

Overview

- Visualization Animal Populations
- Description of Wa-Tor World
- Demos

Predator – Prey Equations

- a.k.a. Lotka–Volterra equations
 x = number of animals that are prey
- x = number of predatory animals

$$\frac{dx}{dt} = x(\alpha - \beta y)$$
$$\frac{dy}{dt} = -y(\gamma - \delta x)$$

- α = prey population increase (birth rate death rate)
- β = rate the predators eat the prey
- γ = predator mortality rate
- δ = reproduction rate of predators per 1 prey eaten

Lotka–Volterra equations

• Graphed over time

Rabbit Population in Red

Fox Population in Blue

Hudson Bay Company - PeltsSolid line - Rabbits, dashed line - Lynxes

Wa-tor World Population

📓 Wator World - Predator Prey Simulation

Description of Wa-Tor World

- A.K. Dewdney
- Computer Recreations column in Scientific America
- Sharks and Fish Wage an Ecological War on the Toroidal Planet Wa-Tor

The World and its Inhabitants

The Assignment

- Given Simulator
- Must implement GUI and controls

Demos

- Basic Version
- Advanced Controls
- Simple Demo in CS324E/A4 folder

sl	low fast Step Start Stop Reset rows 34 - cols 50 -	
	fish breed 4 shark starve 5 shark breed 20 % Fish 70 % Shark 10	
	Wa-tor World	

Large Worlds

