CS324e - Elements of Graphics and Visualization

Color Histograms

Color Histogram

- Plot number of pixels with given intensity
- horizontal axis: intensity (0 255)
- Vertical axis:

number of pixels with given intensity
or normalize to a percentage

Sample Image

Histogram Of Grayscale

Histogram Equalization

- Note the cluster in the middle
- Not a lot of very bright or very dark pixels
- Apply a Histogram Equalization filter to the image

Histogram Equalization

- An algorithm to try and improve the local contrast of an image without altering overall contrast to a significant degree
- Spread out the clumps of intensities to improve the contrast

- Consider a color model with only 10 shades of gray 0 - 9
- Consider a simple image with only 25
 pixels

• Step 1: count the number of pixels with each intensity intensity count

1	1	2	2	3
1	5	9	1	3
0	4	4	9	9
0	1	2	7	6
9	8	0	1	2

What must the sum of counts be?

• Normalize the counts to fractions or percentages intensity count fraction

0	3	3/25
1	6	6/25
2	4	4/25
3	2	2/25
4	2	2/25
5	1	1/25
6	1	1/25
7	1	1/25
8	1	1/25
9	4	4/25

Why divide by 25?

- Step 3: compute the cumulative distribution function CDF
 - probability a pixel's intensity is less than or equal to the given intensity
 - just a running total of the fractions / percentages from step 2

• Step 3:

intensity	count	fraction	Cumulative Distribution
0	3	3/25	3/25
1	6	6/25	9/25 (3 + 6)
2	4	4/25	13/25 (3 + 6 + 4)
3	2	2/25	15/25
4	2	2/25	17/25
5	1	1/25	18/25
6	1	1/25	19/25
7	1	1/25	20/25
8	1	1/25	21/25
9	4	4/25	25/25

Step 4: Scale Cumulative Distribution to intensity range

intensity	count	fraction	CDF	Scaled Intensity
0	3	3/25	3/25	0 (10 * 3 / 25 = 1 - 1 = 0)
1	6	6/25	9/25	3
2	4	4/25	13/25	4
3	2	2/25	15/25	5
4	2	2/25	17/25	6
5	1	1/25	18/25	6
6	1	1/25	19/25	7
7	1	1/25	20/25	7
8	1	1/25	21/25	7
9	4	4/25	25/25	9

 Step 5: The scaled intensities become a lookup table to apply to original image

intensity in original intensity in result

• Step 6: apply lookup table

original

result

Os stay O 1s become 3 2s become 4 and so forth

Recall Actual Image

Resulting Histogram

Resulting Image

Comparison

Example 2

Original Histogram

Resulting Histogram

Resulting Image

Comparison

Histogram Equalization on Color Images

- apply to color images
- each channel (red, green, blue) treated as separate histogram
- equalize each independently
- can lead to radical color changes in result

Histograms

Example of Color Histogram Equalization

Color as a low-level cue for Color Based Image Retreival

Blobworld system Carson et al, 1999

Swain and Ballard, <u>Color</u> Indexing, IJCV 1991

Slides on CBIR from Kristen Grauman

Color as a low-level cue for CBIR

- Color histograms: Use distribution of colors to describe image
- No spatial info invariant to translation, rotation, scale

- Given collection (database) of images:
 - Extract and store one color histogram per image
- Given new query image:
 - Extract its color histogram
 - For each database image:
 - Compute intersection between query histogram and database histogram
 - Sort intersection values (highest score = most similar)
 - Rank database items relative to query based on this sorted order

query query query query

Example retrievals

query

query

query

Example retrievals

Green

SafeSearch moder

About 3,030,000 results (0.32 seconds)

Advanced search

Search

🚼 Everything

- 💿 Images
- Videos
- News
- Shopping
- More

Any size Large Medium

lcon Larger than... Exactly...

Any type Face Photo Clip art Line drawing

Any color Full color

Black and white

Standard view Show sizes

Reset tools

