3\) (1 coin + M(10)) options: 1, 5, 12

\section*{Minimum Number of Coins}
- \(\mathrm{M}(0)=0\) coins
- \(M(1)=1\) coin ( 1 coin)
- \(M(2)=2\) coins ( 1 coin \(+M(1)\) )
- \(M(3)=3\) coins ( 1 coin \(+M(2)\) )
- \(M(4)=4\) coins ( 1 coin \(+M(3)\) )
- M(5) = interesting, 2 options available:
\(1+\) others OR single 5
if 1 then \(1+\mathrm{M}(4)=5\), if 5 then \(1+\mathrm{M}(0)=1\) clearly better to pick the coin worth 5

\section*{Knapsack Problem}
- A variation of a bin packing problem
- Similar to fair teams problem from recursion assignment
- You have a set of items
- Each item has a weight and a value
- You have a knapsack with a weight limit
- Goal: Maximize the value of the items you put in the knapsack without exceeding the weight limit

\section*{Knapsack Example}
\begin{tabular}{|c|c|c|c|c|}
\hline - Items: & Item Numb & Weight & (eate of & Value per unit \\
\hline & 1 & 1 & 6 & 6.0 \\
\hline & 2 & 2 & 11 & 5.5 \\
\hline - Weight & 3 & 4 & 1 & 0.25 \\
\hline Limit \(=8\) & 4 & 4 & 12 & \begin{tabular}{l}
3.0 \\
3.16 \\
\hline
\end{tabular} \\
\hline & 6 & 7 & 12 & 1.714 \\
\hline
\end{tabular}
- One greedy solution: Take the highest ratio item that will fit: \((1,6),(2,11)\), and \((4,12)\)
- Total value \(=6+11+12=29\)
- Clicker 3 - Is this optimal? A. No B. Yes

\section*{Knapsack - Recursive Backtracking}
```

private static int knapsack (ArrayList<Item> items,
int current, int capacity) {
int result = 0;
if (current < items.size()) {
// don't use item
int withoutItem
= knapsack (items, current + 1, capacity);
int withItem = 0;
// if current item will fit, try it
Item currentItem = items.get(current);
if (currentItem.weight <= capacity) {
withItem += currentItem.value;
withItem += knapsack (items, current + 1,
capacity - currentItem.weight);
}
result = Math.max(withoutItem, withItem);
}
return result;
}

```

\section*{Knapsack - Dynamic Programming}
- Recursive backtracking starts with max capacity and makes choice for items: choices are:
- take the item if it fits
- don't take the item
- Dynamic Programming, start with simpler problems
- Reduce number of items available
- ... AND Reduce weight limit on knapsack
- Creates a 2d array of possibilities

\section*{Knapsack - Optimal Function}
- OptimalSolution(items, weight) is best solution given a subset of items and a weight limit
- 2 options:
- OptimalSolution does not select \(\mathrm{ith}^{\text {th }}\) item
- select best solution for items 1 to \(\mathrm{i}-1\) with weight limit of w
- OptimalSolution selects ith item
- New weight limit = w - weight of \(\mathrm{i}^{\text {th }}\) item
- select best solution for items 1 to \(i-1\) with new weight limit

\section*{Knapsack Optimal Function}
- OptimalSolution(items, weight limit) =

0 if 0 items
OptimalSolution(items - 1, weight) if weight of ith item is greater than allowed weight \(\mathrm{w}_{\mathrm{i}}>\mathrm{w}\) (In others ith item doesn't fit)
max of (OptimalSolution(items - 1, w), value of \(\mathrm{ith}^{\text {th }}\) item +
OptimalSolution(items - 1, w- \(\mathrm{w}_{\mathrm{i}}\) )
CS314
Dynamic Programming

\section*{Knapsack - Algorithm}
- Create a 2d array to store value of best option given subset of items and possible weights
- In our example 0 to 6
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Item \\
Number
\end{tabular} & \begin{tabular}{l} 
Weight \\
of Item
\end{tabular} & \begin{tabular}{l} 
Value of \\
Item
\end{tabular} \\
\hline 1 & 1 & 6 \\
\hline 2 & 2 & 11 \\
\hline 3 & 4 & 1 \\
\hline 4 & 4 & 12 \\
\hline 5 & 6 & 19 \\
\hline 6 & 7 & 12 \\
\hline
\end{tabular} items and weight limits of of 0 to 8
- Fill in table using OptimalSolution Function

\section*{Knapsack Algorithm}

Given N items and WeightLimit
Create Matrix M with \(\mathrm{N}+1\) rows and WeightLimit +1 columns

For weight \(=0\) to WeightLimit
\[
\mathrm{M}[0, \mathrm{w}]=0
\]

For item \(=1\) to N
for weight \(=1\) to WeightLimit
if(weight of ith item > weight)
\(\mathrm{M}[\) item, weight] \(=\mathrm{M}[\) item -1 , weight \(]\)
else
M[item, weight] = max of
M[item - 1, weight] AND
value of item + M[item - 1 , weight - weight of item]


Knapsack - Items to Take
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline fitems / weight & 0 & & 2 & & 3 & 4 & 5 & 6 & & 8 \\
\hline \(\square\) & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \[
\{1\}
\] & & & & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
\hline \[
\frac{\{1,2\}}{[2,11]}
\] & & & & & 17 & 17 & 17 & 17 & 17 & 17 \\
\hline \[
\{1,2,3\}
\] & & & & & 17 & 17 & 17 & 17 & 17 & 17 \\
\hline \[
\begin{aligned}
& \{1,2,3,4\} \\
& 4,4,121
\end{aligned}
\] & & & 6 & & 17 & 17 & 18 & 23 & 29 & 29 \\
\hline \[
\begin{aligned}
& \{1,2,3,4,5\} \\
& {[6,19]} \\
& \hline
\end{aligned}
\] & & & 6 & 11 & 17 & 17 & 18 & 23 & & \\
\hline \begin{tabular}{l}
\[
\{1,2,3,4,5,6\}
\] \\
[7, 12]
\end{tabular} & & & 6 & 11 & 17 & 17 & 18 & 23 & 29 & 30 \\
\hline
\end{tabular}

\section*{Knapsack - Completed Table}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline fitems/ weight & & & 2 & & & & & & & \\
\hline B & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline [1] & & & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
\hline \[
\overline{\{1,2\}}
\] & & & 6 & 11 & 17 & 17 & 17 & 17 & 17 & 17 \\
\hline [1, 2, 3\} & & & 6 & 11 & 17 & 17 & 17 & 17 & 18 & 18 \\
\hline \{1, 2, 3, & & & 6 & 11 & 17 & 17 & 18 & 23 & 29 & 29 \\
\hline [4, 12] & & & & & & & & & & \\
\hline \(\{1,2,3,4,5\}\) & & & 6 & 11 & 17 & 17 & 18 & 23 & 29 & 30 \\
\hline [1, 2, 3, 4, 5, 6\} & & & 6 & 11 & 17 & 17 & 18 & 23 & 9 & 30 \\
\hline [77, 12] & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Dynamic Knapsack}
// dynamic programming approach
public static int knapsack (ArrayList<Item> items, int maxCapacity) \{ final int ROWS = items.size() +1 ;
final int COLS = maxCapacity +1 ;
int[][] partialSolutions \(=\) new int[ROWS] [COLS];
// first row and first column all zeros
for(int item \(=1\); item \(<=\) items.size(); item++) \{
for (int capacity \(=1\); capacity <= maxCapacity; capacity++) \{ Item currentItem = items.get(item - 1);
int bestSoFar = partialSolutions[item - 1][capacity]; if( currentItem.weight <= capacity) \{
int withItem = currentItem.value;
int capLeft = capacity - currentItem.weight;
withItem += partialSolutions[item - 1][capLeft];
if (withItem > bestSoFar) \{
bestSoFar = withItem;
\}
\}
partialSolutions[item] [capacity] = bestSoFar;
\}
\}
return partialSolutions[ROWS - 1][COLS - 1];

\section*{Dynamic vs. Recursive Backtracking Timing Data}

Number of items: 32. Capacity: 123
Recursive knapsack. Answer: 740, time: 10.0268025
Dynamic knapsack. Answer: 740, time: 3.43999E-4
Number of items: 33. Capacity: 210
Recursive knapsack. Answer: 893, time: 23.0677814
Dynamic knapsack. Answer: 893, time: 6.76899E-4
Number of items: 34. Capacity: 173
Recursive knapsack. Answer: 941, time: 89.8400178
Dynamic knapsack. Answer: 941, time: 0.0015702
Number of items: 35. Capacity: 93
Recursive knapsack. Answer: 638, time: 81.0132219
Dynamic knapsack. Answer: 638, time: 2.95601E-4

\section*{Clicker 4}
- Which approach to the knapsack problem uses more memory?
A. the recursive backtracking approach
B. the dynamic programming approach
C. they use about the same amount of memory```

