Concurrent Programing:
Motivation,
Theory,
Practice

Emmett Witchel
First Bytes Teacher Conference
July 2008

Uniprocessor Performance Not Scaling

10000

7

20%lyear

1000 4 ---------mmm oo e

52% lyear

100

N
o
|

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Performance (vs. VAX-11/780)

Power and heat lay waste to processor makers

¢

Intel P4 (2000-2007)
» 1.36Hz to 3.8GHz, 31 stage pipeline

> “"Prescott” in 02/04 was too hot. Needed 5.2GHz to beat
2.6GHz Athalon

» Too much power
¢ Intel Pentium Core, (2006-)

> 1.06GHz to 3GHz, 14 stage pipeline

> Based on mobile (Pentium M) micro-architecture
7 Power efficient

> Designed by small team in Israel

¢ 2% of electricity in the U.S. feeds computers
» Doubled in last 5 years

What about Moore,s IaW?i‘v'.uL.rca Law

10,000,000,000

Number of transisiors doubling every 18 months.

1.000,000.000 —

& [tanium 2

(8 MEB cache]

L
E . «" Itaniom 2
i 100,000,000 — Nurrher of traneistore doubling avery 24 monthe
8 = .
& 3 - .F\:-u: W 4
T U .
e 5 P ranium
55) .
;_-f o 10,000,000 — N e » Pantium I

5] .) .
5 Pantium i
4 E Pentium
e)
E .E - o
3 = 1,000,000 — K L ags
Z @ . -
e
<7 ARG
4' [3 g
00,000 — o « " 286
.
" BO&H
.
G000 —
" *goan
2,300 4 b,
anps BO0B
18971 18980 1890 2000 2004
Year

¢ Number of transistors double every 24 months
> Not performancel

Architectural trends that favor multicore

¢

Power is a first class design constraint
» Performance per watt the important metric

¢ Leakage power significant with small transisitors
» Chip dissipates power even when idlel

+ Small transistors fail more frequently
> Lower yield, or CPUs that fail?

¢ Wires are slow
» Light in vacuum can travel ~Im in 1 cycle at 3GHz

¢ Quantum effects

¢+ Motivates multicore designs (simpler, lower-power
cores)

Multicores are here, and coming fast!

4 cores in 2008 16 cores in 2009 80 cores in 207??

C@RK -

‘@'Sun ¢

SME 1832A BGA PG1.0.0
D7068689D

USA
7GCCLV0008502

AMD Quad Core Sun Rock Intel TeraFLOP

[AMD] quad-core processors ... are just the beginning....”
http://www.amd.com

Intel has more than 15 multi-core related projects underway”
http://www.intel.com

Houston, We have a problem!

¢ Running multiple programs only goes so far

¢ How does one application take advantage of
multiple cores?
» Parallel programming is a hard problem

¢ Even systems programmers find it challenging
"Blocking on a mutex is a surprisingly delicate dance”
—OpenSolaris, mutex.c

¢ What about Visual Basic programmers?

“The distant threat has come to pass.....parallel computers are
the inexorable next step in the evolution of computers.”

— James Larus, Microsoft Research
In Transactional Memory,
Morgan & Claypool Publishers, 2007

What’s hard about parallel programming?

¢ Answer #1: Little experience

> Most application programmers have never written or
substantially modified a significant parallel program

¢ Answer #2: Poor programming models
» Primitive synchronization mechanisms
» Haven't changed significantly in 50 years

+ Answer #3: People think sequentially
» Programming models approximate sequential execution

Application performance with more processors

16
14 //
12
_‘é‘- 10 //
9 8 / —Not Scalable
& 6 ~ —Moderate
4 -
, / —Scalable
0

1 2 4 8 16

Processor count

+ Not scalable: Most current programs
¢ Moderate: The hope for the future
¢ Scalable: Scientific codes, some graphics, server workloads

Processes
Process Management

10

What is a Process?

*

L

A process is a program during execution.
» Program = static executable file (image)
> Process = executing program = program + execution state.

A process is the basic unit of execution in an operating
system

Different processes may run several instances of the same
program

At a minimum, process execution requires following
resources:

» Memory to contain the program code and data
> A set of CPU registers to support execution

11

Program to Process

¢ We write a program in e.q., Java.
¢ A compiler turns that program into an instruction list.

¢ The CPU interprets the instruction list (which is more a
graph of basic blocks).

void X (int Db) {
1f(b == 1) {

int main () {
int a = 2;
X(a);

Process in Memory

¢ Program to process.

¢ What you wrote

vold X (int Db)
1f(b == 1) {

int main () {
int a = 2;
X(a);

{

+ What must the OS track for a

process?

¢+ What is in memory.

main; a = 2 Stack
X:b=2
Heap |
void X (int Db) {
1f(b == 1) {

int main ()
int a =
X (a);

{
2;

Code

13

Keeping track of a process

¢ A process has code.
» O0S must track program counter (code location).

+ A process has a stack.
» O0S must track stack pointer.

¢ OS stores state of processes’ computation
in a process control block (PCB).

» E.qg., each process has an identifier (process
identifier, or PID)

¢ Data (program instructions, stack & heap)
resides in memory, metadata is in PCB.

14

Anatomy of a Process

Header

Initialized data

Executable File

Process's

address space

Process Control
Block

PC
Stack Pointer
Registers
PID
UID
Scheduling Priority
List of open files

mapped segments
BlLL S
Stack

1

.I/}

Heap

Initialized data

15

Process Life Cycle

¢ Processes are always either executing, warting to
execute or waiting for an event to occur

l

+ A preemptive scheduler will force a transition from
running to ready. A non-preemptive scheduler waits.

16

From Processes to Threads

17

Processes, Threads and Processors

¢ Hardware can interpret N instruction streams at
once
» Uniprocessor, N==1
> Dual-core, N==2
» Sun's Niagra 2 (2008) N == 64, but 8 groups of 8
¢ An OS can run 1 process on each processor at the
same time
» Concurrent execution increases throughput

¢ An OS canrun 1 thread on each processor at the

same time

» Do multiple threads reduce latency for a given
application?

18

Processes and Threads

+ Process abstraction combines two concepts

» Concurrency

1 Each process is a sequential execution stream of
Instructions

> Protection
- Each process defines an address space

1 Address space identifies all addresses that can be touched
by the program

+ Threads

> Key idea: separate the concepts of concurrency from
protection

> A thread is a sequential execution stream of instructions

» A process defines the address space that may be shared
by multiple threads

19

Introducing Threads

® A thread represents an abstract entity that executes a
sequence of instructions

» It has its own set of CPU registers
» It has its own stack

» There is no thread-specific heap or data segment (unlike
process)

¢ Threads are lightweight
» Creating a thread more efficient than creating a process.
» Communication between threads easier than btw. processes.

» Context switching between threads requires fewer CPU cycles
and memory references than switching processes.

» Threads only track a subset of process state (share list of open
files, mapped memory segments ...)

¢ Examples:
> OS-level: Windows threads, Sun's LWP, POSIX's threads
> User-level: Some JVMs
» Language-supported: Modula-3, Java

20

Context switch time for which entity is greater?

1.
2.

Process
Thread

79%

21

Programmer’s View

void fnl(int arg0, int argl, ..) {...}
main() {
tid = CreateThread(fnl, argO, argl, ...);

}

At the point CreateThread is called, execution continues in
parent thread in main function, and execution starts at fnl
in the child thread, both in paralle/ (concurrently)

22

Threads vs. Processes

Threads

¢ A thread has no data segment
or heap

¢ A thread cannot live on its
own, it must live within a
process

¢ There can be more than one
thread in a process, the first
thread calls main & has the
process's stack

¢+ Inexpensive creation

Inexpensive context
switching

¢ TIf a thread dies, its stack is
reclaimed

¢ Inter-thread communication
via memory.

Processes

L

L

il
-

* * 4

L

A process has code/data/heap
& other segments

There must be at least one
thread in a process

Threads within a process share
code/data/heap, share I/0,
but each has its own stack &
registers

Expensive creation
Expensive context switching

If a process dies, its resources
are reclaimed & all threads die

Inter-process communication
via OS and data copying.

23

Implementing Threads

¥

¢

Processes define an address
space; threads share the
address space

Process Control Block (PCB)
contains process-specific
information
» Owner, PID, heap pointer,
priority, active thread, and
pointers to thread
information

Thread Control Block (TCB)
contains thread-specific
information

» Stack pointer, PC, thread

state (running, ...), register
values, a pointer to PCB, ...

TCB for
Threadl

Process's
address space

e
SP
State
Registers

mapped segments
“ DLL's

Heap

1

TCB for
Thread?2

‘I/\I‘

PC
SP
State
Registers

/ Stack - thread?2
e

Stack - threadl

/

Initialized data

24

Threads have the same scheduling states as
processes

1. True 61%
2. False

Threads’ Life Cycle

¢ Threads (just like processes) go through a sequence of start,
ready, running, waiting, and done states

26

How Can it Help?

¢ How can this code take advantage of 2 threads?
for(k = O; k < n; k++)
a[k] = b[k] * c[K] + d[K] * e[K];

+ Rewrite this code fragment as:
do_mult(l, m) {
for(k = I; k< m; k++)
a[K] = b[K] * c[K] + d[K] * e[K]:
}
main() {
CreateThread(do_mult, O, n/2);
CreateThread(do_mult, n/2, n);

¢+ What did we gain?

27

How Can it Help?

¢ Consider a Web server

Create a number of threads, and for each thread do
<+ get network message (URL) from client
<+ get URL data from disk
+ send data over network

¢ Why does creating multiple threads help?

28

Overlapping Requests (Concurrency)

Request 1 Request 2
Thread 1 Thread 2

+ get network message
(URL) from client

+ get URL data from disk
+ get network message

(URL) from client

(disk access latency) + get URL data from disk

(disk access latency)
<+ send data over network

< send data over network

\4

Time
¢ Total time is less than request 1 + request 2

29

Latency and Throughput

¢

* & &

Latency: time to complete an operation
Throughput: work completed per unit time
Multiplying vector example: reduced latency
Web server example: increased throughput

Consider plumbing
> Low latency: turn on faucet and water comes out
» High bandwidth: lots of water (e.g., to fill a pool)

What is "High speed Internet?”

» Low latency: needed to interactive gaming
» High bandwidth: needed for downloading large files

» Marketing departments like to conflate latency and
bandwidth...

30

Relationship between Latency and Throughput

¢

Latency and bandwidth only loosely coupled

» Henry Ford: assembly lines increase bandwidth without
reducing latency

Latency reduction is difficult

Often, one can buy bandwidth
» E.g., more memory chips, more disks, more computers
> Big server farms (e.g., google) are high bandwidth

31

Thread or Process Pool

¢ Creating a thread or
process for each unit of
work (e.g., user request) is
dangerous

» High overhead to create &
delete thread/process

» Can exhaust CPU &
memor'y resource
+ Thread/process pool
controls resource use

> Allows service to be well
conditioned.

Throughput

—\\ell conditioned
—Not well conditioned

o
\

\

\

AN

Load

32

Thread Synchronization:
Too Much Milk

33

Concurrency Problems, Real Life Example

¢ Imagine multiple chefs in the same kitchen
» Each chef follows a different recipe

¢ Chef 1
» Grab butter, grab salt, do other stuff

Chef 2
» Grab salt, grab butter, do other stuff

¢ What if Chef 1 grabs the butter and Chef 2 grabs
the salt?

> Yell at each other (not a computer science solution)
» Chef 1 grabs salt from Chef 2 (preempt resource)
» Chefs all grab ingredients in the same order

7 Current best solution, but difficult as recipes get complex

7 Ingredient like cheese might be sans refrigeration for a
while

*»

34

The Need For Mutual Exclusion

¢ Running multiple processes/threads in parallel
increases performance

¢ Some computer resources cannot be accessed by
multiple threads at the same time
» E.g., a printer can't print two documents at once

¢ Mutual exclusion is the term to indicate that some
resource can only be used by one thread at a time
> Active thread excludes its peers

¢ For shared memory architectures, data structures
are often mutually exclusive
» Two threads adding to a linked list can corrupt the list

35

Sharing among threads increases performance...

infa=1,b=2;

main() {
CreateThread(fnl, 4);
CreateThread(fn2, b);

}
fnl(int argl) {
if(a) b++;
) , What are the value of a & b
fn2(int argl) { at the end of execution?
a = argl;

}

36

... But it can lead to problems!!

infa=1,b=2;

main() {
CreateThread(fnl, 4);
CreateThread(fn2, b);

}

fnl(int argl) {
if(a) b++;

}

fn2(int argl) {
a=0;

}

What are the values of a & b
at the end of execution?

37

Some More Examples

¢ What are the possible values of x in these cases?

Threadl: x = 1; Thread2: x = 2;
Initially y = 10;

Threadl: x =y + 1; Thread2:y =y * 2;
Initially x = O;

Threadl: x = x + 1; Thread2: x = x + 2;

Concurrency Problem

¢

Order of thread execution is non-deterministic

» Multiprocessing

7 A system may contain multiple processors = cooperating
threads/processes can execute simultaneously

» Multi-programming

7 Thread/process execution can be interleaved because of
time-slicing
¢ Operations are often not "atomic”

» Example: x = x + 1 is not atomic!
7 read x from memory info a register
1 increment register
" store register back to memory

¢ Goal:

» Ensure that your concurrent program works under ALL
possible interleaving

39

The Fundamental Issue

¢ TInall these cases, what we thought to be an atomic
operation is not done atomically by the machine

¢ An atomic operation is all or nothing:
» Either it executes to completion, or
> it did not execute at all, and
> partial progress is not visible to the rest of the system

40

Are these operations usually atomic?

¢ Writing an 8-bit byte to memory
» True (is atomic)
> False

¢ Creating a file
> True
> False

¢+ Writing a disk 512-byte disk sector
> True
> False

41

Critical Sections

¢ A critical section is an abstraction that
» consists of a humber of consecutive program instructions
» all code within the section executes atomically

¢ Critical sections are used frequently in an OS to protect
data structures (e.g., queues, shared variables, lists, ...)

¢ A critical section implementation must be:

» Correct: for a given k, only k threads can execute in the
critical section at any given time (usually, k = 1)

» Efficient: getting into and out of critical section must be
fast. Critical sections should be as short as possible.

» Concurrency control: a good implementation allows
maximum concurrency while preserving correctness

> Flexible: a good implementation must have as few
restrictions as practically possible

42

Safety and Liveness

¢ Safety property: "nothing bad happens”
> holds in every finite execution prefix
1 Windows™ never crashes
1 a program never produces a wrong answer

* [iveness property. "something good eventually happens”

> no partial execution is irremediable
1 Windows™ always reboots
1 a program eventually ferminates

+ Every property is a combination of a safety property and a
liveness property - (Alpern and Schneider)

43

Safety and liveness for critical sections

¢ At most k threads are concurrently in the critical section
> A. Safety
> B. Liveness
> C. Both

+ A thread that wants to enter the critical section, will
eventually succeed
> A. Safety
> B. Liveness
> C. Both

+ Bounded waiting: If a thread /is in entry section, then there
is a bound on the number of times that other threads are
allowed to enter the critical section before thread /s
request is granted

» A. Safety B.Liveness C. Both

44

Critical Section: Implementation

¢ Basic idea:
» Restrict programming model
» Permit access to shared variables only within a critical
section

¢ General program structure

» Entry section

7 "Lock" before entering critical section

7 Wait if already locked

1 Key point: synchronization may involve wait
> Critical section code
> Exit section

7 "Unlock” when leaving the critical section

¢+ Object-oriented programming style
» Associate a lock with each shared object
» Methods that access shared object are critical
sections
» Acquire/release locks when entering/exiting a method
that defines a critical section

45

Thread Coordination

Too much milk!

Jack Jill

4

»

¢ *

Look in the fridge; out of
milk
Leave for store

Arrive at store ¢ Look in fridge; out of milk
Buy milk ¢ Leave for store
Arrive home; put milk away Arrlvg at store
¢ Buy milk
¢ Arrive home; put milk away
¢ Oh, nol

Fridge and milk are shared data structures

46

Formalizing “Too Much Milk”

+ Shared variables

» "Look in the fridge for milk" - check a variable
» "Put milk away" - update a variable

+ Safety property
» At most one person buys milk

+ Liveness
» Someone buys milk when needed

+ How can we solve this problem?

47

Introducing Locks

¢ Locks - an APT with two methods

» Lock::Acquire() - wait until lock is free, then grab it
» Lock::Release() - release the lock, waking up a waiter, if any

¢ With locks, too much milk problem is very easy!

Lock->Acquire();
if (noMilk) {

buy milk;
}

Lock->Release();

How can we implement locks?

48

Atomic Read-Modify-Write (ARMW)

¢ For uni- and multi-processor architectures: implement locks

using atomic read-modify-write instructions
> Atomically
1. read a memory location into a register, and
2. write a new value to the location
» Implementing ARMW is tricky in multi-processors

7 Requires cache coherence hardware. Caches snoop the memory
bus.

¢+ Examples:
» Test&set instructions (most architectures)
7 Reads a value from memory
o Write "1" back to memory location
» Compare & swap (68000), exchange (x86), ...
7 Test the value against some constant
If the test returns true, set value in memory to different value

[
1 Report the result of the test in a flag
7 if [addr] == rl then [addr] = r2;

49

Using Locks Correctly

¢ Make sure to release your locks along every
possible execution path.
unsigned long flags;

local irq save(flags); // Disable & save

if (somethingBad) {
local irq restore(flags);
return ERROR BAD THING;

local irq restore(flags); // Reenable

return 0O;

50

Using Locks Correctly

¢ Java provides convenient mechanism.
import
java.util.concurrent.locks.Reentrantlock;

aLock.lock () ;
try {

} finally ({

aLock.unlock () ;

}

return 0;

51

Implementing Locks: Summary

¢ Locks are higher-level programming abstraction
» Mutual exclusion can be implemented using locks

¢ Lock implementation generally requires some level
of hardware support

» Atomic read-modify-write instructions
7 Uni- and multi-processor architectures

¢ Locks are good for mutual exclusion but weak for
coordination, e.g., producer/consumer patterns.

52

Why Locks are Hard

< Coarse-grain locks
> Simple to develop
» Easy to avoid deadlock
» Few data races
» Limited concurrency

// WITH FINE-GRAIN LOCKS

void move (T s, T d, Obj key) {

LOCK (s) ;

LOCK (d) ;

tmp = s.remove (key) ;
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;

¢ Fine-grain locks
» Greater concurrency
» Greater code complexity

» Potential deadlocks
7 Not composable

> Potential data races
o Which lock to lock?

Thread 0
move (a, b, keyl);

Thread 1

move (b, a, key2);

DEADLOCK!

53

Monitors & Condition Variables

+ Three operations
» Wait()

7 Release lock
7 6o to sleep
7 Reacquire lock upon return

» Notify() (historically called Signal())
- Wake up a waiter, if any

» NotifyAll() (historically called Broadcast())
7 Wake up all the waiters

+ TImplementation
» Requires a per-condition variable queue to be maintained
» Threads waiting for the condition wait for a notify()

+ Butler Lampson and David Redell, "Experience with Processes
and Monitors in Mesa."

54

Summary

¢ Non-deterministic order of thread execution = concurrency
problems

» Multiprocessing

7 A system may contain multiple processors = cooperating
threads/processes can execute simultaneously

» Multi-programming

7 Thread/process execution can be interleaved because of time-
slicing

¢ Goal: Ensure that your concurrent program works under ALL
possible interleaving

¢ Define synchronization constructs and programming style
for developing concurrent programs
7 Locks = provide mutual exclusion
7 Condition variables - provide conditional synchronization

55

More Resources

¢ Sun's Java documentation
> http://java.sun.com/ javase/6/docs/api/
» http://java.sun.com/docs/books/tutorial/essential/concu
rrency/
Modern Operating Systems (3rd Edition)
by Andrew Tanenbaum (ISBN-10: 0136006639)

¢ Operating System Concepts with Java
by Abraham Silberschatz, Peter Baer Galvin, Greg
Gagne (ISBN-10: 047176907X)

¢ Concurrent Programming in Java: Design Principles
and Patterns by Doug Lea (ISBN-10: 0201310090)

¢

56

