Cache-Oblivious Computations:

Algorithms and Experimental Evaluation

Vijaya Ramachandran
Department of Computer Sciences

University of Texas at Austin

Dissertation work of former PhD student Dr. Rezaul Alam Chowdhury
Includes Honors Thesis results of

Mo Chen, Hai-Son, David Lan Roche, Lingling Tong

Massive Data Sets

Massive data sets often arise in practice:

- GIS data
- web graph
- in computational biology, etc.

To process these huge data sets we want:

- cheap and large storage
- fast access to the data

But memory cannot be cheap, large and fast at the same time, because of

- finite signal speed
- lack of space to place connecting wires

A reasonable solution used in most current processors is a
memory hierarchy.

The Memory Hierarchy

CPU

Faster Smaller

A Registers
On Chip Cache

[

On Board Cache

T

Main Memory

T l Block Transfer

Disk

T

Tape

Slower Larger

Large access latency at deeper levels
= cost of data transfer often dominates the cost of computation

To achieve small amortized cost, data must be transferred in large blocks:
algorithms must have high locality in memory access patterns.

Analysis of Algorithms

Cost measures for algorithm analysis:

« Traditional cost measure: number of operations (= running time)

e This talk: another cost measure motivated by the memory hierarchy
of current computers: [/O complexity

The Two-level I/O (Cache-Aware) Model

I Cache Lines

internal memory
(size = M)
. block transfer
Cache MISSGS@ (size = B)
“ IIIIIIIIIIIIIIII A »
*, external memory *,
.r:‘ o

The two-level I/0 model [Aggarwal & Vitter, CACM’88] consists of:

- an internal memory of size M
- an arbitrarily large external memory partitioned into blocks of size B.

I/0 complexity of an algorithm = # blocks transferred between the two levels

Algorithms often crucially depend on the knowledge of M and B
= algorithms do not adapt well when M or B changes

The Ideal-cache (Cache-oblivious) Model

I Cache Lines

internal memory
(size = M)
. block transfer
Cache MISSGS@ (size = B)
“ IIIIIIIIIIIIIIII A »
*, external memory *,
.r:‘ o

The ideal-cache model [Frigo et al., FOCS’99] is an extension of the I/0 model
with the following additional feature:

algorithms must remain oblivious of the cache parameters M and B.

Consequences of this extension:

— algorithms can simultaneously adapt to all levels of a multi-level hierarchy

— algorithms become more flexible and portable

Basic |/O Complexities (Cache-Aware & Cache-Oblivious)

I Cache Lines

internal memory
(size = M)

Cache Misses@ bl?gikz(tarzn;; er

*
[]

Consider N data items stored in N contiguous locations in external memory.

I/0 complexity of scanning the data items: scan(N) = @(ﬁ)

B

1/0 complexity of sorting the data items: sort(N) = @[’;logM g]
B

Roadmap

Cache-oblivious dynamic programming for string problems

in bioinformatics

Cache-oblivious priority queue (Buffer Heap) and Dijkstra’s
shortest path computation
— Cache-oblivious Gaussian Elimination Paradigm (GEP)

— Conclusion

Cache-oblivious Dynamic Programming
for String Problems in Bioinformatics

(with Rezaul Chowdhury, Hai-Son Le)

The LCS Problem

A subsequence of a sequence X is obtained by deleting zero or more
symbols from X.

Example: X = abcba
Z = bca <« obtained by deleting the 1st ‘a’ and the 2 ‘b’ from X

A Longest Common Subsequence (LCS) of two sequence X and Y is a
sequence Z that is a subsequence of both X and Y, and is the longest
among all such subsequences.

Given X and Y, the LCS problem asks for finding such a Z.

We will assume | X| = | Y| =n = 29, for some integer g > 0.

DP with Local Dependencies
The LCS Recurrence (Review)

Given: X =x,x,..x,and Y =y . y,..y,

Fills up an array c[O ... n, O ... n] using the following recurrence.

(0 ifi=0v j=0,
cli,jl=qcli-1,j-1+1 if i,j>0AXx;, =y,
\max {c[i,j-1],c[i-1,j]} otherwise.

Yi Y Y3 Ya¥s Yo Y7 Y3

X,
x, B Local Dependency:
X, "I o 4 value of each cell depends
| s .
X4 4 T 1< il only on values of adjacent
X
X5 "\ -1 Traceback CellS.
6 hll B Path (LCS)
X7
Xq c[n,n]

= length of LCS

/O Complexities of Known Algorithms

2
The classic LCS DP runs in @(nz) time, uses @(nz) space, and incurs @("_

1/0s.

No sub-quadratic time algorithm is known for the general LCS problem.

Sub-quadratic space LCS algorithms are known.
(eg., Hirschberg’s linear space LCS algorithm)

I/0-complexity remains

Our Results

We present a new LCS algorithm which
Q runsin @(nz) time,

O uses linear space,

Q is cache-oblivious incurring only o(_J cache misses,

Q computes an actual LCS

Our Algorithm: Recursive LCS

Q=c[1..n,1..n]

n=29

stored values

Our Algorithm: Recursive LCS

1. Decompose Q:
Split Q into four quadrants.

2. Forward Pass (Generate Boundaries):
Generate the right and the bottom
boundaries of the quadrants recursively.
(of at most 3 quadrants)

Q=c[1..n,1..n]

n=29

’ Q

stored values

Our Algorithm: Recursive LCS

. Decompose Q:

Split Q into four quadrants.

. Forward Pass (Generate Boundaries):

Generate the right and the bottom

boundaries of the quadrants recursively.

(of at most 3 quadrants)

. Backward Pass (Extract LCS-Path
Fragments):

Extract LCS-Path fragments from the
quadrants recursively.
(from at most 3 quadrants)

. Compose LCS-Path:

Combine the LCS-Path fragments.

Q=c[1..n,1..n]

n=29

stored values
% LCS path

/O Complexity

I/0-complexity of Recursive LCS :

O(1+gj, if n<aM
I(n)3<

31, (gj +31 (gj +0(1), otherwise;

where I.(n) is the 1/0-complexity of
recursive boundary generation (in the
forward pass):

o-o[2]

) Q
) n’ stored values
Solving, |Z(n) = 0| — ||<€«—— optimal W LCS path

DP for String Problems in Bioinformatics

We consider DP problems for sequence alignment and RNA structure
prediction:

o Pair-wise sequence alignment with affine gap costs
e« Median: 3-way sequence alignment with affine gap costs

« RNA secondary structure prediction with simple pseudo-knots

We generalize the cache-oblivious algorithm for LCS to obtain good
cache-oblivious algorithms for these problems.

Our Cache-Oblivious DP Results for Bioinformatics

(Chowdhury, Hai-Son Le, Ramachandran)

Problem Time Space I/0 Complexity
Gotoh, 1982
2
Pairwise sequence Alignment ©(n?) ®(n) ol N_
BM

{5

Knudsen, 2003

3
Median of Three Sequences ®(n’ ®(n* O n n’
4 Akutsu, 2000
RNA Secondary Structure o (n*) o (n?) ol " n
Prediction with Pseudoknots B\/M O [FJ

Experimental Results

Pair-wise Sequence Alignment: Algorithms Compared

. . Cache
Algorithm Comments Time Space Misses
2 n’
PA-CO Our cache-oblivious algorithm O (n) O(n) O (mj
Our implementation of linear- o (n? O(n n’
- O| —
PA-LS space variant of Gotoh’s algorithm () (m) B
Linear-space variant of Gotoh’s n?
. . o 2
PA-FASTA algorithm available in fasta2 O (n) O(n) O B

package

running time

Pair-wise Sequence Alignment: Rahdom Sequences

sequence length(n)

[-PA-LS -4 -PAFASTA —+—PACO]

sequence length (n)

—+—p=1-®-p=2-2c-p=4 -+-p=6-o-p=§

Model # Processors Processor Speed L1 Cache (B) L2 Cache (B) RAM
AMD Opteron 250 2 2.4 GHz 64KB(64B) | 1MB(64B) | 4GB
AMD Opteron 850 8 2.2 GHz 64KB(64B) | 1MB(64B) | 32GB
Running Times on Opteron 250 (single processor) Speed-up on Opteron 850 as Number of Threads (p) Vary
1.6 5.0 - ~a
_——__-. - -
N 154 m==" “"u‘_‘.____ s g e e — NEESS S 4.5 1 :J,/’B .
o — 4.0 If_E’ SEPREEVL S
o 14 1 . -
< o 135 - e L
& 13 ga e [
T—E Caenl I -k S : 3.0 A ’_),’-ﬁif' ’__'__-x»*__
2124 TR ek — $3,55] - e
2" e e 132 iy
% 1.1 4 g_% 2.0 4 “,sif:if —Fe e lllmeoii-memees o e oo -
£ ®E 5] ==t
2104 - - . . » » » » » o
o ~— 1.0 A + + * + + - + *
9 05 -
08 T T T T T T T OO T 1
TK 2K 4K 8K 16K 32K 64K 128K 256K 512k 8 K 16 K 32K 64 K 128K 256K 512K 1024K

Experimental Results

2. Median (Chowdhury, Hai-Son Le)

Median: Algorithms Compared

Algorithm Comments Time Space CLhe
Misses

3

MED-CO Our cache-oblivious algorithm O(n’ O n
: () (B\/ﬁ

_ Knudsen’s implementation of o(n3 o(n ol M
MED-Knudsen his algorithm () (B)

Powell’s implementation of an ; d?

MED-ukk.alloc O(d?)-space algorithm O (” +d) O (n + d3) O B
(d = 3-way edit dist) /

Powell’s implementation of an ; , d3
MED-ukk.checkp O(d?)-space algorithm O (" logd +d) O (" +d) O [?J

(d = 3-way edit dist)

running time

(normalized w.r.t.

Median: Random Sequences

Model Processor Speed L1 Cache (B) L2 Cache (B) RAM
Intel P4 Xeon 3.06 GHz 8KB (64B) 512 KB (64B) 4 GB
AMD Opteron 250 2.4 GHz 64KB (64B) 1MB (64B) 4 GB

o

MED-C

Running Times onh Xeon (single processor)

Running Times on Opteron (single processor)

5.0 - 6.0
JRE S e
45 - A e 7
5.0 1 %
i “3« — . | tf (o ’_-(5—_‘__
2 . o g e e v
& o &. & T
3.5 - A e
A2 ,4"7_" o W 4.0 | - N
3.0 oo E E -, .- .
P = - s
.] .
2.5 1 L E'J B 3.0 4 .
* c n I
2.0 - 3 o f--a
: Zx
15 _.E-—_g T 2.0
B o m--—m- £
o
g
101 «—» & 8 & &+ & & & % & % &+ &
E 0] et o ¢ e & e & e & e & & & & o
0.5
DD T T T T T T T T T T T T T T T 1 DD T T T T T T T T T T T T T T
+ @ o © 9o = w ©o © o =T o o o o < 4+ W o © © T w ©o ©w o T w o ©w o =
[{=] (] o [Ee] o o -— ~ o w0) (=3 (=) o —
— -

sequence length (1)

[—*— MED-CO --=- MED-Knudsen --+- MED-ukk-alloc - = - MED-ukk-checkp|

sequence length (n)

|[—#— MED-CO --=- MED-Knudsen -—-- MED-ukk-alloc -~ -- MED-ukk-checkp]

Median: AWPM-19-like’ Protein Sequences (LEA 10)

Model # Processors Processor Speed L1 Cache (B) L2 Cache (B) RAM
AMD Opteron 850 8 2.2 GHz 64 KB (64 B) 1MB (64B) 32 GB
Triplet Sequence Alignment | MED-ukk.checkp MED-CO MED-CO
~rpet Lengths Cost 1 proc 1 proc [8 procs]
2 2 2
1. 405 438 414 479 ;308 626 00
(12.54) (3.13) (1.00)
2. 405 522 546 506 2,707 930 263
(10.29) (3.61) (1.00)
2,937 907 243
3. 525 414 546 516 ’
(12.09) (3.73) (1.00)
3,543 961 252
4, 513 504 438 542 ’
(14.06) (3.81) (1.00)
4,424 1,191 47
5. 438 522 594 585 ’ 19 3
(12.75) (3.43) (1.00)

Cache-oblivious Buffer Heap and Dijkstra’s SSSP Algorithm
(Priority queue with decrease-keys)

(with Chowdhury, Lingling Tong, David Lan Roche, Mo Chen)

Cache-Oblivious Priority Queuve with Decrease-Key

Our Result: Cache-Oblivious Buffer Heap

The following operations are supported:

— Delete-Min():
Extracts an element with minimum key from queue.

— Decrease-Key(x, k,): (weak Decrease-Key)

If x already exists in the queue, replaces key k', of x with min(k,, k),
otherwise inserts x with key k, into the queue.

— Delete(x):
Deletes the element x from the queue.

A new element x with key k, can be inserted into queue by Decrease-Key(x, k).

Priority Quevue with Decrease-Key

Supports the following operations:

— Insert(x, k,):

Inserts a new element x with key k, to the queue.

— Delete-Min():
Retrieves and deletes an element with minimum key from queue.

— Decrease-Key(x, k,):
Replaces key k', of x with min(k,, k).

— Delete(x):
Deletes the element x from the queue if exists.

Cache-Oblivious Buffer Heap

Buffer Heap is the first cache-oblivious priority queue supporting Decrease-Keys.

Amortized 1/0 Bounds
Priority Queue Delete-Min / Delete | Decrease-Key
Cache- Buffer He,ap
oblivious LGS Bl |
(independently [Brodal et al., SWAT’04 1) 1 N
0 Elogzﬁ
Cache- Tournament Tree
aware [Kumar & Schwabe, SPDP’96]
Binary Heap O(log N)
(worst-case) ’
Internal
Memory Fibonacci Hea
i i
| neap O(log, N) 0(1)
[Fredman & Tarjan, JACM’87]

Cache-Oblivious Buffer Heap: Structure

Consists of r = 1 + [log,N| levels, where N = total number of elements.

For0<i<r-1, level i contains two buffers:

U element buffer B,
contains elements of the form
(x, k,), where x is the element
id, and k, is its key

4 update buffer U,
contains updates (Delete,
Decrease-Key and Sink), each

augmented with a time-stamp.

Element Buffers Update Buffers
Bo Uo
B 1 u 1
B; U;
Br -1 Ur -1

Fig: The Buffer Heap

Cache-Oblivious Buffer Heap: Invariants

Invariant 1: | B. | < 2i Element Buffers Update Buffers
¢ L s
Bo | Y
Invariant 2: B, v
(a) No key in B. is larger than any key in B., , B,]
(b) For each element x in B,, all updates yet S — S —
! B; U;

to be applied on x reside in Uy, U,, ..., U,

1

Invariant 3:

Fig: The Buffer Heap

(a) Each B; is kept sorted by element id

(b) Each U; (except U,) is kept (coarsely) sorted by element id and time-stamp

Cache-Oblivious Buffer Heap: Operations

The following operations are supported:

— Delete-Min():
Extracts an element with minimum key from queue.

— Decrease-Key(x, k,): (weak Decrease-Key)

If x already exists in the queue, replaces key k', of x with min(k,, k),
otherwise inserts x with key k, into the queue.

— Delete(x):
Deletes the element x from the queue.

A new element x with key k, can be inserted into queue by Decrease-Key(x, k).

Cache-Oblivious Buffer Heap: Operations

Decrease-Key(x, k,) :
Insert the operation into U, augmented with current time-stamp.

Delete(x) :
Insert the operation into U, augmented with current time-stamp.

Delete-Min() :
Two phases:
— Descending Phase (Apply Updates)
— Ascending Phase (Redistribute Elements)

Cache-Oblivious Buffer Heap: I/O0 Complexity

. : 1 - . = .
Potential Function: ® (H) = B 3riUq+ > (2r —i)|u;|+ D (i +1)|B,
i=1 i=0
Element Buffers Update Buffers
direction of B, U, direction of
elements updates
/\ B, U, _
3 e
......B.’..... _“"U;“"_ v
! updates generate elements
g TR
Fig: Major Data Flow Paths in the Buffer Heap

Lemma: A Buffer Heap on N elements supports Delete, Delete-Min and

Decrease-Key operations cache-obliviously in O (%logz Nj amortized
I/0s each using O (N) space.

Buffer Heap Summary

— Amortized 1/0s per operation: O (%log2 Nj

— Buffer heap achieves improved I/0 bound while maintaining

the traditional O(log N) running time (amortized)

— Since the top log, M levels of the buffer heap always resides in

internal-memory, the amortized I/0s per operation reduces to

1 1 N
O(E(logz N — logz M)j = O(Elogz ﬂj

Experimental Results

(Rezaul Chowdhury, Lingling Tong, also David Lan Roche)

Priority Queue Operations: Qut-of-core using STXXL

Processor Speed Local Hard Disk
73 GB, 10K RPM
Intel Xeon 3 GH ’ ’
z ~5ms avg. seek time, 107 MB/s max xfer rate

Ratios of Running Times of Binary Heap to Buffer Heap
(Lingling Tong & David Lan Roche)

N = 2 million = # Delete-Min, B = 64 KB

M varies
120
[=
mgmu
E T
- =
o & 80 4 == #0ps=3xN
£ 5
s —A— #0ps=4xN
= g0
o
s T —— #0Ops=5xN
o > 40
o @
xr £
L0 T E LI TTT T RITT ST T
0

M= 4/ M=V M=Ns2 M=N/4

Size of Internal Memory (in bytes)

SSSP (Dijkstra’s Algorithm)

Graph Type Cache-Aware Results Cache-Oblivious Results
0(+ L og, j (Kumar & Schwabe, SPDP’96)
o(m_mn) (Chiang et al., SODA’95)
. E V
Undirected 0(/%log2p+sort (V+ E)log, log, V_;J 0(V+Elogzﬁ)
(Meyer & Zeh, ESA’03)| (new, C & R, SPAA’04)
O(V —log, j (new)
E | 4
0(logz J (Kumar & Schwabe, SPDP’96) 0((V+E)-10g2 Ej
Directed
VE . V , ,
O(V+W'°gz BJ (Chiang et al., SODA’95)| (new, C &R, SPAA’04)

I/0 bounds for a graph with V nodes, E edges and non-negative edge-weights.

— Bound for best traditional algorithm is O(V log V + E')

— Our results give good performance for moderately dense graphs.

Experimental Results

(Chowdhury, David Lan Roche, also Mo Chen)

SSSP: In-core Running Times

Architecture Processor Speed L1 Cache (B) L2 Cache (B) RAM

Intel P4 Xeon 3.06 GHz 8KB (64B) 512 KB (64 B) 4 GB

SSSP on G, ,, with n = 8m and Random Integer Edge-Weights

12 -

10 ~

0
1

Runtime (sec)
()]

0 = Y
32 K 64 K 128 K 256 K 512 K 1024 K 2048 K 4096 K
Number of Vertices (n)

|+ Fast Binary Heap —e—4-ary Aligned Heap —e— DIMACS Solver -8 Auxiliary Buffer Heap|

Summary

— Presented efficient cache-oblivious algorithms from three

different problem domains
— Simple portable code with very good performance

— Simple and effective parallelism (for DP and I-GEP/C-GEP)

— Current trends in computer architecture and in massive datasets
would indicate that cache-efficient algorithms will become

increasingly important in the future

The Cache - Oblivious
Gaussian Elimination Paradigm
(GEP)

(Chowdhury & Ramachandran [SODA'06, SPAA'07])

Gaussian Elimination Paradigm: Triply-nested Loops

—l Gaussian Elimination without Pivoting

1. for k<1 to n-2 do

2. for i< k+1 to n-1 do
3. for j«<k+1 to n do
a. i, jle i jl- LKL j)

[k k1]

—I Floyd-Warshall’s All-Pairs Shortest Path

1. for k< 1 to n do
2. for i< 1 to n do
3. for j«< 1 to n do

cli,jle min(cli,jl, c[i,k]+c[k,j])

The Gaussian Elimination Paradigm (GEP)

c[1..n,1..n]isann x n matrix with entries chosen from an arbitrary set S
f:5SxS8xSxS— S isan arbitrary function
(1, Jj, k) is an update of the form:

cli,jlef(cli,jl,cli,k], clk,jl, clk k])

2.c is an arbitrary set of updates

GEP Computation

Algorithm G(c, n, f, ;)
1. for k< 1 to n do

for i< 1 to n do

2

3 for j«< 1 to n do

4, if (i,]J, k) e 2, then

5 c[i,jl< f(cli,jl,cli, k], c[k,j], c[k, k])

Gaussian Elimination Paradigm (GEP): Time and |/O Bounds

GEP Computation

Algorithm G(c, n, f, 2;)
for k<1 to n do

for i< 1 to n do

1.
2
3. for j«< 1 to n do
4 if (i,]J, k) e 2 then
5

cli,jl<f(cli,jl,cli, k], c[k,j], c[k, k])

Assumption: The following can be performed in O(1) time with no cache misses -

Q testing (i, j, k) € 2; in line 4

O evaluating f(-, -, -, -) inline5

Running Time: @(n3)

3
1/0 Complexity: O(nBj

We present a recursive algorithm called /-GEP which

Q

|-GEP

solves GEP for several important special cases of f and 2.

- Gaussian elimination / LU decomposition w/o pivoting
- path computation over closed semirings (including Floyd-Warshall)

- matrix multiplication
runs in @(n3) time,
is in-place,

is cache-oblivious incurring only

{

n

BJM

cache misses.

|-GEP

Algorithm F(X, U, V, W) {initial call: F(c,c,c,c)}

1. if TyyyNZg=D then return { Tyuy = { updates on X using (i,k)e U and (k,j)eV }}
2. if X=1x1matrix then X< f(X, U, V, W)

3. else

4. F(X115 Uty Vi Wag)5 F(X2 Uggs Vi Wag)i F(Xy Uy Vi Wa)i F(Xy, Uyys Vg Wyy)

3. F (X3, Upys Vaas Way)5 F(X1 Ugpy Vais Wop)i F(Xqg, Uyp, Vg, Wog)i F(Xy, Ugyy Vi, Way)

(clivj1)

~x xxx
O=NWA

EP

Algorithm G(c, n, f, 2;)

1. for k<« 1 to n do

for i< 1 to n do

2

3 for j«< 1 to n do

4, if (i,]J, k) e 2; then

5 c[i,jl«f(cli,jl,cli, k], c[k,j], clk k])

cf[1..n,1...n]

——j
GEP Execution

|-GEP

Algorithm F(X, U, V, W) {initial call: F(c,c,c,c)}

1. if TyyyNZg=D then return { Tyuy = { updates on X using (i,k)e U and (k,j)eV }}
2. if X=1x1matrix then X< f(X, U, V, W)

3. else

4. F(Xi1 Uy, Vi, Wi) F(X2, Uy Vi Wog)i F(Xy Upgs Vi, Wag)i F(Xy, Upys Vigs Wyy)

3. F(X3, Uyys Vags Woa)i F(X5, Upgy Vags Woa)i F(Xqg, Uggs Vg Wag)i F(Xy, Ugys Vg, Way)

.

cf[1..n,1...n]

L 1Y

GEP Execution I-GEP Execution

I-GEP: 1/O Complexity

Algorithm F(X, U, V, W) {initial call: F(¢c,c,c,c)}

1. if TyyyNX;=2 then return
2. if X=1x1matrixthen X< f(X, U, V,W)
3. else

4. F(X115 Ui, Vi Wag)5 F(X2 Uy Vi Waq)i F(Xy Uy Vi Wag)i F(Xy, Uy Vg Wyy)

5. F(Xy, Upys Vaas Wap)5 F(X1 Ugpy Vais Wop)i F(Xqg, Uyg, Voo, Wog)i F(Xy, Uy, Vi, Way)

Number of 1/0 operations performed by F on submatrices of size n x n each:

f

n2
O n+§ , ifn* < oM

I(n)=<

81 (gj +0(1), otherwise.

I(n)=0 %
il

Optimal for general GEP

Solving, (assuming a tall cache, i.e., M= Q(B2))

|-GEP vs Other Methods

Cache-oblivious algorithms for several problems solved by I-GEP

(except the gap problem) have already been obtained by different
sets of authors.

O Matrix multiplication [Frigo et al., FOCS’99]
O LU decomposition w/o pivoting [Blumofe et al., SPAA’96; Toledo, 1999]
0 Floyd-Warshall’s APSP [Park et al., 2005]
0 Simple DP [Cherng & Ladner, 2005]
But /-GEP

O gives cache-oblivious algorithms for all of these problems,

2 matches the 1/0 bound of the best known solution for the
problem,

O can be implemented as a compile-time optimization.

I-GEP and C-GEP

Problem Time Space /0 Complexity
|-GEP
(solves most important special cases of GEP) ,
- Gaussian elimination / LU decomposition w/o pivoting n 0 n 3
- Floyd-Warshall’s APSP, transitive closure (in-place) vy
- matrix multiplication BVM
’ 3
[C &R, SODA’06] © (n) traditional
3
n
C-GEP n B

(solves GEP in its full generality)
[C&R, SPAA’07]

(n? + n extra
space)

Experimental Results

1. Floyd-Warshall All-Pairs Shortest Paths in Graphs

million values / sec

Floyd-Warshall's APSP

Model # Processors Processor Speed | L1 Cache (B) L2 Cache (B) RAM
Intel P4 Xeon 2 3.06 GHz 8KB(64B) | 512 KB (64 B) 4 GB
AMD Opteron 850 8 2.2 GHz 64KB(64B)| 1MB(64B) 4 GB

Rate of Execution on Xeon (single processor)

1400 4

1,200 ~

-
[=]
=
=

800 4

500 4

400 4

200 J F__._—.—F.—v

400
800
1,200 |
1,600 |

2,000

2,400

2,800

3,200
3,600
4,000 |
4400 |
4,800
5,200

Dimension(n)

—— |-GEP — GEP

5,600

£,000

6,400
6,800
7,200 |
7,600 |
8,000

speed-up factor
{ w.r.t. unthreaded I-GEP)

=)
|

@
L

a
L

=
.

5}
L

ra
L

-
L

o

Speed-up on Opteron as Number of Threads Vary

4 5 g

Number of Threads

Additional Slides

Cache-Oblivious Buffer Heap: Structure

Consists of r = 1 + [log,N| levels, where N = total number of elements.

For0<i<r-1, level i contains two buffers:

U element buffer B,
contains elements of the form
(x, k,), where x is the element
id, and k, is its key

4 update buffer U,
contains updates (Delete,
Decrease-Key and Sink), each

augmented with a time-stamp.

Element Buffers Update Buffers
Bo Uo
B 1 u 1
B; U;
Br -1 Ur -1

Fig: The Buffer Heap

Cache-Oblivious Buffer Heap: Invariants

Invariant 1: | B. | < 2i Element Buffers Update Buffers
¢ L s
Bo | Y
Invariant 2: B, v
(a) No key in B. is larger than any key in B., , B,]
(b) For each element x in B,, all updates yet S — S —
! B; U;

to be applied on x reside in Uy, U,, ..., U,

1

Invariant 3:

Fig: The Buffer Heap

(a) Each B; is kept sorted by element id

(b) Each U; (except U,) is kept (coarsely) sorted by element id and time-stamp

Cache-Oblivious Buffer Heap: Operations

The following operations are supported:

— Delete-Min():
Extracts an element with minimum key from queue.

— Decrease-Key(x, k,): (weak Decrease-Key)

If x already exists in the queue, replaces key k', of x with min(k,, k),
otherwise inserts x with key k, into the queue.

— Delete(x):
Deletes the element x from the queue.

A new element x with key k, can be inserted into queue by Decrease-Key(x, k).

Cache-Oblivious Buffer Heap: Operations

Decrease-Key(x, k,) :
Insert the operation into U, augmented with current time-stamp.

Delete(x) :
Insert the operation into U, augmented with current time-stamp.

Delete-Min() :
Two phases:
— Descending Phase (Apply Updates)
— Ascending Phase (Redistribute Elements)

Cache-Oblivious Buffer Heap: Delete-Min
Delete-Min() - Descending Phase (Apply Updates) :

1. sort updates I

B, [<< Uy
B, ®@ 2. apply updates: e U,
— Delete(x)
B, |®@® — Decrease-Key(x, _EL B R U
3. carry updates:
— all updates that did not apply
— applied Decrease-Keys as Deletes
Bk-1 000 EENE--- Uk-1
B o000 0600 EEN-- U,

Cache-Oblivious Buffer Heap:

Delete-Min

Delete-Min() - Descending Phase (Apply Updates) :

1. sort updates:
— merge segments
U,

B,
B, [1< \ U,
B, (@@ 2. apply updates: LI U,
— Delete(x)
— Decrease-Key(x, k,)
— Sink(x, k.) 3. carry updates I
B..l®o®® @ EEN-- U,
B o000 0600 EEN-- U,

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Descending Phase (Apply Updates) :

B, |000000000000000000O0:

Cache-Oblivious Buffer Heap: Delete-Min
Delete-Min() - Ascending Phase (Redistribute Elements) :

B 00000000000 00000

— find 2% elements with 2% smallest keys
— convert each remaining element x with
key k, to Sink(x, k,)

push the Sinks to U, , . I

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

By
B,
B,
move all elements from B, to
shallower levels leaving B, empty
By.q

B 00000000000 00000

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

B, |00 00000000000 006:

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

B, ©00© 0600 0eo:

XXX XXX

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

BO
B, [ee]ee
B, @eeee

XXX XXX

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

B, [®]e:
B, @@
B, @eeee

XXX XXX

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

® «—— element with minimum key

Cache-Oblivious Buffer Heap: I/O0 Complexity

Lemma: A BH supports Delete, Delete-Min, and Decrease-Key operations
in O((1 / B) log,(N / M)) amortized I/0s each assuming a tall cache.

Proof: We use Potential Method. (In equation below r= [og N.)

— Each Decrease-Key inserted into U, will be treated as a pair of
operations: (Decrease-Key, Dummy).

— If His the current state of BH, we define potential of H as:

(|

O (H)= %(3r\uo\+z(2r—i)u

1

+,§(i+1)

B;

Cache-Oblivious Buffer Heap: I/O0 Complexity

. : 1 - . = .
Potential Function: ® (H) = B 3riUq+ > (2r —i)|u;|+ D (i +1)|B,
i=1 i=0
Element Buffers Update Buffers
direction of B, U, direction of
elements updates
/\ B, U, _
3 e
......B.’..... _“"U;“"_ v
! updates generate elements
g TR
Fig: Major Data Flow Paths in the Buffer Heap

Lemma: A Buffer Heap on N elements supports Delete, Delete-Min and

Decrease-Key operations cache-obliviously in O (%logz Nj amortized
I/0s each using O (N) space.

Cache-Oblivious Buffer Heap: Invariants

Invariant 1: | B. | < 2i Element Buffers Update Buffers
¢ L s
Bo | Y
Invariant 2: B, v
(a) No key in B. is larger than any key in B., , B,]
(b) For each element x in B,, all updates yet S — S —
! B; U;

to be applied on x reside in Uy, U,, ..., U,

1

Invariant 3:

Fig: The Buffer Heap

(a) Each B; is kept sorted by element id

(b) Each U; (except U,) is kept (coarsely) sorted by element id and time-stamp

Buffer Heap Summary

— Amortized 1/0s per operation: O (%logz Nj
— Amortized ‘running time’ per operation: O(log N)

— Buffer heap achieves improved I/0 bound while maintaining

the traditional O(log N) running time (amortized)

— Since the top log, M levels of the buffer heap always resides in

internal-memory, the amortized I/0s per operation reduces to

1 1 N
O(E(logz N — logz M)j = O(Elogz ﬂj

The Cache-Oblivious Model: Some Known Results

Problem

Cache-Aware Results

Cache-Oblivious Results

Array Scanning (scan(N))

Sorti
S O(ﬁlogw NJ O(ﬁlogw NJ
(sort(N)) B "0 B B 2B
Selection O(scan(N)) 0 (scan(N))
Priority Queue [Am]
1 N ol Lioe N
(Insert, Weak Delete, O\ glogu & B SMp
Delete-Min) ’
B-Trees [Am] 0(10g8 lj
(Insert, Delete) B

List Ranking

o)
o(

sort)

0(sort(N))

Directed BFS/DFS

o((mg).mgz gj

T

Undirected BFS

0(V+ sort(E))

0(V+s0rt(E))

Minimum Spanning Forest

O(min(sort(E)Ing log,V, V + sort(E)))

O(min (sort(E) log, log, % , V+ sort(E)D

Table 1: N = # elements. V = | V[G]]|,

E = |E[G]|, Am = Amortized.

Some of these results require a tall cache: M=Q(Bl+g).

Comparison to BLAS: MM on Xeon (single proc)

Architecture

Processor Speed

L1 Cache (B)

L2 Cache (B)

RAM

Intel Xeon

3.06 GHz

8KB (64B)

512 KB (64 B)

4 GB

% peak

L1 Misses (x10°)

100
90 -
30
70

40 1
30
20 4

10 7 o P

Rate of Execution

60 H
0 | Nv—m

400
g00
1,200
1,600
2,000
2400

2,800

c o o o o
c o o O o
D

5,600
6,000
6,400
6,300
7,200

=1
o
(53
LI T - S)

Matrix Dimension (n

—— -GEP —= GotoBLAS —— Mative BLAS — GEP

L1 Misses

7,600

8,000

400
800
1,200

1,600
2,000
2,400
2,800
3,200
3,800

Matrix Dimension (n)

—+ -GEP —+ Mative BLAS |

4,000

350 4
300 A

250 A
=

)

200 A

L2 Misses (x10

L2 Misses

400

180 4

140 4

I-Cache Refs (x10°)
2 @ o D
[an) (=) [an] (=) (=]

[
[au]
L

800

1,200

=1
o
=)

1,600
2400

[}
Matrix Dimension (n)

2,800

[+~ -GEP —Native BLAS]

Instruction Cache References

3,200

3,800

4,000

s}

400

800

1,200

1,600
2,000
2400

Matrix Dimension (n)

2,800

—— -GEP — Native BLAS|

3,200

3,600

4,000

% peak

Comparison to BLAS: Gaussian Elimination
w/o Pivoting

Architecture Processor Speed L1 Cache (B) L2 Cache (B) RAM
Intel Xeon 3.06 GHz 8KB (64B) 512 KB (64B) 4 GB
AMD Opteron 2.4 GHz 64KB (64B) 1MB (64B) 4 GB

Rate of Execution on Xeon (single processor) Rate of Execution on Opteron (single processor)

100 100
a0 4 a0 4

80 - —— 80 S—— - T e T
70 - 70_/_,%
60 - 60

-_
o
@
50 + o 50+
2
N
40 40
30 4 30 4
20 20 +
L NP SR G CLLED ELLPULLEP CLLLL (S CEEED CEEED SEEE EEEED SSEEE CESSE CEEED CEPD PR 10 ‘__‘_.._W_MH
0 T T T T T T T T T T T T T T T T T T T 0 T T T T T T T T T T T T T T T T T T
(o] (] () [an] [an] (] (] (] = (o] (] () [an] (] (] (] = (o] (o] (] (] (] (] = (o] (o] (] () [an] (] (] (] = (o] (] () [an] [an] (] (]
o o
= B B o T e ML =~ S S S (= R = N+ R R S e e - A o R o e L = S T = R R N« S R =
— — o (] (] o o =+ =+t =+t Lo Ly [{a] [(a] [{e] - [oo — — (] (] o o o) =t =t =t > > [{=] [(a] [(s] P - [eu]
Dimension(n) Dimension (n)

—— |-GEP = GotoBLAS - GEP —+— |-GEP = GoloBLAS - GEP

million values / sec

Floyd-Warshall's APSP (single proc)

Model Processor Speed L1 Cache (B) L2 Cache (B) RAM
Intel P4 Xeon 3.06 GHz 8KB (64B) 512 KB (64 B) 4 GB
AMD Opteron 250 2.4 GHz 64 KB (64B) 1 MB (64B) 4 GB
Rate of Execution on Xeon (single processor) Rate of Execution on Opteron (single processor)
1400 - 1,000 -
1,200 - 200 1
800
1,000 - s 700 -
800 - g 500
% 500 |
500 - S 400+
400 4 300 -
. .~ . e s e e e s 200 - M\/%
200 1-e== ST S S
100 -
T Dimension(n) C imension(n)

— -GEP —»GEP — I-GEP —&GEP

Parallel I-GEP: Speed-Up Factors

Model

Processors

Processor Speed

L1 Cache (B)

L2 Cache (B)

RAM

AMD Opteron 850

8

2.2 GHz

64 KB (64 B)

1 MB (64 B)

32GB

speed-up factor
(w.r.t. unthreaded |I-GEP)

Parallel I-GEP: Square Matrix Multiplication

=]
|

@
L

w
L

s
L

w
L

[
L

[

=]
|

@
L

speed-up factor
(w.r.t. unthreaded |-GEP)

[

4 &) 6

Number of Threads

(&) w £ 3 @ ~
L L L L L |

speed-up factor
{w.r.t. unthreaded I-GEP)

(=1

Parallel I-GEP: Floyd-Warshall's APSP

w
L

s
L

w
L

[
L

Parallel I-GEP: Gaussian Elimination w/o Pivoting

2 3 4 5 8
Number of Threads

4 5] B
Number of Threads

1/0 Wait Time (sec).

Out-of-Core:

1/O Wait Times Using STXXL

Processor Speed RAM Local Hard Disk
73 GB, 10K RPM, 8 MB buffer
Intel P4 X 3 GH 4 GB ’ ’ ’
nte eon z ~5ms avg. seek time, 107 MB/s max xfer rate

1/0 Wait Time with n = 4096 and B = 64 KB as M Varies

100,000

10,000 4

1,000 4

10 4

|

11O Wait Time (sec).

input-size /16

input-size / 8 input-

Memory Size (M)

size [4

input-size /2

—+— |-GEP - C-GEP (4n®*) = C-CEP{nZ +n) = GEP

I/0 Wait Time with n = 4096 and M = 2n? bytes as M / B Varies

1,000,000 4

100,000

10,000

1,000 4

100 4

10 4

- ‘ T

W

32

64 128 2586 512
Number of Blocks (M / B)

—4— |-GEF - C-GEP(4n®) s C-GEP (n*+n) -« GEP

1.024

SSSP: In-core Running Times

Architecture Processor Speed

L1 Cache (B)

L2 Cache (B)

RAM

Intel P4 Xeon 3.06 GHz

8KB (64B)

512 KB (64 B)

4 GB

Running time for &&,, ,,, wWith . = 4n

runtime (sec)
M] W L I
o & o o =
1 L 1 L]

-k
o
L

10 4
5 S
0 - .
32 K 64 K 128 K 256 K 512 K 1024 K 2048 K 4096 K
number of vertices (n)
Legends: —e— BH —e— Aux-BH ~@— BinH | —%— FibH

—de— PairH (two-pass)

—»&— PairH ({ multi-pass)

——=— SplayH

-=gh-= PairH (aux two-pass)

3=+ PairH { aux multi-pass)

wepse= SplayH (dec-key)

Median: Algorithms Compared

Algorithm Comments Time Space Cache Misses
3
n
MED-CO Our cache-oblivious algorithm o(n’ O (n* 0]
() | o) |of o
’ s . . 3
MED-Knudsen Knudsen’s lmplementatlon of his 0 (n3) 0 (n3) 0 n-
algorithm B)
3
i Our implementation of MED-Knudsen 3 o (n? n-
el using Hirschberg’s technique O (n) () O B)
3
) Powell’s implementation of an O(d?)- of(n+d? ol(n+d? d’
MED-ukk.alloc space algorithm (d = 3-way edit dist) () () O B)
. . (A3
i Powell’s implementation of an O(d?)- | (nilosd + d?*)lO(n + d2 d’
MED-ukk.checkp space algorithm (d = 3-way edit dist) (g) () 0 B

running time
(normalized w.r.t. MED-CO)

Median: Random Sequences

Model

Processor Speed

L1 Cache (B)

L2 Cache (B)

RAM

Intel P4 Xeon

3.06 GHz

8KB (64B)

512 KB (64 B)

4 GB

AMD Opteron 250

2.4 GHz

64 KB (64B)

1 MB (64B)

4 GB

Running Times on Xeon (single processor)

5.0 - 6.0 -
",r e -7‘.<> “l‘e‘ "_
e N
4.5 o 9‘__79__"& 50 ‘,‘
a —_— 2.0 Fl W e
40 PR 0 s e T
- Q| e, # e
3.5 - s (=] e
: - 4.0 4
e o™ »
304 £E= - e
2 == T
&, D =
254 & gz 3.0+ 5
* 'S [PR P
20 = R D
o = N A
: ==
1.5 1-mpe Aoy g 82097
B B e L et O PR e e - k&
» & Ay gk ok —k S e S e T S U S U S
104 #—= o o o o s o o o+ » s+ = =
e 10—+ &+ o+ » + -+ +
0.5 4
0.0 T T T T T T T T T T T T DD T T T T T T T T T T T T T T
=t [s] (] w [e=] =t (=) (] [{=] o =+ () (o] [{=] o =t =t [a] (o] w (=] =t [se] (o] o o =t [a] (] w o =t
(<= o [=2] o o «© =t -— I~ =t o w0 o (=2 [{=) (o} [(=] o (s>} uw o [sa] -t -— ~ ~t o w (2] [=>] [{=] o

sequence length (n)

[—#— MED-CO --&«- MED-H --=- MED-Knudsen --¢- MED-ukk-alloc - - MED-ukk-checkp|

Running Times on Opteron (single processor)

sequence length (n)

|—#— MED-CO --&- MED-H --=- MED-Knudsen - -¢- MED-ukk-alloc - - MED-ukk-checkp |

Pair-wise Sequence Alignment: Rahdom Sequences

Model

Processors

Processor Speed

L1 Cache (B)

L2 Cache (B)

RAM

AMD Opteron 250

2

2.4 GHz

64 KB (64 B)

1 MB (64 B)

4 GB

running time
(normalized w.r.t. PA-CO (32 bit int)
[} —= —= —= —= —= —= —=
e = — [[N on a7

=
o0

Running Times on Opteron 250 (single processor)

-——1
I m-————R—
B - g a—-R--___ g s e S
————
ek _ kT —he—
—*'FF*‘"‘-—, ___.-i'f__ a1
F k-
T » * * * »
e g ————— g ————— B ————— o
1K 2K 4 K 8K 16 K 32 K 654 b 126K 256K 512 K

sequence length (n)

-w-PALS (32 bitint)
—e— PA-CO (32 bit int)

- & -PA-FASTA (32 bit int)
—-o--PA-CO (32 bit float + SSE)

