
1

Concurrent Programing:
Motivation,

Theory,
Practice

Emmett Witchel
First Bytes Teacher Conference

July 2008

2

Uniprocessor Performance Not Scaling

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

25% /year

52% /year

20% /year

Graph by Dave Patterson

3

Power and heat lay waste to processor makers

Intel P4 (2000-2007)
1.3GHz to 3.8GHz, 31 stage pipeline
“Prescott” in 02/04 was too hot. Needed 5.2GHz to beat
2.6GHz Athalon
Too much power

Intel Pentium Core, (2006-)
1.06GHz to 3GHz, 14 stage pipeline
Based on mobile (Pentium M) micro-architecture

� Power efficient
Designed by small team in Israel

2% of electricity in the U.S. feeds computers
Doubled in last 5 years

4

What about Moore’s law?

Number of transistors double every 24 months
Not performance!

5

Architectural trends that favor multicore

Power is a first class design constraint
Performance per watt the important metric

Leakage power significant with small transisitors
Chip dissipates power even when idle!

Small transistors fail more frequently
Lower yield, or CPUs that fail?

Wires are slow
Light in vacuum can travel ~1m in 1 cycle at 3GHz

Quantum effects
Motivates multicore designs (simpler, lower-power
cores)

6

Multicores are here, and coming fast!

Sun Rock

“[AMD] quad-core processors … are just the beginning….”
http://www.amd.com

“Intel has more than 15 multi-core related projects underway”
http://www.intel.com

Intel TeraFLOPAMD Quad Core

4 cores in 2008 16 cores in 2009 80 cores in 20??

7

Houston, We have a problem!

Running multiple programs only goes so far
How does one application take advantage of
multiple cores?

Parallel programming is a hard problem

Even systems programmers find it challenging
“Blocking on a mutex is a surprisingly delicate dance”

—OpenSolaris, mutex.c

What about Visual Basic programmers?
“The distant threat has come to pass…..parallel computers are

the inexorable next step in the evolution of computers.”
— James Larus, Microsoft Research

In Transactional Memory,
Morgan & Claypool Publishers, 2007

8

What’s hard about parallel programming?

Answer #1: Little experience
Most application programmers have never written or
substantially modified a significant parallel program

Answer #2: Poor programming models
Primitive synchronization mechanisms
Haven’t changed significantly in 50 years

Answer #3: People think sequentially
Programming models approximate sequential execution

9

Application performance with more processors

Not scalable: Most current programs
Moderate: The hope for the future
Scalable: Scientific codes, some graphics, server workloads

10

Processes
Process Management

11

What is a Process?

A process is a program during execution.
Program = static executable file (image)
Process = executing program = program + execution state.

A process is the basic unit of execution in an operating
system

Different processes may run several instances of the same
program

At a minimum, process execution requires following
resources:

Memory to contain the program code and data
A set of CPU registers to support execution

12

Program to Process

We write a program in e.g., Java.
A compiler turns that program into an instruction list.
The CPU interprets the instruction list (which is more a
graph of basic blocks).

void X (int b) {
if(b == 1) {

…
int main() {

int a = 2;
X(a);

}

13

Process in Memory

Program to process.

void X (int b) {
if(b == 1) {

…
int main() {

int a = 2;
X(a);

}

What you wrote

What is in memory.

void X (int b) {
if(b == 1) {

…
int main() {
int a = 2;
X(a);

} Code

main; a = 2
X; b = 2

Heap

Stack

What must the OS track for a
process?

14

Keeping track of a process

A process has code.
OS must track program counter (code location).

A process has a stack.
OS must track stack pointer.

OS stores state of processes’ computation
in a process control block (PCB).

E.g., each process has an identifier (process
identifier, or PID)

Data (program instructions, stack & heap)
resides in memory, metadata is in PCB.

15

Anatomy of a Process

Code

Header

Initialized data

Executable File Code

Initialized data

Heap

Stack

DLL’s

mapped segments
Process’s
address space

PC
Stack Pointer

Registers
PID
UID

Scheduling Priority
List of open files

…

PC
Stack Pointer

Registers
PID
UID

Scheduling Priority
List of open files

…

Process Control
Block

16

Process Life Cycle

Processes are always either executing, waiting to
execute or waiting for an event to occur

RunningRunningReadyReady

WaitingWaiting

StartStart DoneDone

A preemptive scheduler will force a transition from
running to ready. A non-preemptive scheduler waits.

17

From Processes to Threads

18

Processes, Threads and Processors

Hardware can interpret N instruction streams at
once

Uniprocessor, N==1
Dual-core, N==2
Sun’s Niagra 2 (2008) N == 64, but 8 groups of 8

An OS can run 1 process on each processor at the
same time

Concurrent execution increases throughput
An OS can run 1 thread on each processor at the
same time

Do multiple threads reduce latency for a given
application?

19

Processes and Threads

Process abstraction combines two concepts
Concurrency

� Each process is a sequential execution stream of
instructions

Protection
� Each process defines an address space
� Address space identifies all addresses that can be touched

by the program

Threads
Key idea: separate the concepts of concurrency from
protection
A thread is a sequential execution stream of instructions
A process defines the address space that may be shared
by multiple threads

20

Introducing Threads

A thread represents an abstract entity that executes a
sequence of instructions

It has its own set of CPU registers
It has its own stack
There is no thread-specific heap or data segment (unlike
process)

Threads are lightweight
Creating a thread more efficient than creating a process.
Communication between threads easier than btw. processes.
Context switching between threads requires fewer CPU cycles
and memory references than switching processes.
Threads only track a subset of process state (share list of open
files, mapped memory segments …)

Examples:
OS-level: Windows threads, Sun’s LWP, POSIX’s threads
User-level: Some JVMs
Language-supported: Modula-3, Java

21

Context switch time for which entity is greater?

Pro
ce

ss

Threa
d

21%

79%
1. Process
2. Thread

22

Programmer’s View

void fn1(int arg0, int arg1, …) {…}

main() {
…
tid = CreateThread(fn1, arg0, arg1, …);
…

}

At the point CreateThread is called, execution continues in
parent thread in main function, and execution starts at fn1
in the child thread, both in parallel (concurrently)

23

Threads vs. Processes

Threads

A thread has no data segment
or heap
A thread cannot live on its
own, it must live within a
process
There can be more than one
thread in a process, the first
thread calls main & has the
process’s stack
Inexpensive creation
Inexpensive context
switching
If a thread dies, its stack is
reclaimed
Inter-thread communication
via memory.

Processes

A process has code/data/heap
& other segments
There must be at least one
thread in a process
Threads within a process share
code/data/heap, share I/O,
but each has its own stack &
registers
Expensive creation
Expensive context switching
If a process dies, its resources
are reclaimed & all threads die
Inter-process communication
via OS and data copying.

24

Implementing Threads

Processes define an address
space; threads share the
address space

Process Control Block (PCB)
contains process-specific
information

Owner, PID, heap pointer,
priority, active thread, and
pointers to thread
information

Thread Control Block (TCB)
contains thread-specific
information

Stack pointer, PC, thread
state (running, …), register
values, a pointer to PCB, …

Code

Initialized data

Heap

DLL’s

mapped segments

Process’s
address space

Stack – thread1

PC
SP

State
Registers

…

PC
SP

State
Registers

…

TCB for
Thread1

Stack – thread2

PC
SP

State
Registers

…

PC
SP

State
Registers

…

TCB for
Thread2

25

Threads have the same scheduling states as
processes

Tru
e

Fals
e

39%

61%1. True
2. False

26

Threads’ Life Cycle

Threads (just like processes) go through a sequence of start,
ready, running, waiting, and done states

RunningRunningReadyReady

WaitingWaiting

StartStart DoneDone

27

How Can it Help?

How can this code take advantage of 2 threads?
for(k = 0; k < n; k++)

a[k] = b[k] * c[k] + d[k] * e[k];

Rewrite this code fragment as:
do_mult(l, m) {

for(k = l; k < m; k++)
a[k] = b[k] * c[k] + d[k] * e[k];

}
main() {

CreateThread(do_mult, 0, n/2);
CreateThread(do_mult, n/2, n);

What did we gain?

28

How Can it Help?

Consider a Web server
Create a number of threads, and for each thread do

get network message (URL) from client
get URL data from disk
send data over network

Why does creating multiple threads help?

29

Overlapping Requests (Concurrency)

get network message
(URL) from client
get URL data from disk

send data over network

get network message
(URL) from client
get URL data from disk

send data over network

Request 1
Thread 1

Request 2
Thread 2

Time

(disk access latency)

(disk access latency)

Total time is less than request 1 + request 2

30

Latency and Throughput

Latency: time to complete an operation
Throughput: work completed per unit time
Multiplying vector example: reduced latency
Web server example: increased throughput
Consider plumbing

Low latency: turn on faucet and water comes out
High bandwidth: lots of water (e.g., to fill a pool)

What is “High speed Internet?”
Low latency: needed to interactive gaming
High bandwidth: needed for downloading large files
Marketing departments like to conflate latency and
bandwidth…

31

Relationship between Latency and Throughput

Latency and bandwidth only loosely coupled
Henry Ford: assembly lines increase bandwidth without
reducing latency

Latency reduction is difficult
Often, one can buy bandwidth

E.g., more memory chips, more disks, more computers
Big server farms (e.g., google) are high bandwidth

32

Thread or Process Pool

Creating a thread or
process for each unit of
work (e.g., user request) is
dangerous

High overhead to create &
delete thread/process
Can exhaust CPU &
memory resource

Thread/process pool
controls resource use

Allows service to be well
conditioned.

33

Thread Synchronization:
Too Much Milk

34

Concurrency Problems, Real Life Example

Imagine multiple chefs in the same kitchen
Each chef follows a different recipe

Chef 1
Grab butter, grab salt, do other stuff

Chef 2
Grab salt, grab butter, do other stuff

What if Chef 1 grabs the butter and Chef 2 grabs
the salt?

Yell at each other (not a computer science solution)
Chef 1 grabs salt from Chef 2 (preempt resource)
Chefs all grab ingredients in the same order

� Current best solution, but difficult as recipes get complex
� Ingredient like cheese might be sans refrigeration for a

while

35

The Need For Mutual Exclusion

Running multiple processes/threads in parallel
increases performance
Some computer resources cannot be accessed by
multiple threads at the same time

E.g., a printer can’t print two documents at once
Mutual exclusion is the term to indicate that some
resource can only be used by one thread at a time

Active thread excludes its peers
For shared memory architectures, data structures
are often mutually exclusive

Two threads adding to a linked list can corrupt the list

36

Sharing among threads increases performance…

int a = 1, b = 2;
main() {

CreateThread(fn1, 4);
CreateThread(fn2, 5);

}
fn1(int arg1) {

if(a) b++;
}
fn2(int arg1) {

a = arg1;
}

What are the value of a & b
at the end of execution?

37

… But it can lead to problems!!

int a = 1, b = 2;
main() {

CreateThread(fn1, 4);
CreateThread(fn2, 5);

}
fn1(int arg1) {

if(a) b++;
}
fn2(int arg1) {

a = 0;
}

What are the values of a & b
at the end of execution?

38

Some More Examples

What are the possible values of x in these cases?

Thread1: x = 1; Thread2: x = 2;

Initially y = 10;

Thread1: x = y + 1; Thread2: y = y * 2;

Initially x = 0;

Thread1: x = x + 1; Thread2: x = x + 2;

39

Concurrency Problem

Order of thread execution is non-deterministic
Multiprocessing

� A system may contain multiple processors cooperating
threads/processes can execute simultaneously

Multi-programming
� Thread/process execution can be interleaved because of

time-slicing
Operations are often not “atomic”

Example: x = x + 1 is not atomic!
� read x from memory into a register
� increment register
� store register back to memory

Goal:
Ensure that your concurrent program works under ALL
possible interleaving

40

The Fundamental Issue

In all these cases, what we thought to be an atomic
operation is not done atomically by the machine

An atomic operation is all or nothing:
Either it executes to completion, or
it did not execute at all, and
partial progress is not visible to the rest of the system

41

Are these operations usually atomic?

Writing an 8-bit byte to memory
True (is atomic)
False

Creating a file
True
False

Writing a disk 512-byte disk sector
True
False

42

Critical Sections

A critical section is an abstraction that
consists of a number of consecutive program instructions
all code within the section executes atomically

Critical sections are used frequently in an OS to protect
data structures (e.g., queues, shared variables, lists, …)

A critical section implementation must be:
Correct: for a given k, only k threads can execute in the
critical section at any given time (usually, k = 1)
Efficient: getting into and out of critical section must be
fast. Critical sections should be as short as possible.
Concurrency control: a good implementation allows
maximum concurrency while preserving correctness
Flexible: a good implementation must have as few
restrictions as practically possible

43

Safety and Liveness

Safety property : “nothing bad happens”
holds in every finite execution prefix

� Windows™ never crashes
� a program never produces a wrong answer

Liveness property: “something good eventually happens”
no partial execution is irremediable

� Windows™ always reboots
� a program eventually terminates

Every property is a combination of a safety property and a
liveness property - (Alpern and Schneider)

44

Safety and liveness for critical sections

At most k threads are concurrently in the critical section
A. Safety
B. Liveness
C. Both

A thread that wants to enter the critical section, will
eventually succeed

A. Safety
B. Liveness
C. Both

Bounded waiting: If a thread i is in entry section, then there
is a bound on the number of times that other threads are
allowed to enter the critical section before thread i’s
request is granted

A. Safety B. Liveness C. Both

45

Critical Section: Implementation

Basic idea:
Restrict programming model
Permit access to shared variables only within a critical
section

General program structure
Entry section

� “Lock” before entering critical section
� Wait if already locked
� Key point: synchronization may involve wait

Critical section code
Exit section

� “Unlock” when leaving the critical section

Object-oriented programming style
Associate a lock with each shared object
Methods that access shared object are critical
sections
Acquire/release locks when entering/exiting a method
that defines a critical section

46

Thread Coordination

Jack
Look in the fridge; out of
milk
Leave for store
Arrive at store
Buy milk
Arrive home; put milk away

Jill

Look in fridge; out of milk
Leave for store
Arrive at store
Buy milk
Arrive home; put milk away
Oh, no!

Too much milk!

Fridge and milk are shared data structuresFridge and milk are shared data structures

47

Formalizing “Too Much Milk”

Shared variables
“Look in the fridge for milk” – check a variable
“Put milk away” – update a variable

Safety property
At most one person buys milk

Liveness
Someone buys milk when needed

How can we solve this problem?

48

Introducing Locks

Locks – an API with two methods
Lock::Acquire() – wait until lock is free, then grab it
Lock::Release() – release the lock, waking up a waiter, if any

With locks, too much milk problem is very easy!

Lock Acquire();
if (noMilk) {

buy milk;
}
Lock Release();

Lock Acquire();
if (noMilk) {

buy milk;
}
Lock Release();

How can we implement locks?How can we implement locks?

49

Atomic Read-Modify-Write (ARMW)

For uni- and multi-processor architectures: implement locks
using atomic read-modify-write instructions

Atomically
1. read a memory location into a register, and
2. write a new value to the location

Implementing ARMW is tricky in multi-processors
� Requires cache coherence hardware. Caches snoop the memory

bus.

Examples:
Test&set instructions (most architectures)

� Reads a value from memory
� Write “1” back to memory location

Compare & swap (68000), exchange (x86), …
� Test the value against some constant
� If the test returns true, set value in memory to different value
� Report the result of the test in a flag
� if [addr] == r1 then [addr] = r2;

50

Using Locks Correctly

Make sure to release your locks along every
possible execution path.
unsigned long flags;
local_irq_save(flags); // Disable & save

…
if(somethingBad) {

local_irq_restore(flags);
return ERROR_BAD_THING;

}
…

local_irq_restore(flags); // Reenable
return 0;

51

Using Locks Correctly

Java provides convenient mechanism.
import
java.util.concurrent.locks.ReentrantLock;

aLock.lock();
try {

…
} finally {

aLock.unlock();
}
return 0;

52

Implementing Locks: Summary

Locks are higher-level programming abstraction
Mutual exclusion can be implemented using locks

Lock implementation generally requires some level
of hardware support

Atomic read-modify-write instructions
� Uni- and multi-processor architectures

Locks are good for mutual exclusion but weak for
coordination, e.g., producer/consumer patterns.

53

Fine-grain locks
Greater concurrency
Greater code complexity
Potential deadlocks

� Not composable
Potential data races

� Which lock to lock?

Why Locks are Hard

// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
LOCK(s);
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);

}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0 Thread 1

Coarse-grain locks
Simple to develop
Easy to avoid deadlock
Few data races
Limited concurrency

54

Monitors & Condition Variables

Three operations
Wait()

� Release lock
� Go to sleep
� Reacquire lock upon return

Notify() (historically called Signal())
� Wake up a waiter, if any

NotifyAll() (historically called Broadcast())
� Wake up all the waiters

Implementation
Requires a per-condition variable queue to be maintained
Threads waiting for the condition wait for a notify()

Butler Lampson and David Redell, “Experience with Processes
and Monitors in Mesa.”

55

Summary

Non-deterministic order of thread execution concurrency
problems

Multiprocessing
� A system may contain multiple processors cooperating

threads/processes can execute simultaneously
Multi-programming

� Thread/process execution can be interleaved because of time-
slicing

Goal: Ensure that your concurrent program works under ALL
possible interleaving

Define synchronization constructs and programming style
for developing concurrent programs

� Locks provide mutual exclusion
� Condition variables provide conditional synchronization

56

More Resources

Sun’s Java documentation
http://java.sun.com/javase/6/docs/api/
http://java.sun.com/docs/books/tutorial/essential/concu
rrency/

Modern Operating Systems (3rd Edition)
by Andrew Tanenbaum (ISBN-10: 0136006639)
Operating System Concepts with Java
by Abraham Silberschatz, Peter Baer Galvin, Greg
Gagne (ISBN-10: 047176907X)
Concurrent Programming in Java: Design Principles
and Patterns by Doug Lea (ISBN-10: 0201310090)

