
CS 345 - Programming Languages
Fall 2010

MIDTERM #1

October 5, 2010

DO NOT OPEN UNTIL INSTRUCTED

YOUR NAME:

Collaboration policy

No collaboration is permitted on this midterm. Any cheating (e.g., submitting another
person’s work as your own, or permitting your work to be copied) will automatically result
in a failing grade. The Computer Sciences department code of conduct can be found at
http://www.cs.utexas.edu/academics/conduct/.

1

Midterm #1 (85 points)

Problem 1 (15 points)

Circle only one of the choices (3 points each).

1. TRUE FALSE Algol 60 was the first language to introduce lexical block
scoping.

2. TRUE FALSE A shift-reduce conflict can only occur if the grammar is
ambiguous.

3. TRUE FALSE The lifetime of a variable is equal to the lifetime of the acti-
vation record corresponding to its scope.

4. TRUE FALSE Closures are necessary in dynamically scoped languages to
keep track of each function’s scope.

5. TRUE FALSE Finding an exception handler in ML simply requires walking
up the stack from where the exception occurred.

Problem 2 (15 points)

Define the following terms:

Ambiguous grammar:

R-value of a variable:

Scope of a variable:

Pass-by-reference:

Access link:

2

Problem 3

Problem 3a (3 points)

What is the purpose of lexical analysis? What type of abstract machine is used to implement
it?

Problem 3b (3 points)

What is the purpose of syntax analysis? What type of abstract machine is used to implement
it?

Problem 4

Problem 4a (3 points)

What is the “dangling else” problem?

Problem 4b (8 points)

Write a grammar of if-then-else expressions where every if statement must be terminated
by endif. Does this grammar solve the “dangling else” problem? Explain your answer in
terms of shift-reduce conflicts.

3

Problem 4c (3 points)

Can your new grammar be recognized by a deterministic finite automaton? Explain.

Problem 5

Explain the evaluation of the following statements in terms of l-values and r-values.

Problem 5a (3 points)

int x = 1;

int a[5] = {5,4,3,2,1};

Problem 5b (3 points)

int *p = a;

Problem 5c (3 points)

int **q = &p;

Problem 5d (3 points)

a[3] = a[x+1] * **q;

4

Problem 6

Consider the following program written in Algol-like pseudocode:

begin

integer i;

procedure foo(integer x, integer y);

begin

x := x+1;

y := x+1;

x := y;

i := i+1;

end

i := 1;

foo(i,i);

print i;

end

What would this program print under each of the following parameter passing mecha-
nisms:

Problem 6a (3 points)

Pass-by-value:

Problem 6a (3 points)

Pass-by-reference:

Problem 6a (3 points)

Pass-by-value-result:

Problem 7

In ML and most other functional languages, it is legal to declare a “local function,” i.e., a
function defined within the scope of another function. For example, in ML you might write:

fun f() = let val i = 1

fun g() = i

in

(print(Int.toString(g()));

g)

5

end;

print(Int.toString(f()()));

This program declares a function f which declares a local variable i and a local function
g. The function g simply returns the value of i. When you execute this program, it prints
1 twice.

Because f returns a function, its scope must remain “alive” even after f finished its
execution. As we discussed in class, ML solves this problem by placing both the activation
record for the call to f and the closure for g on the heap.

In ANSI C, there are no local functions, so there is no way to write an equivalent program.
GNU CC (GCC) compiler, however, does allow local function declarations. Here is how to
write an equivalent program in GNU C:

#include <stdio.h>

typedef int (*fn_t)();

fn_t f() {

int i=1;

int g() { return i; }

printf("%d\n", g());

return &g;

}

int main() {

printf("%d\n", (*f())());

}

GCC compiles local functions in the usual way, except that references to the activation
record of an enclosing function are done via a static (access) link, like in ML.

A particular instance of a local function is a piece of code (called the trampoline) placed
on the stack, that sets the static chain and jumps to the beginning of code for the compiled
function. The trampoline serves the same purpose as a closure.

Unlike ML, however, GCC places both activation records and trampolines on the stack
and makes no specific effort to solve the problem of keeping the scope “alive” after the
function returns.

6

Problem 7a (5 points)

The output of the GNU C program above is

1

-1073743424

Explain why this program does not print 1 twice, as one might expect. Where does the
second number come from?

Problem 7b (3 points)

Why does ML deviate from stack (“last-in-first-out”) storage management for closures and
activation records?

Problem 8

ML has functions hd and tl to return, respectively, the head (i.e., the first element) and the
tail (i.e., the remaining elements) of a list. Both functions raise an exception Empty if the
list is empty.

Suppose that we redefine these functions so that they raise, respectively, exceptions Hd

and Tl when applied to an empty list. The behavior of non-empty lists remains the same.

- hd(nil);

uncaught exception Hd

- tl(nil);

uncaught exception Tl

Now consider the following “identity” function on lists:

fun id(l) = hd(l)::tl(l) handle Hd => nil;

7

Problem 8a (3 points)

What is the result of evaluating id(nil)? Why?

Problem 8b (3 points)

Does the function id need to handle exception Tl? Why?

8

