
1

Topic 4

Inheritance

"Question: What is the object oriented way of
getting rich?

CS 314 Inheritance 2

Features of OO Programming
Encapsulation

abstraction, creating new data types

information hiding

breaking problem up based on data types

Inheritance
code reuse

specialization

"New code using old code."

Encapsulation
Create a program to allow people to play the
game Monopoly

Create classes for money, dice, players, the
bank, the board, chance cards, community chest
cards, pieces, etc.

Some classes use other classes. Are clients
the board consists of spaces

a player has properties they own

a piece has a position

Also referred to as composition

CS 314 Inheritance 3

Inheritance
Another kind of relationship exists between
things in the world and data types in programs

There are properties in Monopoly
a street is a kind of property

a railroad is a kind of property

a utility is a kind of property

CS 314 Inheritance 4

Inheritance
In Monopoly there is the concept of a
Property

All properties have some common traits
they have a name

they have a position on the board

they can be owned by players

they have a purchase price

But some things are different for each of the
three kinds of property

How to determine rent when another player
lands on the Property

CS 314 Inheritance 5

What to Do?
If we have a separate class for Street,
Railroad, and Utility there is going to be a lot
of code copied

hard to maintain

an anti-pattern

Inheritance is a programming feature to
allow data types to build on pre-existing data
types without repeating code

CS 314 Inheritance 6

Mechanics of Inheritance

CS 314 Inheritance 7

1. extends keyword

2. inheritance of instance methods

3. inheritance of instance variables

4. object initialization and constructors
5. calling a parent constructor with super()

6. overriding methods
7. partial overriding, super.parentMethod()

8. inheritance requirement in Java
9. the Object class

10. inheritance hierarchies

CS 314 Inheritance 8

Inheritance in Java
Java is designed to encourage object
oriented programming
all classes, except one, must inherit from
exactly one other class
The Object class is the cosmic super class

The Object class does not inherit from any other class
The Object class has several important methods:
toString, equals, hashCode, clone, getClass

implications:
all classes are descendants of Object
all classes and thus all objects have a toString,
equals, hashCode, clone, and getClass method

toString, equals, hashCode, clone normally overridden

CS 314 Inheritance 9

Nomenclature of Inheritance
In Java the extends keyword is used in the
class header to specify which preexisting class
a new class is inheriting from
public class Student extends Person

Person is said to be
the parent class of Student
the super class of Student
the base class of Student
an ancestor of Student

Student is said to be
a child class of Person
a sub class of Person
a derived class of Person
a descendant of Person

CS 314 Inheritance 10

Clicker 1
What is the primary reason for using
inheritance when programming?

A. To make a program more complicated

B. To copy and paste code between classes

C. To reuse pre-existing code

D. To hide implementation details of a class

E. To ensure pre conditions of methods are met.

11

Clicker 2
What is output when the main method is run?
public class Foo {

public static void main(String[] args) {

Foo f1 = new Foo();

System.out.println(f1.toString());

}

}

A. 0

B. null

C. Unknown until code is actually run.

D. No output due to a syntax error.

E. No output due to a runtime error. CS 314 Inheritance 12

Overriding methods
any method that is not final may be
overridden by a descendant class

same signature as method in ancestor

may not reduce visibility

may use the original method if simply want to
add more behavior to existing

super.originalMethod()

CS 314 Inheritance 13

Constructors
Constructors handle initialization of objects

When creating an object with one or more ancestors (every
type except Object) a chain of constructor calls takes place
The reserved word super may be used in a constructor to
call a one of the parent's constructors

must be first line of constructor

if no parent constructor is explicitly called the default, 0
parameter constructor of the parent is called

if no default constructor exists a syntax error results

If a parent constructor is called another constructor in the
same class may no be called

no super();this(); allowed. One or the other, not both

good place for an initialization method

CS 314 Inheritance 14

The Keyword super
super is used to access something (any protected or
public field or method) from the super class that has
been overridden
Rectangle's toString makes use of the toString in
ClosedShape my calling super.toString()

without the super calling toString would result in
infinite recursive calls

Java does not allow nested supers
super.super.toString()

results in a syntax error even though technically this
refers to a valid method, Object's toString

Rectangle partially overrides ClosedShapes toString

Creating a SortedIntList
- A Cautionary Tale

of Inheritance

CS 314 Inheritance 16

A New Class
Assume we want to have a list of ints, but
that the ints must always be maintained in
ascending order
[-7, 12, 37, 212, 212, 313, 313, 500]

sortedList.get(0) returns the min

sortedList.get(list.size() 1)
returns the max

CS 314 Inheritance 17

Implementing SortedIntList
Do we have to write a whole new class?
Assume we have an IntList class.

Clicker 3 - Which of the following methods
have to be changed?
A. add(int value)

B. int get(int location)

C. String toString()

D. int remove(int location)

E. More than one of A D.

CS 314 Inheritance 18

Overriding the add Method
First attempt

Problem?

solving with insert method
double edged sort

solving with protected
What protected really means

Clicker 4
public class IntList {

private int size
private int[] con

}
public class SortedIntList extends IntList {

public SortedIntList() {
System.out.println(size); // Output?

}
}

A. 0
B. null
C. unknown until code is run
D. no output due to a compile error
E. no output due to a runtime error 19 CS 314 Inheritance 20

Problems
What about this method?

void insert(int location, int val)

What about this method?
void insertAll(int location,

IntList otherList)

SortedIntList is not a good application
of inheritance given all the behaviors
IntList provides.

More Example Code

ClosedShape and Rectangle classes

CS 314 Inheritance 21

Simple Code Example
Create a class named Shape

what class does Shape inherit from

what methods can we call on Shape objects?

add instance variables for a position

override the toString method

Create a Circle class that extends Shape
add instance variable for radius

debug and look at contents

try to access instance var from Shape

constructor calls

use of key word super

CS 314 Inheritance 22

CS 314 Inheritance 23

Shape Classes
Declare a class called ClosedShape

assume all shapes have x and y coordinates
override Object's version of toString

Possible sub classes of ClosedShape
Rectangle

Circle

Ellipse

Square

Possible hierarchy
ClosedShape <- Rectangle <- Square

CS 314 Inheritance 24

A ClosedShape class
public class ClosedShape {

private double myX;
private double myY;

public ClosedShape() {
this(0,0);

}

public ClosedShape (double x, double y) {
myX = x;
myY = y;

}

public String toString() {
return "x: " + getX() + " y: " + getY(); }

public double getX(){ return myX; }
public double getY(){ return myY; }

}
// Other methods not shown

CS 314 Inheritance 25

A Rectangle Constructor
public class Rectangle extends ClosedShape {

private double myWidth;
private double myHeight;

public Rectangle(double x, double y,
double width, double height) {

super(x,y);
// calls the 2 double constructor in
// ClosedShape
myWidth = width;
myHeight = height;

}

// other methods not shown
}

CS 314 Inheritance 26

A Rectangle Class
public class Rectangle extends ClosedShape {

private double myWidth;
private double myHeight;

public Rectangle() {
this(0, 0);

}

public Rectangle(double width, double height) {
myWidth = width;
myHeight = height;

}

public Rectangle(double x, double y,
double width, double height) {

super(x, y);
myWidth = width;
myHeight = height;

}

public String toString() {
return super.toString() + " width " + myWidth

+ " height " + myHeight;
}

}

CS 314 Inheritance 27

Initialization method
public class Rectangle extends ClosedShape {

private double myWidth;
private double myHeight;

public Rectangle() {
init(0, 0);

}

public Rectangle(double width, double height) {
init(width, height);

}

public Rectangle(double x, double y,
double width, double height) {

super(x, y);
init(width, height);

}

private void init(double width, double height) {
myWidth = width;
myHeight = height;

}
CS 314 Inheritance 28

Result of Inheritance
Do any of these cause a syntax error?
What is the output?
Rectangle r = new Rectangle(1, 2, 3, 4);
ClosedShape s = new CloseShape(2, 3);
System.out.println(s.getX());
System.out.println(s.getY());
System.out.println(s.toString());
System.out.println(r.getX());
System.out.println(r.getY());
System.out.println(r.toString());
System.out.println(r.getWidth());

CS 314 Inheritance 29

The Real Picture

Fields from ClosedShape class

Instance Variables declared in
ClosedShape

Fields from Object class

Instance variables
declared in Object

A
Rectangle
object

Available
methods
are all methods
from Object,
ClosedShape,
and Rectangle

Fields from Rectangle class

Instance Variables declared in
Rectangle

CS 314 Inheritance 30

Access Modifiers and
Inheritance

public
accessible to all classes

private
accessible only within that class. Hidden from all sub
classes.

protected
accessible by classes within the same package and all
descendant classes

Instance variables are typically private
protected methods are used to allow descendant
classes to modify instance variables in ways other
classes can't

CS 314 Inheritance 31

Why private Vars and not protected?

In general it is good practice to make
instance variables private

hide them from your descendants

if you think descendants will need to access
them or modify them provide protected methods
to do this

Why?

Consider the following example

CS 314 Inheritance 32

Required update
public class GamePiece {

private Board myBoard;

private Position myPos;

// whenever my position changes I must
// update the board so it knows about the change

protected void alterPos(Position newPos) {

Position oldPos = myPos;
myPos = newPos;
myBoard.update(oldPos, myPos);

}

