
University Interscholastic League

Computer Science Competition

2003 State Programming Set

Judges' Answers

I. General Notes

1. Unless the exact formatting is specifically part of the problem, an answer should

NOT be judged wrong for minor formatting variations such as indent/no indent,
extra/no blank lines, and so forth.

2. The answer is only correct if their program successfully runs ALL of the judge's data

sets for a given problem.

3. Note that the input data file for each problem begins with the examples from the

problems, and then goes on to more complex cases. The testing is (by definition)
not exhaustive in any sense and it is of course possible that an incorrect program
will pass all of the tests provided.

II. Point Values and Names of Problems

Number Name Point Value
Problem 1 Space Camp 6
Problem 2 Cashing Out 6
Problem 3 Changing Tense 6
Problem 4 Virtual Computing 6
Problem 5 Pretty Poor Encryption 6
Problem 6 The Fraction Factor 6
Problem 7 Par for the Course? 6
Problem 8 Kennel Kritters 6
Problem 9 Just Picture It 6
Problem 10 You May Already Be A Winner! 6
Total 60

UIL Finals CS Hands-On Problem Set 2003 Page 2

Space Camp
Program Name: spacecamp.cpp Input File: spacecamp.dat

You have made it through three grueling months at Space Camp, only to be confronted with the harsh final exam to
graduate. As you don your space suit, Drill Instructor Grimley barks, "The rules are simple, maggots. You start in
room 0 (west of force field 1), with force fields 0 and 1 closed. There is a single button in each room that will affect
each force field in some manner. Your job is to navigate through the rooms until you reach room 4, but be sure not
to open all the force fields behind you or you will be sucked out into space. Oh, and one more thing, you have one
minute to complete the task."

 0___1___2___3___4___ <-- Force field numbers
 [Outer Space] | 0 | 1 | 2 | 3 | 4 <-- Room numbers
 Start in room 0 with Force fields 0 and 1 closed. Head east to room 4! -->

One minute! With your weak space legs, you realize your only hope is to rush to the next closed force field and
push the button in that room, hoping it will open some force fields to allow you to proceed. You have no time to
backtrack. It's not the best strategy, but maybe fate will be on your side.

Input Description

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted
according to the following description, and there will be no blank lines separating data sets.

A single data set has 3 components:

Start line - A single line, "START V W X Y Z", with each letter corresponding to the initial status of force fields
0-4, respectively. Each letter will either be "C", signifying the force field is initially closed, or "O",
signifying the force field is initially open. Note that V and W (force fields 0 and 1) will always be "C".

Force Field Buttons - Each of the next 4 lines will contain 5 action codes showing how pressing the button in
that room will affect each of the force fields. The first line will correspond to room 0, the next line for
room 1, the next line for room 2, and the next line for room 3. The action codes will be in the format
"D E F G H", corresponding to the action performed on force fields 0-4, respectively. Each action
code will be one of the following:

"O" -- Open the force field. If it is already open, it remains open.
"C" -- Close the force field. If it is already closed, it remains closed.
"T" -- Toggle the force field. If it is open, close it. If it is closed, open it.
"N" -- Do nothing to the force field. If it is open, it remains open. If it is closed, it remains closed.

End line - A single line, "END".

Output Description

For each data set, there will be exactly one line of output. The line of output will be determined based on the result
of your final exam. Remember your strategy:

1. Proceed to the easternmost room possible (until you reach a closed force field, which initially, will always be
force field 1). If you are able to reach room 4, you have passed! Consider yourself, and your line of
output, "SPACE CADET".

2. Push the button located in the room you are in, if you have not already done so. If you have already pushed
this button, then you realize that you are not going to be able to make it, and that you are, and your line
of output is, "SPACE MONKEY". If pushing the button causes all of the force fields behind (west of)
you to be open, you will be sucked into space and become, as your line of output is, "SPACE
GHOST". Consider force fields opening and closing to be instantaneous.

Just repeat your 2-step strategy until one of the three end conditions is met!

UIL Finals CS Hands-On Problem Set 2003 Page 3

Master Input
START C C C C C
O O O O O
O O O O O
O O O O O
O O O O O
END
START C C O O O
N N O O O
C O O O O
C O O O O
C O O O O
END
START C C O C O
N T T T T
T T T T T
T T T T T
T T T T T
END
START C C O O O
T N N N N
N N N N N
N N N N N
N N N N N
END
START C C O O O
O N N N N
N N N N N
N N N N N
N N N N N
END
START C C O O O
N T N N N
N N N N N
N N N N N
N N N N N
END
START C C C C C
N O O O O
O O C C C
O O O C C
O O O O C
END
START C C O O O
N O C N N
N N O C N
N N N O C
N N N N O
END
START C C O O O
N N N N N
N N N N N
N N N N N
N N N N N
END
START C C O O O
N O C N N
N N O C N
N N N O C
O O O O O
END

UIL Finals CS Hands-On Problem Set 2003 Page 4

START C C O O O
N O C N N
N N O C N
N N N O C
O O O C O
END
START C C O O O
N O C N N
N N O C N
N N N O C
N O O O O
END

Master Output
SPACE GHOST
SPACE MONKEY
SPACE CADET
SPACE GHOST
SPACE GHOST
SPACE CADET
SPACE CADET
SPACE CADET
SPACE MONKEY
SPACE GHOST
SPACE CADET
SPACE CADET

UIL Finals CS Hands-On Problem Set 2003 Page 5

Cashing Out
Program Name: cashout.cpp Input File: cashout.dat

"Hurry up, Jorge, we're going to be late for the Seigfreid and Roy show, " George complained, folding his arms.
"I can't help it if I'm a better gambler than you, " Jorge smiled, playing with the casino chips in his hands. He waited
patiently in the casino cashier's line for his turn to "cash out".
"Be sure to get enough bills, " George warned, "You still have to buy your ticket to the show and it costs $40, but
you have to have exact change."
Jorge glanced down at the $45 worth of chips in his hands and smiled. "Well, it doesn't matter what bills the cashier
gives me, I'll have $40 in exact change."
George looked at him questionably, thought for a second, and with a raising of his eyebrows in realization, admitted,
"You're right. That's interesting. I wish there were a way to figure out, given two monetary amounts, if you are able
to have change for the first amount, but not for the second amount."
"Hmmm," Jorge shrugged, "sounds like a good programming problem."

Input Description

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted
according to the following description, and there will be no blank lines separating data sets.

A single data set has 1 component:

Start line - A single line, "A B", where:
A : (1 ≤ A ≤ 200) is an integer amount of dollars that you are caching out.
B : (1 ≤ B ≤ A) is an integer amount of dollars that your ticket will cost.

Output Description

For each data set, there will be exactly one line of output. If it is possible to have a set of bills that add up to the first
dollar amount such that no subset of those bills add up to the second amount, the output will be a single line with the
statement "I MIGHT NEED CHANGE". Otherwise, the output will be a single line with the statement "I'VE GOT
CHANGE". The possible denominations (values for a single bill) for this problem are $1, $5, $10, and $20.

UIL Finals CS Hands-On Problem Set 2003 Page 6

Master Input
45 40
40 10
1 1
5 5
10 10
20 20
50 50
100 100
200 200
200 199
5 4
10 9
20 19
7 2
6 2
70 50
60 50
Master Output
I'VE GOT CHANGE
I MIGHT NEED CHANGE
I'VE GOT CHANGE
I'VE GOT CHANGE
I'VE GOT CHANGE
I'VE GOT CHANGE
I'VE GOT CHANGE
I'VE GOT CHANGE
I'VE GOT CHANGE
I MIGHT NEED CHANGE
I MIGHT NEED CHANGE
I MIGHT NEED CHANGE
I MIGHT NEED CHANGE
I'VE GOT CHANGE
I MIGHT NEED CHANGE
I'VE GOT CHANGE
I MIGHT NEED CHANGE

UIL Finals CS Hands-On Problem Set 2003 Page 7

Changing Tense
Program Name: tense.cpp Input File: tense.dat

"We have entertained audiences for many years. We are entertaining you tonight. We will entertain audiences for
many more years, " Seigfreid stated, standing stoically on the stage.
"We entertained an audience last night. We will have entertained you at the end of the show. Now we entertain, "
Roy continued.
 "These guys sure do change tense a lot, " George leaned over in his front-row seat and whispered to Jorge.
"Yeah, " Jorge whispered back, "I wish there were a way to keep track of all these verb tenses."
"Hmmm, " George shrugged, "sounds like a good programming problem."

Input Description

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted
according to the following description, and there will be no blank lines separating data sets.

A single data set has 1 component:

Paragraph - A single line (up to 200 characters) containing three sentences. Sentences are defined as a list of
words (words are consecutive groups of letters delimited by a single space). Sentences are delimited
by a single period. Each sentence will contain exactly one verb phrase, where the verb phrase is one of
the following:

"will have <word ending in the letters 'ed'>" (Example: “will have entertained”)
"have <word ending in the letters 'ed'>" not immediately preceded with the word "will" (Example:

“have entertained”)
"<word ending in the letters 'ed'>" not immediately preceded with the word "have" or the words

"will have" (Example: “entertained”)
"<word> <word ending in the letters 'ing'>" (Example: “are entertaining”)
"will <word other than 'have'>" (Example: “will entertain”)

Notes:
• If none of the phrases above are found in the sentence, the verb phrase will be the last word in the sentence.
• Consider the verb phrase rules listed above to be case-insensitive (i.e., "Have entertained" and "have

entertained" are both verb phrases).

Output Description

For each data set, there will be exactly one line of output. The line will be a list containing the verb phrase for each
of the three sentences, delimited by a single comma. When listing the verb phrases, use the case as was given in the
sentence.

UIL Finals CS Hands-On Problem Set 2003 Page 8

Master Input
We have entertained audiences for many years.We are entertaining you
tonight.We will entertain audiences for many more years.
We entertained an audience last night.We will have entertained you at the end
of the show.Now we entertain.
I have a car and I once loved to drive it.Ed has a car.He does not like to
drive it.
Sometimes guessing where verbs are can lead to problems.We need a better
algorithm.But you must have the will to try this one first.
By tonight I will have recorded this data set.I have opened Notepad.I hate
verbs.
This data set will challenge you.I hope you PrOgRaMmEd your solution to
ignore case.I hate Will.
Tense changing is hard.Changing tense is hard.Hard tense changing is.
I love this.Hard this is.You are correct.
this.is.mean.
Master Output
have entertained,are entertaining,will entertain
entertained,will have entertained,entertain
loved,Ed,it
Sometimes guessing,need,will to
will have recorded,have opened,verbs
will challenge,PrOgRaMmEd,Will
Tense changing,hard,tense changing
this,is,correct
this,is,mean

UIL Finals CS Hands-On Problem Set 2003 Page 9

Virtual Computing
Program Name: computer.cpp Input File: computer.dat

Write a virtual computer that runs programs written in a simple programming language.

Input Description

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted
according to the following description, and there will be no blank lines separating data sets.

A single data set has up to 1000 lines, each of the format “<Line Number> <Instruction>” where:

Line Number : (1 ≤ Line Number ≤ 1000) is an integer indicating the line number for the following Instruction.
Within a given data set, Line Numbers are unique, and Line Numbers always increase from one line to
the next.

Instruction : One of the following:
“LOAD X value” – Set variable X’s value to value
“ADD X value” – Increase variable X’s value by value
“PRINT X” – Display the value of variable X to standard output followed by a newline.
“IF X == value GOTO line” – If the value of variable X equals value continue execution at the

instruction with Line Number equal to line, otherwise execution moves to the next
instruction as usual.

“END” – The last instruction in every data set (which will only appear once).

Note:

• X is a non-empty character string of up to 10 characters representing a variable name
• value is an integer (0 ≤ value ≤ 1000)
• line is a valid Line Number from the current data set
• Assume that every variable has an initial value of 0 that is reset at the beginning of each data set.

Output Description

For each data set, there will be at least one line of output. The first line of output for each data set will read,
“START N” where N is an integer identifying which data set is being processed. N will be 1 for the first data set and
increment by one for each additional data set. Also output will be the results from all of the PRINT X statements
executed by the virtual computer.

UIL Finals CS Hands-On Problem Set 2003 Page 10

Master Input
1 LOAD var 1
10 PRINT var
11 END
5 END
19 PRINT noinit
20 LOAD noinit 10
21 PRINT noinit
30 LOAD x 5
35 LOAD y 1
40 ADD x 5
45 ADD y 1
50 IF y == 5 GOTO 70
60 IF z == 0 GOTO 40
70 PRINT x
80 END
10 LOAD x 1
20 IF x == 1 GOTO 40
30 PRINT x
40 END
1 LOAD x 20
2 LOAD y 30
3 LOAD z 40
4 IF a == 0 GOTO 6
5 IF x == 20 GOTO 7
6 IF y == 30 GOTO 5
7 IF z == 40 GOTO 9
8 PRINT x
9 PRINT y
10 PRINT z
11 END
5 ADD x 5
6 ADD y 10
7 ADD x 0
8 PRINT x
9 PRINT y
10 PRINT z
11 END
100 LOAD xxxxxxxxxx 0
200 ADD xxxxxxxxxx 100
300 PRINT xxxxxxxxxx
400 END
500 LOAD zzzzzzzzzz 1000
1000 END
500 LOAD zzzzzzzzzz 1000
525 ADD zzzzzzzzzz 1000
550 PRINT zzzzzzzzzz
1000 END
1 PRINT x
2 ADD x 10
3 PRINT x
4 LOAD x 0
5 PRINT x
6 END

UIL Finals CS Hands-On Problem Set 2003 Page 11

Master Output
START 1
1
START 2
START 3
0
10
25
START 4
START 5
30
40
START 6
5
10
0
START 7
100
START 8
START 9
2000
START 10
0
10
0

UIL Finals CS Hands-On Problem Set 2003 Page 12

Pretty Poor Encryption
Program Name: decrypt.cpp Input File: decrypt.dat

You are the top software engineer for a software company named Delusional Software that is releasing a new
encryption package that will allow messages, such as email and chat messages, to be encrypted for transmission and
then decrypted by the receiver. Your job is to develop the decrypting side of the package. You do have concerns
however about the encryption algorithm being used in this package since all it involves is converting each character
in the message to a binary representation of that character’s ASCII value. The designers believe that this encryption
algorithm will be uncrackable (you’re starting to realize how this company got its name), and you are more than
happy to develop it and see them proven wrong!

Input Description

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted
according to the following description, and there will be no blank lines separating data sets.

A single data set has 2 components:

Start line – A single line, “MESSAGE X”, where X is the number of bytes that are to be decrypted,
and (1 ≤ X ≤ 80).

Message line – This line will consist of X binary byte strings. Every line will consist of between 1 and 8 bytes
of data, where each byte (series of eight 0’s and 1’s) represents the binary equivalent of the ASCII
value of each ASCII-printable character found in the message (including spaces, but not newlines or
tabs). Note that the binary byte strings on each line will not be delimited by any spaces.

Output Description

For each data set, there will be two lines of output. The first line will be a replication of the Start Line from the
input file, and the following line will consist of the actual text message that was decrypted from the series of binary
byte strings from the input.

Master Input
MESSAGE 29
0101010001101000011001010010000001010101010010010100110000100000
0100101001110101011001000110011101100101011100110010000001100001
0111001001100101001000000110001101101111011011110110110000100000
0110011101110101011110010111001100100001
MESSAGE 42
0100010101110011011100000110010101100011011010010110000101101100
0110110001111001001000000111010001101000011001010010000001100001
0111010101110100011010000110111101110010001000000110111101100110
0010000001110100011010000110100101110011001000000111000001110010
0110111101100010011011000110010101101101001000010010000000100000
0011101100101001
MESSAGE 70
0101010001101000011010010111001100100000011001000110000101110100
0110000100100000011100110110010101110100001000000110100101110011
0010000001100110011011110111001000100000011101000110010101110011
0111010001101001011011100110011100100000011100110111100101101101
0110001001101111011011000111001100111010001000000010000100100010
0010001100100100001001010010011000100111001010000010100100101010
0010101100101100001011010010111000101111001110100011101100111100
0011110100111110001111110100000001011011010111000101110101011110
010111110110000001111011010111000111110101111110
MESSAGE 36
0101010001101000011001010010000001101110011001010111100001110100
0010000001100100011000010111010001100001001000000111001101100101
0111010000100000011010010111001100100000011000010010000001110011

UIL Finals CS Hands-On Problem Set 2003 Page 13

0110100101101110011001110110110001100101001000000111001101110000
01100001011000110110010100101110
MESSAGE 1
00100000
MESSAGE 48
0100100001100101011100100110010100100000011010010111001100100000
0110111101101110011001010010000001110111011010000110010101110010
0110010100100000011101000110100001100101001000000110110001100001
0111001101110100001000000110110001101001011011100110010100100000
0110100101110011001000000110010101101001011001110110100001110100
0010000001100010011110010111010001100101011100110010000100100001
MESSAGE 45
0100000101101110011001000010000001110100011010000110010101110010
0110010100100000011100100110010101100001011011000110110001111001
0010000001101001011100110110111000100111011101000010000001100001
0110111001111001011101000110100001101001011011100110011100100000
0110010101101100011100110110010100100000011101000110111100100000
0111010001100101011100110111010000101110
Master Output
MESSAGE 29
The UIL Judges are cool guys!
MESSAGE 42
Especially the author of this problem! ;)
MESSAGE 70
This data set is for testing symbols: !"#$%&'()*+,-./:;<=>?@[\]^_`{\}~
MESSAGE 36
The next data set is a single space.
MESSAGE 1

MESSAGE 48
Here is one where the last line is eight bytes!!
MESSAGE 45
And there really isn't anything else to test.

UIL Finals CS Hands-On Problem Set 2003 Page 14

The Fraction Factor
Program Name: fraction.cpp Input File: fraction.dat

Reduce a given fraction to its simplest form. In this form, the numerator and the denominator are both integers and
are relatively prime.

Input Description

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted
according to the following description, and there will be no blank lines separating data sets.

A single data set consists of a single line, "N D", where:

N : (1 ≤ N ≤ 10000) is an integer numerator.
D : (1 ≤ D ≤ 10000) is an integer denominator.

Output Description

For each data set, there will be exactly one line of output. The output line will express the reduced version of the
input fraction using precisely the same formatting as the input, “n d”.

Master Input
100 1
1 100
100 100
100 10000
10000 100
10000 10000
75 20
150 275
222 444
8422 342
Master Output
100 1
1 100
1 1
1 100
100 1
1 1
15 4
6 11
1 2
4211 171

UIL Finals CS Hands-On Problem Set 2003 Page 15

Par for the Course?
Program Name: golf.cpp Input File: golf.dat

What would happen if a pro golfer enlisted the help of a talented programmer to improve his game? Probably not
much, but we’re going to fake it anyway. For this problem, the goal is to determine the minimum number of strokes
needed to get the golf ball from its starting position to the hole. [FYI, a stroke equates to a single hit of the ball.]

Input Description

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted
according to the following description, and there will be no blank lines separating data sets.

A single data set has 2 components:

Size line - A single line, "X Y Z", where:
X : (1 ≤ X ≤ 20) is an integer number of columns in the Hole Map.
Y : (1 ≤ Y ≤ 20) is an integer number of rows in the Hole Map.
Z : (3 ≤ Z ≤ 5) is an integer number representing Par for this Hole Map.

Hole Map - A series of Y lines, each of length X. Each character in the Hole Map will represent one of the
following:

‘*’ (asterisk) – represents the starting position of the golf ball. There will be exactly one golf ball.
‘O’ (capital letter) – represents the hole. There will be exactly one hole.
‘T’ – represents trees.
‘.‘ (period) – represents fairway.

Note the following important facts:

• The golf ball may only be hit in one of the four cardinal directions; there can be no diagonal hits.
• The golfer only has four clubs, each ALWAYS hits a precise distance (a ‘unit’ is one row or column):

 Putter – hits 1 unit
 Wedge – hits 3 units
 Iron – hits 5 units
 Driver – hits 10 units

• When a ball is hit, it travels over any trees.
• A ball may never be hit outside the Hole Map or onto a tree.
• The number of strokes needed to finish a hole will never be less than (Par-2)
• The number of strokes needed to finish a hole will never be more than (Par+2)
• All holes will be completable.

Output Description

For each data set, there will be exactly one line of output indicating the best (lowest) possible score for the hole
using the English text representation. The relationship between the number of strokes and Par gives the numerical
score for the hole, which relates to the English text version of the score according to the following table:

Numerical Score
(# Strokes minus Par)

English Score

2 “Double Bogey”
1 “Bogey”
0 “Par”
-1 “Birdie”
-2 “Eagle”

Do not print the quotes!

UIL Finals CS Hands-On Problem Set 2003 Page 16

Master Input
3 3 3
TTT
TOT
T*T
5 5 3
TTTTT
TTT.O
TTTTT
TTTTT
*TT.T
11 11 4
*TTTTTTTTTT
TTTTTOTTTTT
TTTTT.TTTTT
TTTTT.TTTTT
TTTTT.TTTTT
TTTTT.TTTTT
TTTTTTTTTTT
TTTTTTTTTTT
TTTTTTTTTTT
TTTTTTTTTTT
...........
2 1 3
*O
20 20 4
*...................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
...................O
11 2 3
*.O........
...........
11 6 4
*T.TOTT.TT.
...........
...........
...........
...........
...........
20 4 5
*TTTT.T.TT.T.TOTT.TT
....................
....................
....................

UIL Finals CS Hands-On Problem Set 2003 Page 17

20 11 3
.........O..........
....................
....................
....................
....................
....................
....................
.........*..........
....................
....................
....................
20 11 5
TTTT.TTTTTTTTT.TT..O
TTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTTT.TTTT.TT
TTTTTTTTT.TT.TTTTTTT
TTTT.TTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTT
TTTTTTTTT*TTTTTTTTTT
TTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTT
TTTT.TTTT.TTTTTTTTTT
Master Output
Eagle
Par
Bogey
Eagle
Double Bogey
Birdie
Birdie
Birdie
Birdie
Par

UIL Finals CS Hands-On Problem Set 2003 Page 18

Kennel Kritters
Program Name: kritters.cpp Input File: kritters.dat

Grok caveman. Grok have kennel. Grok have kritters. Grok notice some kritters eat other kritters. Grok notice
some kritters fight other kritters. Kritters eat other kritters, kritters fight other kritters, bad for business. Help Grok
put kritters in cages, so no kritter eat other kritter, no kritter fight other kritter. Grok draw picture of kennel:
 _ _ _
1	2	3
4	5	6
7	8	9

Each square cage. Nine squares, nine cages. Grok good artist, no?

Grok smart. Grok learn:

1. Cage either have no kritter or one kritter. Grok want kritters uncrowded, happy.
2. Dog in cage next to 2 or more dogs in cages, dogs fight. Fish in cage next to 3 or more fish in cages, fish

fight.
3. Dog in cage next to cat in cage, dog eat cat. Cat in cage next to mouse in cage, cat eat mouse. Cat in cage

next to bird in cage, cat eat bird. Cat in cage next to fish in cage, cat eat fish. Bird in cage next to fish in
cage, bird eat fish.

4. Cage "next to" cage if it shares side with cage (cage 1 next to cages 2 and 4, cage 2 next to cages 1, 3, and
5, ...cage 5 next to cages 2, 4, 6, and 8, etc.).

Input Description

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted
according to the following description, and there will be no blank lines separating data sets.

A single data set has 1 component:

Cage Configuration - Three lines representing a configuration of animals placed in cages. The arrangement of
the cages will be as indicated in Grok's drawing above. Each cage will be represented by a single
letter, where:

“B” indicates a bird is in this cage,
“C” indicates a cat is in this cage,
“D” indicates a dog is in this cage,
“F” indicates a fish is in this cage,
“M” indicates a mouse is in this cage,
“N” indicates there is no animal in this cage

Note that there will be no spaces separating the letters in the input data sets.

Output Description

For each data set, there will be exactly one line of output. If the input configuration is one in which no kritter will
eat another kritter and no kritter will fight with another kritter, the output will be a single line with the statement
"GROK HAPPY". Otherwise, the output will be a single line with the statement "GROK SAD".

UIL Finals CS Hands-On Problem Set 2003 Page 19

Master Input
BDD
BMF
DFF
CMM
NMM
MMM
NNN
NNN
NNN
DDD
NNN
NNN
NNN
NND
NDD
FFF
FNF
FFF
FFF
NFN
NNN
NFN
FFF
NFN
NNN
NDN
NNC
NNN
NDN
NCN
NNN
NCN
MMN
NNN
NCN
BBB
NNN
NCN
FFF
NNN
NBN
FFF
CCC
CCC
CCC
FFF
FMF
FFF
CNC
NDN
CNC
NFN
MDN
BNC
Master Output
GROK HAPPY
GROK SAD
GROK HAPPY
GROK SAD
GROK SAD

UIL Finals CS Hands-On Problem Set 2003 Page 20

GROK HAPPY
GROK SAD
GROK SAD
GROK HAPPY
GROK SAD
GROK SAD
GROK SAD
GROK SAD
GROK SAD
GROK HAPPY
GROK HAPPY
GROK HAPPY
GROK HAPPY

UIL Finals CS Hands-On Problem Set 2003 Page 21

Just Picture It
 Program Name: picture.cpp Input File: picture.dat

The Graphics Image Format (GIF) was developed by CompuServe back in the dark ages as a way to compress
images for transfer between customers. The compression was achieved by the combination of an 8-bit Color Look
Up Table (CLUT) and Run Length Encoding (RLE).

RLE is a relatively simple and loss-less compression scheme, in contrast to JPEG compression which is lossy and
much, much more complicated. The most basic form of RLE entails replacing a run of same value pixels with a
single (pixel, run length) pair. So, if there were 100 black pixels, instead of encoding 100 individual black pixel
values in a row, the compressed version would have a single black pixel value with a run length of 100.

In this problem, you will be presented with an image compressed using this basic form of RLE, and your program
will have to output the uncompressed image.

Input Description

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted
according to the following description, and there will be no blank lines separating data sets.

A single data set has 2 components:

Start line - A single line, "START X Y", where X (1 ≤ X ≤ 20) is the number of columns in the uncompressed
picture, and Y (1 ≤ Y ≤ 20) is the number of rows in the uncompressed picture.

Compressed Picture – There will be a series of lines “V R”, where V (0 ≤ V ≤ 9) is the next pixel value, and R is
the run length for that pixel. There will be precisely enough lines in each Compressed Picture to
represent X × Y pixels (the entire picture).

Output Description

For each data set there will be an X × Y rectangular output showing the uncompressed picture (no spaces). There
will be no blank lines between output sets.

UIL Finals CS Hands-On Problem Set 2003 Page 22

Master Input
START 6 4
0 5
4 1
0 4
4 1
0 4
4 1
0 4
4 1
0 3
START 8 8
0 8
1 4
2 4
3 4
4 8
5 8
6 4
7 4
8 4
7 4
8 4
7 4
8 4
START 1 1
9 1
START 20 1
0 20
START 1 20
9 20
START 20 20
0 10
1 10
0 5
1 5
0 5
1 5
2 20
0 20
1 20
3 5
4 5
6 10
7 40
4 1
8 79
9 40
0 119
1 1
START 20 20
9 400
START 10 2
3 11
0 8
5 1
START 20 20
8 85
0 2
8 6
0 2

UIL Finals CS Hands-On Problem Set 2003 Page 23

8 9
0 4
8 4
0 4
8 9
0 2
8 6
0 2
8 34
1 2
8 18
1 2
8 14
0 2
8 6
0 2
8 11
0 2
8 4
0 2
8 13
0 6
8 15
0 4
8 128
Master Output
000004
000040
000400
004000
00000000
11112222
33334444
44445555
55556666
77778888
77778888
77778888
9
00000000000000000000
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
00000000001111111111

UIL Finals CS Hands-On Problem Set 2003 Page 24

00000111110000011111
22222222222222222222
00000000000000000000
11111111111111111111
33333444446666666666
77777777777777777777
77777777777777777777
48888888888888888888
88888888888888888888
88888888888888888888
88888888888888888888
99999999999999999999
99999999999999999999
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000001
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
99999999999999999999
3333333333
3000000005
88888888888888888888
88888888888888888888
88888888888888888888
88888888888888888888
88888008888880088888
88880000888800008888
88888008888880088888
88888888888888888888
88888888811888888888
88888888811888888888
88888008888880088888
88888800888800888888
88888880000008888888
88888888000088888888
88888888888888888888
88888888888888888888
88888888888888888888
88888888888888888888
88888888888888888888
88888888888888888888

UIL Finals CS Hands-On Problem Set 2003 Page 25

You May Already Be A Winner!
Program Name: raffle.cpp Input File: raffle.dat

Your high school is in desperate need of new computer equipment, and the Computer Club is hosting a raffle to raise
money for this worthy cause. In an effort to maximize participation in the raffle, the Computer Club has come up
with a clever way to give out the prizes. There are a set number of prizes to be given away. When a person buys a
raffle ticket, they will submit a prioritized list of the items they want to win, starting with the prize they most want
and ending with the prize they want the least. After the raffle is over, names will be drawn from a hat. The first
person drawn will win the first prize on his/her list. The next person drawn will win the first prize on his/her list that
has not already been won. This will continue until all of the prizes are handed out or all contestants have been
drawn. This gives people a greater probability of winning something they want, thus increasing the number of raffle
tickets sold. Your job as president of the Computer Club is to write a program that will determine, given the order
in which the names are drawn, who wins each prize.

Input Description

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted
according to the following description, and there will be no blank lines separating data sets.

A single data set has 5 components:

Start line - A single line, "START C P", where C is the number of contestants (1 ≤ C ≤ 10) and P is the number
of prizes in the raffle (1 ≤ P ≤ 10).

Prize List – The next P lines will consist of the prizes available to be won by the contestants.

Contestant Info – There will be C of these, each Contestant Info entry will consist of the contestant’s name,
followed by that contestant’s prize priority list (each prize on a separate line). A contestant’s prize
priority list will list each prize from the Prize List exactly once.

Drawing Order – The next C lines will consist of all of the contestants’ names in the order in which they were
drawn.

End line - A single line, "END"

Note:

• Contestant and prize names may consist of multiple tokens (e.g. ‘John Doe’ and ‘Sports Car’).

Output Description

Each dataset’s output will start with the following string:

Raffle #<NUMBER>:

Where <NUMBER> begins as 1 for the first data set and increments by 1 for each data set thereafter. The remaining
output for each dataset will consist of the following string for each person who has won a prize from the prize list:

<CONTESTANT> Wins <PRIZE>!!

Note:

• The order in which the names were drawn is the order in which the winners should be listed.

UIL Finals CS Hands-On Problem Set 2003 Page 26

Master Input
START 3 5
Video Game
CD
Mouse Pad
Pocket Protector
Backpack
Jimmy
Backpack
Video Game
CD
Mouse Pad
Pocket Protector
Betty
CD
Video Game
Pocket Protector
Backpack
Mouse Pad
James
Video Game
CD
Mouse Pad
Pocket Protector
Backpack
James
Betty
Jimmy
END
START 3 4
Pencil
Eraser
Notebook
Pen
Marc
Eraser
Notebook
Pencil
Pen
James
Eraser
Pencil
Notebook
Pen
Tim
Eraser
Pencil
Pen
Notebook
Marc
James
Tim
END
START 1 1
A Really Cool Prize That George Will Win
George
A Really Cool Prize That George Will Win
George
END
START 3 4
You will never win this prize.

UIL Finals CS Hands-On Problem Set 2003 Page 27

Prize #1
Prize #2
Prize #3
Contestant #1
Prize #1
Prize #2
Prize #3
You will never win this prize.
Contestant #2
Prize #2
Prize #3
Prize #1
You will never win this prize.
Contestant #3
Prize #1
Prize #2
Prize #3
You will never win this prize.
Contestant #1
Contestant #2
Contestant #3
END
START 3 2
Candy
A Cup of Joe
Joe
A Cup of Joe
Candy
Candy
Candy
A Cup of Joe
Parker Lewis
A Cup of Joe
Candy
Candy
Joe
Parker Lewis
END
START 4 5
everything
a lot of things
something
little
nothing
Contestant #1
something
a lot of things
everything
little
nothing
Contestant #2
nothing
something
a lot of thins
everything
little
Contestant #3
something
a lot of things
everything
little

UIL Finals CS Hands-On Problem Set 2003 Page 28

nothing
Contestant #4
something
a lot of things
everything
nothing
little
Contestant #1
Contestant #2
Contestant #3
Contestant #4
END
START 10 1
the coolest prize of all
Contestant #1
the coolest prize of all
Contestant #2
the coolest prize of all
Contestant #3
the coolest prize of all
Contestant #4
the coolest prize of all
Contestant #5
the coolest prize of all
Contestant #6
the coolest prize of all
Contestant #7
the coolest prize of all
Contestant #8
the coolest prize of all
Contestant #9
the coolest prize of all
Contestant #10
the coolest prize of all
Contestant #1
Contestant #2
Contestant #3
Contestant #4
Contestant #5
Contestant #6
Contestant #7
Contestant #8
Contestant #9
Contestant #10
END
START 1 10
a toy
another toy
still another toy
yet another toy
you guessed it, another toy
can you believe another toy?
not a toy
just kidding, the last one was a toy
the last one and this one are toys
all the toys
He
all the toys
a toy
another toy
still another toy

UIL Finals CS Hands-On Problem Set 2003 Page 29

yet another toy
you guessed it, another toy
can you believe another toy?
not a toy
just kidding, the last one was a toy
the last one and this one are toys
He
END
START 1 1
Prize 1
Contestant 1
Prize 1
Contestant 1
END
Master Output
Raffle #1:
James Wins Video Game!!
Betty Wins CD!!
Jimmy Wins Backpack!!
Raffle #2:
Marc Wins Eraser!!
James Wins Pencil!!
Tim Wins Pen!!
Raffle #3:
George Wins A Really Cool Prize That George Will Win!!
Raffle #4:
Contestant #1 Wins Prize #1!!
Contestant #2 Wins Prize #2!!
Contestant #3 Wins Prize #3!!
Raffle #5:
Candy Wins Candy!!
Joe Wins A Cup of Joe!!
Raffle #6:
Contestant #1 Wins something!!
Contestant #2 Wins nothing!!
Contestant #3 Wins a lot of things!!
Contestant #4 Wins everything!!
Raffle #7:
Contestant #1 Wins the coolest prize of all!!
Raffle #8:
He Wins all the toys!!
Raffle #9:
Contestant 1 Wins Prize 1!!

