
CS 345 - Programming Languages
Fall 2010

Homework #4

Due: 2pm CDT (in class), October 28, 2010

Collaboration policy

No collaboration is permitted on this assignment. Any cheating (e.g., submitting another
person’s work as your own, or permitting your work to be copied) will automatically result
in a failing grade. The Computer Science Department Code of Conduct can be found at
http://www.cs.utexas.edu/academics/conduct/.

Late submission policy

This homework is due at the beginning of class on October 28. All late submissions will
be subject to the following policy.

You start the semester with a credit of 3 late days. For the purpose of counting late
days, a “day” is 24 hours starting at 2pm on the assignment’s due date. Partial days are
rounded up to the next full day. You are free to divide your late days among the take-home
assignments any way you want: submit four assignments 1 day late, submit one assignment
3 days late, etc. After your 3 days are used up, no late submissions will be accepted and you
will automatically receive 0 points for each late assignment.

Write the number of late days you are using:

1



Homework #4 (35 points)

A classic example of a problem requiring coordinated access to shared resources is the Dining
Philosophers problem.

Imagine N philosophers seated at a round table. They are thinking and concurrently
eating from a shared plate with a big fish in the middle of the table. There is a total of
N forks placed at the table so that each philosopher has 1 fork between himself and his
neighbor to the right and 1 fork between himself and his neighbor to the left.

Because Miss Manners says that fish is eaten with two forks, a philosopher must obtain
both left and right forks before he can eat. The order in which the forks are obtained depends
on a coin toss. The philosopher tosses a fair coin; if it comes up heads, the philosopher picks
up the right fork, then the left fork. If the coin comes up tails, he picks up the left fork first,
then the right fork. If a fork is not available, the philosopher must wait for his neighbor to
release it before he can pick it up.1 He cannot eat unless he has both forks.

After obtaining both forks, a philosopher eats for 1 second, then releases both forks to
think again. The order in which the forks are released is also determined by a coin toss. The
philosopher thinks for a random number of milliseconds (less than 1 second), then tries to
obtain both forks in order to eat again.

You will need to implement the Philosopher class. This class should inherit from the
java.lang.Thread class. You can fill in this skeleton:

public class Philosopher extends Thread {

private String name;

private Fork left, right;

// Each philosopher is assigned an integer id and two forks

public Philosopher (int id, Fork f1, Fork f2) {

name="Philosopher #"+id;

left=f1; right=f2; }

// The run() method is invoked by calling p.start(), where

// p is an instance of the Philosopher class

public void run() {

while(true) {

System.out.println(name+" is thinking");

// Think for a random number of milliseconds (less than 1 second)

// Toss a coin, try to acquire both forks

System.out.println(name+" is chewing");

// Eat for 1 second

// Toss a coin, release both forks }

}

}

1Try not to think about the sanitary aspects of sharing the same fork. These are dirty philosophers.

2



You will also need to implement a Fork class, which must enforce synchronized access
to each fork. A philosopher can only acquire a fork when it is available; otherwise, he must
wait. At no time may two philosophers hold the same fork.

Your main program must create the Fork objects and the Philosopher objects, assign
to each philosopher a pair of forks (one shared with the philosopher on the left and one with
the philosopher on the right), and start all philosopher threads. Run the program for at
least 3 minutes. Each execution should run long enough so that each philosopher gets to eat
several times before the program is terminated. Use ctrl-C on Unix or ctrl-Z on Windows to
terminate the program.

We will test your program for N = 2, N = 5, and N equal to some random number
between 10 and 10, 000. Your program should suffer from neither starvation, nor deadlock, nor
unfairness. To verify this, the program must report on termination how many milliseconds
each philosopher spent eating and thinking (you can use addShutdownHook to get your
statistics object to execute when the program is shut down). It must be the case that each
philosopher got to eat, and that all philosophers spent similar time eating.

Tips and hints

• Use these parameters to JVM to increase the resources needed to run a large number
of threads:

-Xms set initial heap size
-Xmx set maximum heap size
-Xss set thread stack size

• To get a Java thread to sleep for a certain number of milliseconds, call Thread.sleep().
The easiest way to do this is write a randomSleep() function as follows:

int randomSleep() {

// Note that Math.random() returns a double value between 0.0 and 1.0,

// so it must be converted to obtain the right number of milliseconds

int ms = (int)(... Math.random() ...);

try {

Thread.sleep(ms); }

catch(InterruptedException e) { ... }

return ms;

}

• To print the statistics after the program is terminated on a command-line interrupt,
you can create a ”statistics” class as a subclass of Thread, and register it with the Java
virtual machine to run after the program is shut down, e.g.:

myStatistics s = new myStatistics();

Runtime.getRuntime().addShutdownHook(s);

3



Submission instructions

1. Submit a paper printout of your Java code, stapled to the first page of this homework
(the one showing your name and the number of late days you are using, if any). The
printout must be processed using the following command:

enscript -C -2Gr -Ec <yourfile> -o <outputfile.ps>

2. Submit your source code electronically using the following command:

turnin --submit austin hw4 <filename1> <filename2> ...

4


