
Fast String Searching

J Strother Moore
Department of Computer Sciences

University of Texas at Austin

1

The Problem

One of the classic problems in computing is

string searching : find the first occurrence

of one character string (“the pattern”) in

another (“the text”).

Generally, the text is very large (e.g.,

gigabytes) but the patterns are relatively

small.

2

Examples

Find the word “comedy” in this NY Times

article:

Fred Armisen’s office at “Saturday Night Live” is

deceptively small, barely big enough to fit a desk, a

couch, and an iPod. The glorified closet, the subject of a

running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking . . .

3

AAAAAAAAAAAAACAAAGACAGGGGCAACAAAGTGAGACCCTAAAAAAAAAAAAACCCCA

AAACGGAGAACTTGGAATCCTGTGTCCAAAAAAAAAAGCAGGAAGAGAGCGTGTAGAAAC

TGAAGCTGAAGTGGAAAAAAAAAAGTCGCCAGCACCTACTGTGGAGACCAGAAAGGAAAA

AAAAAATTGGCAGTCTCGTAGCATACCAAAACTAGGCTTGAAAAAAAAAACACACAAAAA

AACACAGGCTACCCAGTATTTTATCGTCCAAAAAAAAAGAGGGAAGAAGGACATTTATAT

TTGCCTTCTGCCAAAAAAAAAAGTACCTCCCGCCTAGAAGAGAGTTTAGAAATCACCAAA

AAAAAATAGAGAGTCCCAAAATGTTCGGAATACTCAGAAAAAAAAATCTTAGTCAGTGCT

CACTCAGAGGGACCGGGTATTTAAAAAAAACCTAGACCAGATGCAGCAGGTACAAATTAA

TCAATCCCAAAAAAAAGACCTTCTACCCTTCCAAAAAATGATAGTTGTCTGCAATCCAAA

AAAAAGACTCTCCGGAAGGTGGACATGCAGAACCTACCAAAAAAAAAGAGAAGAAAGAAT

TGCCGGGCAAAAAGTTCCACGTAAAAAAAAAAGGAAATGGGAATGGAGTGTTGTTCTCCT

TCCTACCTAGTTTTGAAAAAAAAGGATGGATGTGGGTCACCTGCTCACGTTCTCCAAAAA

AAAGTGGGTGCTCTCTCACAATATTCTTAGAGGTGGCAAAAAAAATAAAGTTGATGGAAA

CAGTACTGTGTGGGCCAAACAAAAAAAAAATGGCACCACCTTTTCATTGGCTGAAAAAAA

AATTCAACTGAAAAACACAAGTCATACCTTCCTGTTTTATTTGCAAAAAAAATTTTTCAA

ACCCCACGGCAACAAACGACAGTATCAAAAAAACAACTTCATTTGACATTCTGCTATATT

AATGCTCTATGTGGAAAAAAAAACCATCAAGTTGTGCCTTTTTTCAAAGAAATCCATGCA

AAAAAAAGACCCATGAAATAATTTTCTGGATCATCCATACAGAACCAAAAAAAAGAGGTG

4

5

Variants of the problem allow wildcards in

the pattern and/or the text. Exact

matching is when no wildcards are allowed.

We describe the fastest sequential

algorithm for solving the exact string

searching problem. The algorithm is called

the Boyer-Moore fast string searching

algorithm.

6

Example

Find the word “comedy” in this NY Times

article:

Fred Armisen’s office at “Saturday Night Live” is

deceptively small, barely big enough to fit a desk, a

couch, and an iPod. The glorified closet, the subject of a

running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking . . .

7

O M E D Y

J O K E O T H E C O M E D YN

C

8

O M E D Y

J O K E O T H E C O M E D YN

C

9

J

O M E D Y

NO K E O T H E C O M E D Y

J
C

10

J

O M E D Y

NO K E O T H E C O M E D Y

C

11

O
O M E D Y

NO K E O T H E C O M E D YJ

C

12

J

O M E D Y

NO K E O T H E C O M E D Y

C

13

K
O M E D Y

NO K E O T H E C O M E D YJ

C

14

J

O M E D Y

NO K E O T H E C O M E D Y

C

15

J

O M E D Y

NO K E O T H E C O M E D Y

C

16

J

O M E D Y

NO K E O T H E C O M E D Y

C

17

J

O M E D Y

C O M E D Y

C O M E D Y

NO K E O T H E

C

18

O M E D Y

J O K E O T H E C O M E D YN

C

19

O M E D Y

J O K E O T H E C O M E D YN

C

20

O
O M E D Y

NJ O K E O T H E C O M E D Y

C

21

O
O M E D Y

NJ O K E O T H E C O M E D Y

C

22

Y

O M E D Y

NJ O K E O T H E C O M E D

C

23

H
O M E D Y

NJ O K E O T H E C O M E D Y

C

24

H
O M E D Y

NJ O K E O T H E C O M E D Y

C

25

Y

O M E D Y

NJ O K E O T H E C O M E D

C

26

E
O M E D Y

NJ O K E O T H E C O M E D Y

C

27

E
O M E D Y

NJ O K E O T H E C O M E D Y

C

28

Y

O M E D Y

NJ O K E O T H E C O M E D

C

29

Y

O M E D Y
C O M E D Y

NJ O K E O T H E C O M E D

C

Key Property: The longer the pattern, the

faster the search!

30

Pre-Computing the Skip Distance
pat: 543210

COMEDY

txt: xxxxxOxxxxxxxxxxx...

↑

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

This is a 1-dimensional array, skip[c], as

big as the alphabet.

31

O M E D Y

J O K E O T H E C O M E D YN

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

32

O M E D Y

J O K E O T H E C O M E D YN

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

33

O
O M E D Y

NJ O K E O T H E C O M E D Y

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

34

O
O M E D Y

NJ O K E O T H E C O M E D Y

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

35

Y

O M E D Y

NJ O K E O T H E C O M E D

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

36

H
O M E D Y

NJ O K E O T H E C O M E D Y

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

37

H
O M E D Y

NJ O K E O T H E C O M E D Y

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

38

Y

O M E D Y

NJ O K E O T H E C O M E D

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

39

E
O M E D Y

NJ O K E O T H E C O M E D Y

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

40

E
O M E D Y

NJ O K E O T H E C O M E D Y

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

41

Y

O M E D Y

NJ O K E O T H E C O M E D

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

42

Y

O M E D Y
C O M E D Y

NJ O K E O T H E C O M E D

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

43

But Wait! There’s More!

pat: NONPARTIPULAR

txt: -----------------------

|

44

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ------------R----------

|

45

But Wait! There’s More!

pat: NONPARTIPULAR

txt: -----------A-----------

|

46

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------P------------

|

47

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------P------------

|

Slide 2 to match the discovered character.

48

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------P??----------

|

49

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------PAR----------

|

50

But Wait! There’s More!

pat: NONPARTIPULAR

txt: -----------------------

|

51

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ------------R----------

|

52

But Wait! There’s More!

pat: NONPARTIPULAR

txt: -----------AR----------

|

53

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------PAR----------

|

54

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------PAR----------

|

55

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------PAR----------

|

Slide 7 to match the discovered substring!

56

j |pat|

| |

pat: NONPARTIPULAR

txt: ----------PAR----------

|

i

dt: txt[i] pat[j + 1] ... pat[|pat|]

P A R

57

dt: txt[i] pat[j + 1] ... pat[|pat|]

dt can be computed given txt[i] and index

j in pat!

There are only |α| × |pat| combinations,

where |α| is the alphabet size.

58

The Skip Distance – Delta

Given pat, the skip can be pre-computed

for every combination of character read, c,

and pattern index, j, by finding how far we

must slide to find the last occurrence of dt

in pat.

59

pat: NONPARTIPULAR

txt: ----------PAR----------

|

60

pat: NONPARTIPULAR

txt: ----------PAR----------

|

61

pat: BC-ABC-BBC-CBC

txt: -----------BBC----------

|

62

pat: BC-ABC-BBC-CBC

txt: -----------BBC----------

|

63

pat: BC-ABC-BBC-CBC

txt: -----------ABC----------

|

64

pat: BC-ABC-BBC-CBC

txt: -----------ABC----------

|

65

pat: BC-ABC-BBC-CBC

txt: -----------DBC----------

|

66

pat: BC-ABC-BBC-CBC

txt: -----------DBC----------

|

67

pat: EE-ABC-BBC-CBC

txt: -----------DBC----------

|

68

pat: EE-ABC-BBC-CBC

txt: -----------DBC----------

|

69

The Delta Array

delta[c,j] is an array of size |α| × |pat|

that gives the skip distance when a

mismatch occurs after comparing c from

txt to pat[j].

70

The Algorithm

fast(pat, txt)

If pat = ""

then

If txt = ""

then return Not-Found;

else return 0; end;

end;

71

preprocess pat to produce delta;

j := |pat| − 1;

i := j;

72

while (0 ≤ j ∧ i < |txt|)

do

If pat[j] = txt[i]

then

i := i − 1;

j := j − 1;

else

i := i + delta[txt[i], j];

j := |pat| − 1;

end;

73

If (j < 0)

then return i + 1;

else return Not-Found; end;

end;

74

Performance

How does the algorithm perform?

This depends on the size of the alphabet.

We only have data on English text right

now.

In our test:

txt: English text of length 177,985.

75

pat: 100 randomly chosen patterns of

length 5 – 30, chosen from another English

text and filtered so they do not occur in

the search text.

The naive string searching algorithm would

look at all 177,985 characters of the search

text. In fact, it would look at some

characters more than once.

76

77

78

