
CS 345 - Programming Languages
Fall 2010

Homework #2

Due: 2pm CDT (in class), September 30, 2010

Collaboration policy

This assignment can be done in teams at most two students.
Any cheating (e.g., submitting another person’s work as your own, or permitting your

work to be copied) will automatically result in a failing grade. The Computer Science
Department Code of Conduct can be found at http://www.cs.utexas.edu/academics/

conduct/.

Late submission policy

This homework is due at the beginning of class on September 30. All late submissions
will be subject to the following policy.

You start the semester with a credit of 3 late days. For the purpose of counting late
days, a “day” is 24 hours starting at 2pm on the assignment’s due date. Partial days are
rounded up to the next full day. You are free to divide your late days among the take-home
assignments any way you want: submit four assignments 1 day late, submit one assignment
3 days late, etc. After your 3 days are used up, no late submissions will be accepted and you
will automatically receive 0 points for each late assignment.

1



Homework #2 (35 points + 15 bonus points)

Objective

The objective of this project is to give you hands-on experience with implementing buffer
overflow exploits. You are given the source code for three exploitable programs (target1.c,
target2.c, target3.c). These programs are all installed with root (i.e., superuser) privi-
leges in the the VMware virtual machine.

Your goal is to write two exploit programs (you only need to write the third exploit if
you want 15 bonus points). Each exploit program will execute its target, giving it a certain
input that should result in a root shell on the VMware virtual machine. See below (Your
Assignment) for more details.

Files

You will need:

• The VMware Player:
http://www.vmware.com/products/player/

• The virtual machine image:
http://www.cs.utexas.edu/~shmat/courses/cs345/box.tar.bz2

• The project files:
http://www.cs.utexas.edu/~shmat/courses/cs345/cs345-hw2.tar.bz2

VMware environment

You will test your exploit programs in a VMware virtual machine. To do this, you will need
to download the virtual machine image as well as the VMware Player from VMware’s website
(see above). VMware Player can run on Linux, Windows, and Mac OS X (VMware Fusion).

The virtual machine we provide is configured with Debian Etch. Should you need any
other packages to do your work (e.g., emacs), you can install it with the command apt-get

(e.g., apt-get install emacs). 1

The virtual machine is configured to use NAT for networking. From the virtual machine,
you can type ifconfig as root to see the IP address of the virtual machine. It should be
listed under the field inet addr: under eth0.

The virtual machine also has an SSH server. You can SSH into the virtual machine from
your machine, using the IP address produced by ifconfig (see above) as the destination.
You can also use this to transfer files onto the virtual machine using scp. Alternatively, you
can fetch files directly from the web on the VM using wget.

1You may need to edit the /etc/apt/sources.list file and replace http://mirrors.kernel.org/
debian with http://archive.debian.org/debian everywhere.

2



Targets

The project files (cs345-hw2.tar.bz2) contain the source code for the targets, along with
a Makefile specifying how they are to be built.

Your exploits should assume that the compiled target programs are installed setuid-root
in /tmp – /tmp/target1, /tmp/target2, etc.

Exploits

The project files (cs345-hw2.tar.bz2) also contain skeleton source code for the exploits
which you are to write, along with a Makefile for building them. Also included is shellcode.h,
which gives Aleph One’s shellcode. Exploit programs are very short, so there is no need to
write a lot of code.

Your assignment

You are to write one exploit per target. Each exploit, when run in the virtual machine with
its target installed setuid-root in /tmp, should yield a root shell (/bin/sh). You can use
whoami to tell if you are root or not.

Grading

There are two targets. Each successful exploit will give you a certain amount of points:

Target 1: 20 points

Target 2: 15 points

Target 3 is the bonus target. It is worth 15 extra points on top of the regular points for
this assignment.

Hints

Read Aleph One’s “Smashing the Stack for Fun and Profit” carefully. Read scut’s “Ex-
ploiting Format String Vulnerabilities.” Both are linked from the reference section of the
course website.

gdb is your best friend in this assignment. It will help you inspect the contents of memory
as your target is executing and generally understand what’s going on. In particular, notice
the disassemble and stepi commands. You may find the x command useful to examine
memory (and the different ways you can print the contents such as /a /i after x). The
info register command is helpful in printing out the contents of registers such as ebp and
esp. Another very useful command is info frame. It prints a detailed description of the
selected frame.

3



When you run gdb, you will find the -e and -s command-line flags useful. For example,
the command gdb -e sploit1 -s /tmp/target1 in the virtual machine tells gdb to execute
sploit1 and use the symbol file in target1. These flags let you trace the execution of
target1 after the sploit has forked off the execve process. When running gdb using these
command-line flags, be sure to first issue catch exec, then run the program before you set
any breakpoints; the command run naturally breaks the execution at the first execve call
before the target is actually exec-ed, so you can set your breakpoints when gdb catches the
execve. Note that if you try to set break points before entering the command run, you’ll get
a segmentation fault.

If gdb has trouble finding the source files of targets, try running it with the -d /tmp

command-line flag.
If you wish, you can instrument your code with arbitrary assembly using the __asm__()

pseudofunction.

IMPORTANT: Your code must run within the provided virtual machine environment.

Warnings

Aleph One gives code that calculates addresses on the target’s stack based on addresses on
the exploit’s stack. Addresses on the exploit’s stack can change based on how the exploit
is executed (working directory, arguments, environment, etc.). In our testing, we do not
guarantee to execute your exploits as bash does.

You must therefore hard-code target stack locations in your exploits. You should not
use a function such as get_sp() in the exploits you hand in.

Your exploit programs should not take any command-line arguments.

Deliverables

You will submit a single tarball that contains the source code for all your exploits, along
with any files (Makefile, shellcode.h) necessary for building them.

All the exploits should build if the make command is issued. There should be no directory
structure: all files in the tarball should be in its root directory. (Run tar from inside the
sploits/ directory).

You will submit your files using the turnin command on the UTCS system. The grader
is austin and the homework name is buffer.

The tarball should also include a file SUBMISSION. The first line should state how many
late days were used (if any). Then give the following on a single line, one for each student:

• your UTEID

• your UTCS username

• your real name

You may want to include a README file with comments about your experiences or sugges-
tions for improvement.

4



Getting Started

Please make sure you start early. This ensures you can set up the proper VM environment
in which to write your exploits.

1. Download and install VMware Player (Windows and Linux) or VMware Fusion (Mac
OS X: http://www.vmware.com/download/fusion/).

2. Download the VMware virtual machine tarball (box.tar.bz2).

3. Decompress the virtual machine tarball, then open the file box.vmx using VMware
Player. If VMware Player asks you if you moved or copied the virtual machine, say
that you copied it.

4. Login to the virtual machine. There are two accounts: root/root and user/user.

5. Ensure that networking is working by typing ifconfig and checking that the inet

addr: field of eth0 has a valid IP address. Make sure you can reach the machine by
attempting to ssh into it.

6. Download the homework files (cs345-hw2.tar.bz2) onto the virtual machine. You
can do this by downloading the tarball first, and then using scp to transfer the files
onto the VM. Alternatively, you can log in as root to the VM and use wget.

7. Copy the sploits directory to the user’s home directory (and make sure to set the
ownership so that user can access them “chown -R user:user sploits”), and the
target directory to the root’s home directory. Make the targets and copy the targets
to /tmp together with the corresponding .c files. Set up the permissions so that the
targets are owned by root, are setuid root, and the .c files are publicly readable:

chown root:root target? ; chmod 4755 target?; chmod a+r target?.c

8. Every time you restart the VM, you’ll have to set up the targets in the VM’s /tmp

because it’ll be wiped clean.

5


