Topic Number 2
 Efficiency - Complexity Algorithm Analysis

"bit twiddling: 1. (pejorative) An exercise in tuning (see tune) in which incredible amounts of time and effort go to produce little noticeable improvement, often with the result that the code becomes incomprehensible."

- The Hackers Dictionary, version 4.4.7

Efficiency

- Computer Scientists don't just write programs.
- They also analyze them.
- How efficient is a program?
- How much time does it take program to complete?
- How much memory does a program use?
- How do these change as the amount of data changes?
- What is the difference between the average case and worst case efficiency if any?

Clicker Question 1

- "A program finds all the prime numbers between 2 and 1,000,000,000 from scratch in 0.37 seconds."
- Is this a fast solution?
A. no
B. yes
C. it depends

Technique

- Informal approach for this class
- more formal techniques in theory classes, CS331
- How many computations will this program (method, algorithm) perform to get the answer?
- Many simplifications
- view algorithms as Java programs
- determine by analysis the total number executable statements (computations) in program or method as a function of the amount of data
- focus on the dominant term in the function $\mathrm{T}(\mathrm{N})=17.5 \mathrm{~N}^{3}+25 \mathrm{~N}^{2}+35 \mathrm{~N}+251$ IS ORDER N^{3}

Counting Statements

```
int x; // one statement
x = 12; // one statement
int y = z * x + 3 % 5 * x / i; // 1
x++; // one statement
boolean p = x < y && y % 2 == 0 ||
    z >= y * x; // 1
int[] data = new int[100]; // 100
data[50] = x * x + y * y; // 1
```


Clicker 3

- What is output when method sample is called?

```
// pre: n >= 0, m >= 0
public static void sample(int n, int m) {
    int total = 0;
    for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
            total += 5;
        System.out.println(total);
    }
```

A. 5
B. n * m
C. $n * m * 5$
D. n^{m}
E. $\left(n^{*} m\right)^{5}$

Clicker 2

- What is output by the following code?

```
int total = 0;
for (int i = 0; i < 13; i++)
    for (int j = 0; j < 11; j++)
        total += 2;
```

System.out.println(total);
A. 24
B. 120
C. 143
D. 286
E. 338

CS 314

Example

```
public int total(int[] values) {
    int result = 0;
    for (int i = 0; i < values.length; i++)
        result += values[i];
    return result;
}
```

- How many statements are executed by method total as a function of values.length
- Let $\mathrm{N}=$ values.length
- N is commonly used as a variable that denotes the amount of data

Counting Up Statements

- int result = 0; 1
- int i = 0; 1
- i < values. length; N + 1
-i++ N
- result += values[i]; N
-return total; 1
- $\mathrm{T}(\mathrm{N})=3 \mathrm{~N}+4$
- $\mathrm{T}(\mathrm{N})$ is the number of executable statements in method total as function of values.length

Big O

- The most common method and notation for discussing the execution time of algorithms is Big O, also spoken Order
- Big O is the asymptotic execution time of the algorithm
- In other words, how does the running time of the algorithm grow as a function of the amount of input data?
- Big O is an upper bounds
- It is a mathematical tool
- Hide a lot of unimportant details by assigning a simple grade (function) to algorithms

Another Simplification

- When determining complexity of an algorithm we want to simplify things
- ignore some details to make comparisons easier
- Like assigning your grade for course
- At the end of CS314 your transcript won't list all the details of your performance in the course
- it won't list scores on all assignments, quizzes, and tests
- simply a letter grade, B- or A or D+
- So we focus on the dominant term from the function and ignore the coefficient
CS 314
Efficiency - Complexity

Formal Definition of Big O

- $T(N)$ is $O(F(N)$) if there are positive constants c and N_{0} such that $T(N) \leq c F(N)$ when $\mathrm{N} \geq \mathrm{N}_{0}$
$-N$ is the size of the data set the algorithm works on
$-\mathrm{T}(\mathrm{N})$ is a function that characterizes the actual running time of the algorithm
$-\mathrm{F}(\mathrm{N})$ is a function that characterizes an upper bounds on $\mathrm{T}(\mathrm{N})$. It is a limit on the running time of the algorithm. (The typical Big functions table)
-c and N_{0} are constants

What it Means

- $\mathrm{T}(\mathrm{N})$ is the actual growth rate of the algorithm
- can be equated to the number of executable statements in a program or chunk of code
- $F(N)$ is the function that bounds the growth rate
- may be upper or lower bound
- $\mathrm{T}(\mathrm{N})$ may not necessarily equal $\mathrm{F}(\mathrm{N})$
- constants and lesser terms ignored because it is a bounding function

Showing O(N) is Correct

- Recall the formal definition of Big O $-\mathrm{T}(\mathrm{N})$ is $\mathrm{O}(\mathrm{F}(\mathrm{N}))$) if there are positive constants c and N_{0} such that $T(N) \leq c F(N)$ when $N>N_{0}$
- Recall method total, $\mathrm{T}(\mathrm{N})=3 \mathrm{~N}+4$
- show method total is $\mathrm{O}(\mathrm{N})$.
$-\mathrm{F}(\mathrm{N})$ is N
- We need to choose constants c and N_{0}
- how about $\mathrm{c}=4, \mathrm{~N}_{0}=5$?
vertical axis: time for algorithm to complete. (simplified to number of executable statements)

horizontal axis: N , number of elements in data set

Typical Big O Functions - "Grades"

Function	Common Name
$N!$	factorial
2^{N}	Exponential
$N^{d}, d>3$	Polynomial
N^{3}	Rubic
Running	
time grows	
'quickly' with	
more input.	

Clicker 4

- Which of the following is true?

Recall $\mathrm{T}(\mathrm{N})_{\text {total }}=3 \mathrm{~N}+4$
A. Method total is $\mathrm{O}\left(\mathrm{N}^{1 / 2}\right)$
B. Method total is $\mathrm{O}(\mathrm{N})$
C. Method total is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
D. Two of $\mathrm{A}-\mathrm{C}$ are correct
E. All of three of $A-C$ are correct

Dealing with other methods

- What do I do about method calls?
double sum = 0.0;
for (int $i=0$; $i<n$; i++)
sum += Math.sqrt(i);
- Long way
- go to that method or constructor and count statements
- Short way
- substitute the simplified Big O function for that method.
- if Math.sqrt is constant time, $\mathrm{O}(1)$, simply count sum $+=$ Math.sqrt(i); as one statement.

Showing Order More Formally ...

- Show $10 \mathrm{~N}^{2}+15 \mathrm{~N}$ is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Break into terms.
- $10 \mathrm{~N}^{2} \leq 10 \mathrm{~N}^{2}$
- $15 \mathrm{~N} \leq 15 \mathrm{~N}^{2}$ for $\mathrm{N} \geq 1$ (Now add)
- $10 \mathrm{~N}^{2}+15 \mathrm{~N} \leq 10 \mathrm{~N}^{2}+15 \mathrm{~N}^{2}$ for $\mathrm{N} \geq 1$
- $10 \mathrm{~N}^{2}+15 \mathrm{~N} \leq 25 \mathrm{~N}^{2}$ for $\mathrm{N} \geq 1$
- $\mathrm{c}=25, \mathrm{~N}_{0}=1$
- Note, the choices for c and N_{0} are not unique. CS 314

Efficiency - Complexity
18

Dealing With Other Methods

```
public int foo(int[] data) {
    int total = 0;
    for (int i = 0; i < data.length; i++)
        total += countDups(data[i], data);
    return total;
}
// method countDups is O(N) where N is the
// length of the array it is passed
```

Clicker 5, What is the Big O of foo?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{Nlog} \mathrm{N})$
D. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
E. O(N!)

Independent Loops

```
// from the Matrix class
public void scale(int factor)
    for (int r = 0; r < numRows(); r++)
        for (int c = 0; c < numCols(); c++)
        iCells[r][c] *= factor;
```

 \}
 numRows () returns number of rows in the matrix iCells numCols () returns number of columns in the matrix iCells Assume iCells is an N by N square matrix. Assume numRows and numCols are $\mathrm{O}(1)$ What is the $T(N)$? Clicker 6, What is the Order?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{NlogN})$
D. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
E. $\mathrm{O}(\mathrm{N}!)$

Bonus question. What if numRows is $\mathrm{O}(\mathrm{N})$?

It is Not Just Counting Loops

```
// "Unroll" the loop of method count:
int numThings = 0;
if (mat[r-1][c-1]) numThings++;
if (mat[r-1][c]) numThings++;
if (mat[r-1][c+1]) numThings++;
if (mat[r][c-1]) numThings++;
if (mat[r][c]) numThings++;
if (mat[r][c+1]) numThings++;
if (mat[r+1][c-1]) numThings++;
if (mat[r+1][c]) numThings++;
if (mat[r+1][c+1]) numThings++;
```


Just Count Loops, Right?

// Assume mat is a 2d array of booleans.
// Assume mat is square with N rows, // and N columns.
public static void count(boolean[][] mat, int row, int col)
int numThings $=0$;
for (int $r=r o w-1 ; r<=r o w+1 ; r++$)
for (int $c=c o l-1 ; c<=c o l+1 ; c++$)
if (mat[r][c])
numThings++;

Clicker 7, What is the order of the method count?
A. $O(1)$
B. $\mathrm{O}\left(\mathrm{N}^{0.5}\right)$
C. $\mathrm{O}(\mathrm{N})$
D. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
E. $\mathrm{O}\left(\mathrm{N}^{3}\right)$

CS 314
Efficiency - Complexity
22

Just Count Loops, Right?

```
private static void mystery(int[] data) {
stopIndex = data.length - 1;
int j = 1;
while (stopIndex > 0) {
        if (data[j - 1] > data[j]) {
            int t = data[j];
            data[j] = data[j - 1];
            data[j - 1] = t;
        }
        if (j == stopIndex) {
            stopIndex--;
            j = 1;
        } else {
            j++;
        }
        }
                                    N = data.length
```

Clicker 8, What is the order of method mystery?
A. $\mathrm{O}(1)$
B. $\mathrm{O}\left(\mathrm{N}^{0.5}\right)$
C. $\mathrm{O}(\mathrm{N})$
D. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
E. $\mathrm{O}\left(\mathrm{N}^{3}\right)$

Sidetrack, the logarithm

- Thanks to Dr. Math
- $3^{2}=9$
- likewise $\log _{3} 9=2$
- "The log to the base 3 of 9 is 2."
- The way to think about log is:
- "the log to the base x of y is the number you can raise x to to get $y . "$
- Say to yourself "The log is the exponent." (and say it over and over until you believe it.)
- In CS we work with base 2 logs, a lot
- $\log _{2} 32=? \quad \log _{2} 8=? \quad \log _{2} 1024=? \quad \log _{10} 1000=$?

CS 314
Efficiency - Complexity
25

When Do Logarithms Occur

- Algorithms tend to have a logarithmic term when they use a divide and conquer technique
- the size of the data set keeps getting divided by 2

```
public int foo(int n)
        // pre n > 0
        int total = 0;
        while (n > 0) {
            n = n / 2;
            total++;
        }
        return total;
    }
- Clicker 9, What is the order of the above code?
```

A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{N})$
C. $\mathrm{O}(\mathrm{N})$
D. $\mathrm{O}(\mathrm{Nlog} \mathrm{N})$
E. $\mathrm{O}\left(\mathrm{N}^{2}\right)$

The base of the log is typically not included as we can switch from
one base to another by multiplying by a constant factor.

Significant Improvement - Algorithm with Smaller Big O function

- Problem: Given an array of ints replace any element equal to 0 with the maximum positive value to the right of that element. (if no positive value to the right, leave unchanged.)
Given:
$[0,9,0,13,0,0,7,1,-1,0,1,0]$

Becomes:

$[\underline{13}, ~ 9, ~ 13, ~ 13, ~ ㄱ, ~ ㄱ, ~ 7, ~ 1, ~-1, ~ \underline{1, ~ 1, ~ 0] ~}$
Replace Zeros - Typical Solution
public void replace0s(int[] data) \{
for (int $i=0 ; i<d a t a . l e n g t h ; i++)\{$
if (data[i] $==0$) \{
int max $=0$;
for (int $j=i+1 ; j<d a t a . l e n g t h ; j++$)
$\max =$ Math.max (max, data[j]);
data[i] = max;
\}
\}
\}
Assume all values are zeros. (worst case)

Example of a dependent loops.

Clicker 10 - Number of times j < data.length evaluated?
A. O (1)
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{Nlog} \mathrm{N})$
D. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
E. $\mathrm{O}(\mathrm{N}!)$

Replace Zeros - Alternate Solution

```
public void replace0s(int[] data){
    int max =
        Math.max(0, data[data.length - 1]);
    int start = data.length - 2;
    for (int i = start; i >= 0; i--) {
        if (data[i] == 0)
                data[i] = max;
        else
                max = Math.max(max, data[i]);
    }
}
Clicker 11 - Big O of this approach?
```

A. O (1)
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
D. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
E. $\mathrm{O}(\mathrm{N}!)$
CS 314
Efficiency - Complexity

A VERY Useful Proportion

- Since $F(N)$ is characterizes the running time of an algorithm the following proportion should hold true:
$\mathrm{F}\left(\mathrm{N}_{0}\right) / \mathrm{F}\left(\mathrm{N}_{1}\right) \sim=$ time $_{0} /$ time $_{1}$
- An algorithm that is $\mathrm{O}\left(\mathrm{N}^{2}\right)$ takes 3 seconds to run given 10,000 pieces of data.
- How long do you expect it to take when there are 30,000 pieces of data?
- common mistake
- logarithms?

Clicker 12

- Is $\mathrm{O}(\mathrm{N})$ really that much faster than $\mathrm{O}\left(\mathrm{N}^{2}\right)$?
A. never
B. always
C. typically
- Depends on the actual functions and the value of N .
- $1000 \mathrm{~N}+250$ compared to $\mathrm{N}^{2}+10$
-When do we use mechanized computation?
- $N=100,000$
- 100,000,250<10,000,000,010 $\left(10^{8}<10^{10}\right)_{30}$

Why Use Big O?

- As we build data structures Big O is the tool we will use to decide under what conditions one data structure is better than another
- Think about performance when there is a lot of data.
- "It worked so well with small data sets..."
- Joel Spolsky, Schlemiel the painter's Algorithm
- Lots of trade offs
- some data structures good for certain types of problems, bad for other types
- often able to trade SPACE for TIME.
- Faster solution that uses more space
- Slower solution that uses less space

Big O Space

- Big O could be used to specify how much space is needed for a particular algorithm
- in other words how many variables are needed
- Often there is a time - space tradeoff
- can often take less time if willing to use more memory
- can often use less memory if willing to take longer
- truly beautiful solutions take less time and space The biggest difference between time and space is that you can't reuse time. - Merrick Furst

Quantifiers on Big O

- It is often useful to discuss different cases for an algorithm
- Best Case: what is the best we can hope for?
- least interesting, but a good exercise
- Don't assume no data. Amount of date is still variable, possibly quite large
- Average Case (a.k.a. expected running time): what usually happens with the algorithm?
- Worst Case: what is the worst we can expect of the algorithm?
- very interesting to compare this to the average case cS 314

Efficiency - Complexity

Another Example

public double minimum(double[] values) \{
int $n=$ values.length;
double minValue = values[0];
for (int $i=1$; $i<n$; i++) if (values[i] < minValue) minValue = values[i];
return minValue;
\}

- $\mathrm{T}(\mathrm{N})$? $\mathrm{F}(\mathrm{N})$? Big O? Best case? Worst Case? Average Case?
- If no other information, assume asking average case

Example of Dominance

- Look at an extreme example. Assume the actual number as a function of the amount of data is:

$$
\mathrm{N}^{2} / 10000+2 \mathrm{Nlog}_{10} \mathrm{~N}+100000
$$

- Is it plausible to say the N^{2} term dominates even though it is divided by 10000 and that the algorithm is $\mathrm{O}\left(\mathrm{N}^{2}\right)$?
- What if we separate the equation into ($\mathrm{N}^{2} / 10000$) and ($2 \mathrm{~N} \log _{10} \mathrm{~N}+100000$) and graph the results.

Comparing Grades

- Assume we have a problem
- Algorithm A solves the problem correctly and is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Algorithm B solves the same problem correctly and is $\mathrm{O}\left(\mathrm{N} \log _{2} \mathrm{~N}\right)$
- Which algorithm is faster?
- One of the assumptions of Big O is that the data set is large.
- The "grades" should be accurate tools if this holds true.

Summing Execution Times

- For large values of N the N^{2} term dominates so the algorithm is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
-When does it make sense to use a computer?

CS 314
Efficiency - Complexity
38

Running Times

- Assume $\mathrm{N}=100,000$ and processor speed is $1,000,000,000$ operations per second

Function	Running Time
2^{N}	$3.2 \times 10^{30,086}$ years
N^{4}	3171 years
N^{3}	11.6 days
N^{2}	10 seconds
$N \sqrt{N}$	0.032 seconds
$N \log \mathrm{~N}$	0.0017 seconds
N	0.0001 seconds
\sqrt{N}	3.2×10^{-7} seconds
$\log N$	1.2×10^{-8} seconds

Theory to Practice OR

Dykstra says: "Pictures are for the Weak."

	1000	2000	4000	8000	16000	32000	64000	128 K
$\mathrm{O}(\mathrm{N})$	2.2×10^{-5}	2.7×10^{-5}	5.4×10^{-5}	4.2×10^{-5}	6.8×10^{-5}	1.2×10^{-4}	2.3×10^{-4}	5.1×10^{-4}
$\mathrm{O}(\mathrm{NlogN})$	8.5×10^{-5}	1.9×10^{-4}	3.7×10^{-4}	4.7×10^{-4}	1.0×10^{-3}	2.1×10^{-3}	4.6×10^{-3}	1.2×10^{-2}
$\mathrm{O}\left(\mathrm{N}^{3 / 2}\right)$	3.5×10^{-5}	6.9×10^{-4}	1.7×10^{-3}	5.0×10^{-3}	1.4×10^{-2}	3.8×10^{-2}	0.11	0.30
$\mathrm{O}\left(\mathrm{N}^{2}\right)$ ind.	3.4×10^{-3}	1.4×10^{-3}	4.4×10^{-3}	0.22	0.86	3.45	13.79	(55)
$\mathrm{O}\left(\mathrm{N}^{2}\right)$ dep.	1.8×10^{-3}	7.1×10^{-3}	2.7×10^{-2}	0.11	0.43	1.73	6.90	(27.6)
$\mathrm{O}\left(\mathrm{N}^{3}\right)$	3.40	27.26	(218)	(1745) 29 min.	$(133,957)$ 233 min	$(112 \mathrm{k})$ 31 hrs	$(896 \mathrm{k})$ 10 days	$(7.2 \mathrm{~m})$ 80 days

Times in Seconds. Red indicates predicated value.
CS 314

Okay, Pictures

Change between Data Points

	1000	2000	4000	8000	16000	32000	64000	128 K	256 k	512 k
$\mathrm{O}(\mathrm{N})$	-	1.21	2.02	0.78	1.62	1.76	1.89	2.24	2.11	1.62
$\mathrm{O}(\mathrm{N} \operatorname{logN})$	-	2.18	1.99	1.27	2.13	2.15	2.15	2.71	1.64	2.40
$\mathrm{O}\left(\mathrm{N}^{3 / 2}\right)$	-	1.98	2.48	2.87	2.79	2.76	2.85	2.79	2.82	2.81
$\mathrm{O}\left(\mathrm{N}^{2}\right)$ ind	-	4.06	3.98	3.94	3.99	4.00	3.99	-	-	-
$\mathrm{O}\left(\mathrm{N}^{2}\right)$ dep	-	4.00	3.82	3.97	4.00	4.01	3.98	-	-	-
$\mathrm{O}\left(\mathrm{N}^{3}\right)$	-	8.03	-	-	-	-	-	-	-	-

Value obtained by Time ${ }_{\mathrm{x}} /$ Time $_{\mathrm{x}-1}$
CS 314
Efficiency - Complexity
42

Put a Cap on Time

No O($\left.\mathrm{N}^{\wedge} 2\right)$ Data

Just $\mathrm{O}(\mathrm{N})$ and $\mathrm{O}(\mathrm{Nlog} \mathrm{N})$

10^{9} instructions/sec, runtimes

N	$O(\log N)$	$O(N)$	$O(N \log N)$	$O\left(N^{2}\right)$
10	0.000000003	0.00000001	0.000000033	0.0000001
100	0.000000007	0.00000010	0.000000664	0.0001000
1,000	0.000000010	0.00000100	0.000010000	0.001
10,000	0.000000013	0.00001000	0.000132900	0.1 min
100,000	0.000000017	0.00010000	0.001661000	10 seconds
$1,000,000$	0.000000020	0.001	0.0199	16.7 minutes
$1,000,000,000$	0.000000030	1.0 second	30 seconds	31.7 years

Formal Definition of Big O (repeated)

- $T(N)$ is $O(F(N))$ if there are positive constants c and N_{0} such that $T(N) \leq c F(N)$ when $\mathrm{N} \geq \mathrm{N}_{0}$
$-N$ is the size of the data set the algorithm works on
$-T(N)$ is a function that characterizes the actual running time of the algorithm
$-F(N)$ is a function that characterizes an upper bounds on $T(N)$. It is a limit on the running time of the algorithm
-c and N_{0} are constants

What it All Means

- $\mathrm{T}(\mathrm{N})$ is the actual growth rate of the algorithm
- can be equated to the number of executable statements in a program or chunk of code
- $F(N)$ is the function that bounds the growth rate
- may be upper or lower bound
- $\mathrm{T}(\mathrm{N})$ may not necessarily equal $\mathrm{F}(\mathrm{N})$
- constants and lesser terms ignored because it is a bounding function

More on the Formal Definition

- There is a point N_{0} such that for all values of N that are past this point, $\mathrm{T}(\mathrm{N})$ is bounded by some multiple of $F(N)$
- Thus if $\mathrm{T}(\mathrm{N})$ of the algorithm is $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$ then, ignoring constants, at some point we can bound the running time by a quadratic function.
- given a linear algorithm it is technically correct to say the running time is $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right) . \mathrm{O}(\mathrm{N})$ is a more precise answer as to the Big O of the linear algorithm
- thus the caveat "pick the most restrictive function" in Big O type questions.

Other Algorithmic Analysis Tools

- Big Omega $\mathrm{T}(\mathrm{N})$ is $\Omega(\mathrm{F}(\mathrm{N})$) if there are positive constants c and N_{0} such that $\mathrm{T}(\mathrm{N}) \geq \mathrm{cF}(\mathrm{N})$) when $\mathrm{N} \geq \mathrm{N}_{0}$
- Big O is similar to less than or equal, an upper bounds
- Big Omega is similar to greater than or equal, a lower bound
- Big Theta $T(N)$ is $\theta(F(N)$) if and only if $T(N)$ is $O(F(N)$) and $T(N)$ is $\Omega(F(N))$.
- Big Theta is similar to equals

Relative Rates of Growth

Analysis Type	Mathematical Expression	Relative Rates of Growth
Big O	$\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{F}(\mathrm{N}))$	$\mathrm{T}(\mathrm{N}) \leq \mathrm{F}(\mathrm{N})$
Big Ω	$\mathrm{T}(\mathrm{N})=\Omega(\mathrm{F}(\mathrm{N}))$	$\mathrm{T}(\mathrm{N}) \geq \mathrm{F}(\mathrm{N})$
$\operatorname{Big} \theta$	$\mathrm{T}(\mathrm{N})=\theta(\mathrm{F}(\mathrm{N}))$	$\mathrm{T}(\mathrm{N})=\mathrm{F}(\mathrm{N})$

"In spite of the additional precision offered by Big Theta, Big O is more commonly used, except by researchers in the algorithms analysis field" - Mark Weiss

