
CS 345 - Programming Languages
Fall 2010

Homework #6

Due: 2pm CST (in class), November 18, 2010

YOUR NAME:

Collaboration policy

No collaboration is permitted on this assignment. Any cheating (e.g., submitting another
person’s work as your own, or permitting your work to be copied) will automatically result
in a failing grade. The Computer Science Department Code of Conduct can be found at
http://www.cs.utexas.edu/academics/conduct/.

Late submission policy

This homework is due at the beginning of class on November 18. All late submissions
will be subject to the following policy.

You start the semester with a credit of 3 late days. For the purpose of counting late
days, a “day” is 24 hours starting at 2pm on the assignment’s due date. Partial days are
rounded up to the next full day. You are free to divide your late days among the take-home
assignments any way you want: submit four assignments 1 day late, submit one assignment
3 days late, etc. After your 3 days are used up, no late submissions will be accepted and you
will automatically receive 0 points for each late assignment.

You may submit late assignments to Vitaly Shmatikov (CSA 1.114—slide under the door
if the office is locked). If you are submitting late, please indicate how many late
days you are using.

Write the number of late days you are using:

1

Homework #6 (35 points)

Problem 1 (2 points)

In his Turing Award lecture, John Backus argued that programs written in functional lan-
guages are more suited to parallel execution than imperative programs because subexpres-
sions without side effects can be evaluated in any order.

Give at least two concrete reasons why functional programming languages do not provide
a complete solution to the problem of writing programs that can be executed efficiently in
parallel.

Problem 2 (4 points)

Write a tail-recursive implementation of the Scheme foldr function.

Problem 3 (4 points)

Write a Scheme function (mean lst) which computes the mean of a list of integers but
traverses the list only once. Your function must compute both the sum and the length of
the list in one pass and return the mean.

2

Problem 4 (5 points)

Write a Prolog program prodsum which, given two lists, computes the product of pairwise
sums of their elements. For example, the query prodsum([2,3,4], [3,4,5], X) should
return X = 315 because (2 + 3) · (3 + 4) · (4 + 5) = 315. You can assume that the lists have
equal length.

Is your function tail-recursive? Explain.

Problem 5

Consider the following Prolog program:

split(_, [], [], []).

split(P, [X|Xs], [X|Ls], Bs) :- P>X, split(P, Xs, Ls, Bs).

split(P, [X|Xs], Ls, [X|Bs]) :- P=<X, split(P, Xs, Ls, Bs).

Problem 5a (2 points)

What does this program do?

3

Problem 5b (4 points)

Suppose the program is rewritten as:

split(_, [], [], []).

split(P, [X|Xs], [X|Ls], Bs) :- P>X, !, split(P, Xs, Ls, Bs).

split(P, [X|Xs], Ls, [X|Bs]) :- split(P, Xs, Ls, Bs).

What does this program do now? Explain the difference between the two programs on a
concrete example.

Problem 6 (4 points)

Describe at least two common Web programming tasks for which higher-order functions are
very useful.

4

Problem 7

This problem asks you to compare two sections of JavaScript code. The first one has three
declarations and a fourth statement that consists of an assignment and a function call inside
curly braces:

var x = 5;

function f(y){ return (x+y)-2 };

function g(h){ var x = 7; return h(x) };

{ var x=10; z=g(f) };

The second section of code is derived from the first by placing each line in a separate
function and then calling all functions with empty argument lists. Each (function (){

begins a new block because the body of each JavaScript function is in a separate block.
Each })() closes the function body and calls the function immediately so that the function
body is executed.

(function (){

var x = 5;

(function (){

function f(y) { return (x+y)-2 };

(function (){

function g(h){var x = 7; return h(x)};

(function (){

var x=10; z=g(f);

})()

})()

})()

})()

Problem 7a (2 points)

What is the value of g(f) in the first chunk of code?

Problem 7b (3 points)

Which values of x and y are used when evaluating the expression (x+y)-2 in the first chunk
of code? Why?

5

Problem 7c (2 points)

What is the value of g(f) in the second chunk of code?

Problem 7d (3 points)

Which values of x and y are used when evaluating the expression (x+y)-2 in the second
chunk of code? Why?

6

