
CS324e - Elements of Graphics

and Visualization

Java Intro / Review

A1 Demo

• Demo of A1 expected behavior

• Crack a substitution cipher

• assumes only letters encrypted and

assumes upper and lower case

substitutions the same

• initial key based on standard frequencies

• allow changes to be made

Java Intro / Review

• Instead of going over syntax of language

we will write a program to solve a non

trivial problem and discuss the syntax

and semantics as we go

Zipf's Law

• Empirical observation - word frequency

• Named after George Zipf, a linguist

• Zipf's Law: The frequency of a word is

inversely proportional to its rank among

all words in the body of work

Zipf's Law Example

• Assume the is the most frequent word in a
text and it occurs 10,000 times

• 2nd most frequent word expected to occur
5,000 times (if top ranked word's frequency
is as expected)
½ * 10,000 = 5,000

• 3rd most frequent word expected to occur
3,333 times

1/3 * 10,000 = 3,333

• Expected number of occurrences of 100th

most frequent word?

Zipf's Law

• Out of a work with N distinct words, the

predicated probability of the word with

rank k is:

• s is constant based on distribution.

• In classic version of Zipf's law s = 1

Zipf's Law

• Assume 35,000 words

– N = 35,000

• assume s = 1

• 35,000th harmonic
number is about 11

• expected frequency of
10th word, k = 10

• Assume 1,000,000
words

1,000,000 / 10 / 11 = 9,090

Alternate Formula

• Probability of a given word being the

word with rank r

• R = number of distinct words

• Multiply by total number of words in

word to get expected number of words

Approach

• Read "words" from a file

• determine frequency of each word

• sort words by frequency

• Compare actual frequency to expected
frequency

– many ways to define expected frequency

– freq * rank = constant

– estimate constant, simple

– or use formulas

Java Program

• Eclipse IDE

• Create Project

• Create Class(es)

– procedural approach

– object based approach

– object oriented approach

Calculating Frequencies

• Reading from a file

– Scanner class

– built in classes

– documentation

– exceptions

• Try reading into native array

• Try reading into ArrayList

– show some of "words"

• better delimiter: "[^a-zA-Z']+"

– regular expressions

Calculate Frequencies

• Don't need to store multiple copies of

every word

• Just the number of times a given word

appears

• Another class / data structure is useful

– A Map, aka a Dictionary

– key, value pairs

– HashMap or TreeMap, order of keys

Using the Map

• Read in words, count frequencies

– "wrapper" classes

• Read in and print out some of the map

• TreeMap

– ordered by keys

• HashMap

– seemingly Random order

• We want sorted by frequency

– why can't we use another map?

Sorting by Frequency

• Create another class, WordPair

• Have the class implement the

Comparable interface

– define compareTo method

– 2 objects / variables involved

• Add to ArrayList, use Collections.sort

• Now list start of ArrayList

Does Zipf's Law Hold?

• plot rank vs. frequency on a log - log
scale

– should be a near straight line

• recall freq * rank = constant

• Estimate constant

– simple average of first 1000 terms?

– simple average of all words with freq > 10?

– Simple linear regression, best fit line to log -
log plot

Viewing Results

• Compare predicted frequency and actual

frequency of top 100 words and % error

