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Reading Assignment 

Kaufman 6.1-6 
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Public-Key Cryptography 

 

? 

 
   

            

Given: Everybody knows Bob’s public key 
  - How is this achieved in practice? 

          Only Bob knows the corresponding private key 

private key 

Goals: 1. Alice wants to send a message that  
              only Bob can read 

          2. Bob wants to send a message that 
              only Bob could have written 

 
   

            

public key 

public key 

Alice 
Bob 
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Applications of Public-Key Crypto 

Encryption for confidentiality 

• Anyone can encrypt a message 

– With symmetric crypto, must know the secret key to encrypt 

• Only someone who knows the private key can decrypt 

• Secret keys are only stored in one place 

Digital signatures for authentication 

• Only someone who knows the private key can sign 

Session key establishment 

• Exchange messages to create a secret session key 

• Then switch to symmetric cryptography (why?) 
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Public-Key Encryption 

Key generation: computationally easy to generate 
a pair (public key PK, private key SK) 

Encryption: given plaintext M and public key PK, 
easy to compute ciphertext C=EPK(M) 

Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M 

• Infeasible to learn anything about M from C without SK 

• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M 
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Some Number Theory Facts 

Euler totient function (n) where n1 is the 
number of integers in the [1,n] interval that are 
relatively prime to n 

• Two numbers are relatively prime if their  
    greatest common divisor (gcd) is 1 

Euler’s theorem:  

   if aZn*, then a(n)  1 mod n 

Special case: Fermat’s Little Theorem 

   if p is prime and gcd(a,p)=1, then ap-1  1 mod p 
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RSA Cryptosystem 

Key generation: 

• Generate large primes p, q 

– At least 2048 bits each… need primality testing! 

• Compute n=pq  

– Note that (n)=(p-1)(q-1) 

• Choose small e, relatively prime to (n) 

– Typically, e=3 (may be vulnerable) or e=216+1=65537 (why?) 

• Compute unique d such that ed  1 mod (n) 

• Public key = (e,n);  private key = d 

Encryption of m:  c = me mod n 

Decryption of c:   cd mod n = (me)d mod n = m 

[Rivest, Shamir, Adleman 1977] 
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Why RSA Decryption Works 

ed  1 mod (n) 

Thus ed = 1+k(n) = 1+k(p-1)(q-1) for some k 

If gcd(m,p)=1, then by Fermat’s Little Theorem, 
mp-1  1 mod p 

Raise both sides to the power k(q-1) and multiply 
by m, obtaining m1+k(p-1)(q-1)  m mod p 

Thus med  m mod p 

By the same argument, med  m mod q 

Since p and q are distinct primes and pq=n,  

   med  m mod n 
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Why Is RSA Secure? 

RSA problem: given c, n=pq, and  
 e such that gcd(e,(p-1)(q-1))=1,  
 find m such that me=c mod n 

• In other words, recover m from ciphertext c and public 
key (n,e) by taking eth root of c modulo n 

• There is no known efficient algorithm for doing this 

Factoring problem: given positive integer n, find 
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek 

If factoring is easy, then RSA problem is easy, but 
may be possible to break RSA without factoring n 



 

“Textbook” RSA Is Bad Encryption 

Deterministic 

• Attacker can guess plaintext, compute ciphertext, and 
compare for equality 

• If messages are from a small set (for example, yes/no), 
can build a table of corresponding ciphertexts 

Can tamper with encrypted messages 

• Take an encrypted auction bid c and submit  

   c(101/100)e mod n  instead 

Does not provide semantic security (security 
against chosen-plaintext attacks) 
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Integrity in RSA Encryption 

“Textbook” RSA does not provide integrity 

• Given encryptions of m1 and m2, attacker can create 
encryption of m1m2 

– (m1
e)  (m2

e) mod n  (m1m2)
e mod n 

• Attacker can convert m into mk without decrypting 

– (me)k mod n  (mk)e mod n 

In practice, OAEP is used: instead of encrypting 
M, encrypt MG(r) ; rH(MG(r)) 

• r is random and fresh, G and H are hash functions 

• Resulting encryption is plaintext-aware: infeasible to 
compute a valid encryption without knowing plaintext 

– … if hash functions are “good” and RSA problem is hard 
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Digital Signatures: Basic Idea 

 

? 

 
   

            

Given: Everybody knows Bob’s public key 

          Only Bob knows the corresponding private key 

private key 

Goal: Bob sends a “digitally signed” message 

1. To compute a signature, must know the private key 

2. To verify a signature, only the public key is needed 

 
   

            

public key 

public key 

Alice Bob 
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RSA Signatures 

Public key is (n,e), private key is d 

To sign message m:  s = hash(m)d mod n 

• Signing and decryption are the same mathematical 
operation in RSA 

To verify signature s on message m:    

    se mod n = (hash(m)d)e mod n = hash(m) 

• Verification and encryption are the same mathematical 
operation in RSA 

Message must be hashed and padded (why?) 
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Digital Signature Algorithm (DSA) 

U.S. government standard (1991-94) 

• Modification of the ElGamal signature scheme (1985) 

Key generation: 

• Generate large primes p, q such that q divides p-1 

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0t8 

• Select hZp* and compute g=h(p-1)/q mod p 

• Select random x such 1xq-1, compute y=gx mod p 

Public key: (p, q, g, gx mod p), private key: x 

Security of DSA requires hardness of discrete log 

• If one can take discrete logarithms, then can extract x 
(private key) from gx mod p (public key) 
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DSA: Signing a Message 

Message 

Hash function 

(SHA-1) 

Random secret 

between 0 and q 

r = (gk mod p) mod q 

Private key 

s = k-1(H(M)+xr) mod q 

 
(r,s) is the 

signature on M 
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DSA: Verifying a Signature 

Message 

Signature 
 

w = s’-1 mod q 

Compute  

(gH(M’)w  yr’w mod q  mod p) mod q 

Public key 

 

If they match, signature is valid 
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Why DSA Verification Works 

If (r,s) is a valid signature, then  

   r  (gk mod p) mod q  ;  s  k-1(H(M)+xr) mod q 

Thus H(M)  -xr+ks mod q 

Multiply both sides by w=s-1 mod q 

H(M)w + xrw  k mod q 

Exponentiate g to both sides 

(gH(M)w + xrw  gk) mod p mod q 

In a valid signature, gk mod p mod q = r, gx mod p = y 

Verify gH(M)wyrw  r mod p mod q 
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Security of DSA 

Can’t create a valid signature without private key 

Can’t change or tamper with signed message 

If the same message is signed twice, signatures 
are different 

• Each signature is based in part on random secret k 

Secret k must be different for each signature! 

• If k is leaked or if two messages re-use the same k, 
attacker can recover secret key x and forge any 
signature from then on 
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PS3 Epic Fail 

Sony uses ECDSA algorithm to sign authorized 
software for Playstation 3 

• Basically, DSA based on elliptic curves 

   … with the same random value in every signature 

Trivial to extract master signing key and sign any 
homebrew software – perfect “jailbreak” for PS3 

Announced by George “Geohot” Hotz 
   and Fail0verflow team in Dec 2010 
 

Q: Why didn’t Sony just revoke the key? 
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Diffie-Hellman Protocol 

Alice and Bob never met and share no secrets 

Public info: p and g 

• p is a large prime number, g is a generator of Zp* 

– Zp*={1, 2 … p-1}; aZp* i such that a=gi mod p 

 

Alice Bob 

Pick secret, random X Pick secret, random Y 

 

gy mod p 

gx mod p 

Compute k=(gy)x=gxy mod p 
 

Compute k=(gx)y=gxy mod p 
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Why Is Diffie-Hellman Secure? 

Discrete Logarithm (DL) problem:  
   given gx mod p, it’s hard to extract x 

• There is no known efficient algorithm for doing this 

• This is not enough for Diffie-Hellman to be secure! 

Computational Diffie-Hellman (CDH) problem: 
   given gx and gy, it’s hard to compute gxy mod p 

• … unless you know x or y, in which case it’s easy 

Decisional Diffie-Hellman (DDH) problem:  

   given gx and gy, it’s hard to tell the difference 
between gxy mod p and gr mod p where r is random 
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Properties of Diffie-Hellman 

Assuming DDH problem is hard, Diffie-Hellman 
protocol is a secure key establishment protocol 
against passive attackers 

• Eavesdropper can’t tell the difference between the 
established key and a random value 

• Can use the new key for symmetric cryptography 

Basic Diffie-Hellman protocol does not provide 
authentication 

• IPsec combines Diffie-Hellman with signatures, anti-DoS 
cookies, etc. 
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Advantages of Public-Key Crypto 

Confidentiality without shared secrets 

• Very useful in open environments 

• Can use this for key establishment, avoiding the 
“chicken-or-egg” problem 

– With symmetric crypto, two parties must share a secret before 
they can exchange secret messages 

Authentication without shared secrets 

Encryption keys are public, but must be sure that 
Alice’s public key is really her public key 

• This is a hard problem… Often solved using public-key 
certificates 
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Disadvantages of Public-Key Crypto 

Calculations are 2-3 orders of magnitude slower 

• Modular exponentiation is an expensive computation 

• Typical usage: use public-key cryptography to establish 
a shared secret, then switch to symmetric crypto 

– SSL, IPsec, most other systems based on public crypto 

Keys are longer 

• 2048 bits (RSA) rather than 128 bits (AES) 

Relies on unproven number-theoretic assumptions 

• Factoring, RSA problem, discrete logarithm problem, 
decisional Diffie-Hellman problem… 


