
slide 1

Vitaly Shmatikov

CS 345

Introduction to Scheme

slide 2

Reading Assignment

Mitchell, Chapter 3
“Why Functional Programming Matters” (linked
from the course website)
Take a look at Dybvig’s book (linked from the
course website)

slide 3

Scheme

Impure functional language
Dialect of Lisp
• Key idea: symbolic programming using

list expressions and recursive functions
• Garbage-collected, heap-allocated (we’ll see why)

Some ideas from Algol
• Lexical scoping, block structure

Some imperative features

slide 4

Expressions and Lists

Cambridge prefix notation: (f x1 x2 … xn)
• (+ 2 2)
• (+ (* 5 4) (- 6 2)) means 5*4 + (6-2)

List = series of expressions enclosed
in parentheses
• For example, (0 2 4 6 8) is a list of even numbers
• The empty list is written ()

Lists represent
both functions and data

slide 5

Elementary Values

Numbers
• Integers, floats, rationals

Symbols
• Include special Boolean symbols #t and #f

Characters
Functions
Strings
• “Hello, world”

Predicate names end with ?
• (symbol? ‘(1 2 3)), (list? (1 2 3)), (string? “Yo!”)

slide 6

Top-Level Bindings

define establishes a mapping from a symbolic
name to a value in the current scope
• Think of a binding as a table: symbol → value
• (define size 2) ; size = 2
• (define sum (+ 1 2 3 4 5)) ; sum = (+ 1 2 3 4 5)

Lambda expressions
• Similar to “anonymous” functions in ML
• Scheme: (define square (lambda (x) (* x x)))
• ML: fun square = fn(x) ⇒ x*x

– What’s the difference? Is this even valid ML? Why?

slide 7

Functions

(define (name arguments) function-body)
• (define (factorial n)

(if (< n 1) 1 (* n (factorial (- n 1)))))
• (define (square x) (* x x))
• (define (sumsquares x y)

(+ (square x) (square y)))
• (define abs (lambda (x) (if (< x 0) (- 0 x) x)))

Arguments are passed by value
• Eager evaluation: argument expressions are always

evaluated, even if the function never uses them
• Alternative: lazy evaluation (e.g., in Haskell)

slide 8

Expression Evaluation

Read-eval-print loop
Names are replaced by their current bindings
• x ; evaluates to 5

Lists are evaluated as function calls
• (+ (* x 4) (- 6 2)) ; evaluates to 24

Constants evaluate to themselves.
• ‘red ; evaluates to ‘red

Innermost expressions are evaluated first
• (define (square x) (* x x))
• (square (+ 1 2)) ⇒ (square 3) ⇒ (* 3 3) ⇒ 9

slide 9

Equality Predicates

eq? - do two values have the same internal
representation?
eqv? - are two numbers or characters the same?
equal? - are two values structurally equivalent?
Examples
• (eq ‘a ‘a) ⇒ #t
• (eq 1.0 1.0) ⇒ #f (system-specific) (why?)
• (eqv 1.0 1.0) ⇒ #t (why?)
• (eqv “abc” “abc”) ⇒ #f (system-specific) (why?)
• (equal “abc” “abc”) ⇒ #t

slide 10

Operations on Lists

car, cdr, cons
• (define evens ‘(0 2 4 6 8))
• (car evens) ; gives 0
• (cdr evens) ; gives (2 4 6 8)
• (cons 1 (cdr evens)) ; gives (1 2 4 6 8)

Other operations on lists
• (null? ‘()) ; gives #t, or true
• (equal? 5 ‘(5)) ; gives #f, or false
• (append ‘(1 3 5) evens) ; gives (1 3 5 0 2 4 6 8)
• (cons ‘(1 3 5) evens) ; gives ((1 3 5) 0 2 4 6 8)

– Are the last two lists same or different?

slide 11

Conditionals

General form
(cond (p1 e1) (p2 e2) … (pN eN))
• Evaluate pi in order; each pi evaluates to #t or #f
• Value = value of ei for the first pi that evaluates to #t

or eN if pN is “else” and all p1 … pN-1 evaluate to #f

Simplified form
• (if (< x 0) (- 0 x)) ; if-then
• (if (< x y) x y) ; if-then-else

Boolean predicates:
(and (e1) … (eN)), (or (e1) … (eN)), (not e)

slide 12

Other Control Flow Constructs

Case selection
• (case month

((sep apr jun nov) 30)
((feb) 28)
(else 31)

)

What about loops?
• Iteration ↔ Tail recursion
• Scheme implementations must implement tail-

recursive functions as iteration

slide 13

Delayed Evaluation

Bind the expression to the name as a literal…
• (define sum ‘(+ 1 2 3))
• sum ⇒ (+ 1 2 3)

– Evaluated as a symbol, not a function

Evaluate as a function
• (eval sum) ⇒ 6

No distinction between code (i.e., functions) and
data – both are represented as lists!

slide 14

Imperative Features

Scheme allows imperative changes to values of
variable bindings
• (define x `(1 2 3))
• (set! x 5)

Is it Ok for new value to be of a different type?
Why?
What happens to the old value?

slide 15

Let Expressions

Nested static scope
(let ((var1 exp1) … (varN expN)) body)
(define (subst y x alist)

(if (null? alist) ‘()
(let ((head (car alist)) (tail (cdr alist)))

(if (equal? x head)
(cons y (subst y x tail))
(cons head (subst y x tail)))))

This is just syntactic sugar for a lambda
application (why?)

slide 16

Let*

(let* ((var1 exp1) … (varN expN)) body)
• Bindings are applied sequentially, so vari is bound in

expi+1 … expN

This is also syntactic sugar for a (different)
lambda application (why?)
• (lambda (var1) (

(lambda (var2) (… (
(lambda (varN) (body)) expN) …) exp1

slide 17

Functions as Arguments

(define (mapcar fun alist)
(if (null? alist) ‘()

(cons (fun (car alist))
(mapcar fun (cdr alist)))

))

(define (square x) (* x x))
What does (mapcar square ‘(2 3 5 7 9)) return?
(4 9 25 49 81)

F

slide 18

“Folding” a Data Structure

Folding: processing a data structure in some
order to construct a return value
• Example of higher-order functions in action

Summing up list elements (left-to-right)
• (foldl + 0 ‘(1 2 3 4 5)) ⇒ 15

– Evaluates as (+ 5 (+ 4 (+ 3 (+ 2 (+ 1 0)))). Why?

• (define (sum lst) (foldl + 0 lst))

Multiplying list elements (right-to-left)
• (define (mult lst) (foldr * 1 lst))
• (mult ‘(2 4 6)) ⇒ (* (* (* 6 4) 2) 1)) ⇒ 48

slide 19

Using Recursion

Compute length of the list recursively
• (define length

(lambda(lst)
(if (null? lst) 0 (+ 1 (length (cdr list))))))

Compute length of the list using foldl
• (define length

(lambda(lst)
(foldl (lambda (_ n) (+ n 1)) 0 lst)

)
)

Ignore 1st argument. Why?

slide 20

Key Features of Scheme

Scoping: static
Typing: dynamic (what does this mean?)
No distinction between code and data
• Both functions and data are represented as lists
• Lists are first-class objects

– Can be created dynamically, passed as arguments to
functions, returned as results of functions and expressions

• This requires heap allocation (why?) and garbage
collection (why?)

• Self-evolving programs

	Introduction to Scheme
	Reading Assignment
	Scheme
	Expressions and Lists
	Elementary Values
	Top-Level Bindings
	Functions
	Expression Evaluation
	Equality Predicates
	Operations on Lists
	Conditionals
	Other Control Flow Constructs
	Delayed Evaluation
	Imperative Features
	Let Expressions
	Let*
	Functions as Arguments
	“Folding” a Data Structure
	Using Recursion
	Key Features of Scheme

