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Stream Ciphers 

One-time pad: 

   Ciphertext(Key,Message)=MessageKey 

• Key must be a random bit sequence as long as message 

Idea: replace “random” with “pseudo-random” 

• Use a pseudo-random number generator (PRNG) 

• PRNG takes a short, truly random secret seed and 
expands it into a long “random-looking” sequence 

– E.g., 128-bit seed into a 106-bit  

   pseudo-random sequence 

Ciphertext(Key,Msg)=IV, MsgPRNG(IV,Key) 

• Message processed bit by bit (unlike block cipher) 

No efficient algorithm can tell 
this sequence from truly random 
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Stream Cipher Terminology 

The seed of a pseudo-random generator typically 
consists of initialization vector (IV) and key  

• The key is a secret known only to the sender and the 
recipient, not sent with the ciphertext 

• IV is usually sent with the ciphertext 

The pseudo-random bit stream produced by 
PRNG(IV,key) is referred to as the keystream 

Encrypt message by XORing with keystream 

• ciphertext = message  keystream 
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Properties of Stream Ciphers 

Usually very fast (faster than block ciphers) 

• Used where speed is important: WiFi, DVD, RFID, VoIP 

Unlike one-time pad, stream ciphers do not 
provide perfect secrecy 

• Only as secure as the underlying PRNG 

• If used properly, can be as secure as block ciphers 

PRNG must be cryptographically secure 
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Using Stream Ciphers 

No integrity 

• Associativity & commutativity: 

   (M1PRNG(seed))  M2 = (M1M2)  PRNG(seed) 

• Need an additional integrity protection mechanism  

Known-plaintext attack is very dangerous if 
keystream is ever repeated 

• Self-cancellation property of XOR: XX=0 

• (M1PRNG(seed))  (M2PRNG(seed)) = M1M2 

• If attacker knows M1, then easily recovers M2  …  

   also, most plaintexts contain enough redundancy that 
can recover parts of both messages from M1M2  
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How Random is “Random”? 
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Cryptographically Secure PRNG 

Next-bit test: given N bits of the pseudo-random 
sequence, predict (N+1)st bit 

• Probability of correct prediction should be very close to 
1/2 for any efficient adversarial algorithm  

   (means what?) 

PRNG state compromise 

• Even if the attacker learns the complete or partial state 
of the PRNG, he should not be able to reproduce the 
previously generated sequence 

– … or future sequence, if there’ll be future random seed(s) 

Common PRNGs are not cryptographically secure  
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LFSR: Linear Feedback Shift Register 

b0 

Example: 

4-bit LFSR b1 b2 b3    
 

  
 

 

For example, if the seed is 1001, the generated 
sequence is 1001101011110001001… 

Repeats after 15 bits (24-1) 

add to pseudo-random sequence 
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Each DVD is encrypted with 
a disk-specific 40-bit DISK KEY 

 
Each player has its own PLAYER KEY 

(409 player manufacturers, 

each has its player key) 

Content Scrambling System (CSS) 

DVD encryption scheme from Matsushita and Toshiba 

KEY DATA BLOCK contains disk key encrypted 
with 409 different player keys: 

• EncryptDiskKey(DiskKey) 

• EncryptPlayerKey1(DiskKey) … EncryptPlayerKey409(DiskKey) 
 

This helps attacker 
verify his guess of disk key 

 
What happens if even a single 
player key is compromised? 
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Attack on CSS Decryption Scheme 

 Given known 40-bit plaintext, repeat the following 5 times (once for each plaintext byte):  

    guess the byte output by the sum of the two LFSRs; use known ciphertext to verify 
    – this takes O(28)    

 For each guessed output byte, guess 16 bits contained in LFSR-17 – this takes O(216) 

 Clock out 24 bits out of LFSR-17, use subtraction to determine the corresponding 

    output bits of LFSR-25 – this reveals all of LFSR-25 except the highest bit 

 “Roll back” 24 bits, try both possibilities – this takes O(2) 

 Clock out 16 more bits out of both LFSRs, verify the key 

   … 

   … 

LFSR-17 

disk key 

  
LFSR-25 

 

 
24 key bits 

16 key bits 

“1” seeded in 4th bit  

“1” seeded in 1st bit  

 

 

invert  
 

+mod 256 

carry 

  

Encrypted title key 
Table-based 
“mangling”  

 
Decrypted title key  

 
 

 
 

 

 

EncryptDiskKey(DiskKey) 

stored on disk  

This attack takes O(225)  

[Frank Stevenson] 
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DeCSS 

In CSS, disk key is encrypted under hundreds of 
different player keys… including Xing, a 
software DVD player 

Reverse engineering the object code of Xing 
revealed its player key 

• Every CSS disk contains the master disk key 
encrypted under Xing’s key 

• One bad player  entire system is broken! 

Easy-to-use DeCSS software 
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DeCSS Aftermath 

DVD CCA sued Jon Lech Johansen 
   (“DVD Jon”), one of DeCSS authors -  
   eventually dropped 

Publishing DeCSS code violates copyright 

• Underground distribution as haikus and T-shirts 

• “Court to address DeCSS T-Shirt: When can a T-shirt 
become a trade secret? When it tells you how to copy 
a DVD.”     - Wired News 
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RC4 

Designed by Ron Rivest for RSA in 1987 

Simple, fast, widely used 

• SSL/TLS for Web security, WEP for wireless 
 
Byte array S[256] contains a permutation of numbers from 0 to 255 

i = j := 0 

loop 

 i := (i+1) mod 256 

 j := (j+S[i]) mod 256 

 swap(S[i],S[j]) 

 output (S[i]+S[j]) mod 256 

end loop 
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RC4 Initialization 

Divide key K into L bytes 

for i = 0 to 255 do 

     S[i] := i 

j := 0 

for i = 0 to 255 do 

 j := (j+S[i]+K[i mod L]) mod 256 

 swap(S[i],S[j]) 

Key can be any length 
up to 2048 bits 

Generate initial permutation 
from key K  

 To use RC4, usually prepend initialization vector (IV) to the key 

• IV can be random or a counter 

 RC4 is not random enough… First byte of generated sequence depends 
only on 3 cells of state array S - this can be used to extract the key! 

• To use RC4 securely, RSA suggests discarding first 256 bytes Fluhrer-Mantin-
Shamir attack 
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802.11b Overview 

Standard for wireless networks (IEEE 1999) 

Two modes: infrastructure and ad hoc 

 

IBSS (ad hoc) mode BSS (infrastructure) mode 
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Access Point SSID 

Service Set Identifier (SSID) is the “name” of the 
access point 

• By default, access point broadcasts its SSID in 
plaintext “beacon frames” every few seconds 

Default SSIDs are easily guessable 

• Manufacturer’s defaults: “linksys”, “tsunami”, etc. 

• This gives away the fact that access point is active 

Access point settings can be changed to prevent 
it from announcing its presence in beacon frames 
and from using an easily guessable SSID 

• But then every user must know SSID in advance 
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WEP: Wired Equivalent Privacy 

Special-purpose protocol for 802.11b 

Goals: confidentiality, integrity, authentication 

• Intended to make wireless as secure as wired network 

Assumes that a secret key is shared between 
access point and client 

Uses RC4 stream cipher seeded with 24-bit 
initialization vector and 40-bit key 

• Terrible design choice for wireless environment 
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Shared-Key Authentication 

 

beacon 

Prior to communicating data, access point may require client to authenticate 

Access Point 
 

 

Client 

 

 

 

association 
request 

 association 
response 

 probe request 
OR 

 challenge 

IV, challengeRC4(IV,K) 

unauthenticated & 
unassociated 

authenticated & 
unassociated 

 

authenticated & 
associated 

 

Passive eavesdropper recovers RC4(IV,K),  
can respond to any subsequent challenge  
without knowing K 
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How WEP Works 

24 bits 40 bits 

 
(IV, shared key) used as RC4 seed 

• Must never be repeated (why?) 

• There is no key update protocol, so 

   security relies on never repeating IV 

IV sent in the clear 

Worse: changing IV with 
each packet is optional! 

CRC-32 checksum is linear in :  

if attacker flips some plaintext bits, he knows which 
bits of CRC to flip to produce the same checksum 

no integrity! 
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RC4 Is a Bad Choice for Wireless 

Stream ciphers require sender and receiver to be 
at the same place in the keystream 

• Not suitable when packet losses are common 

WEP solution: a separate keystream for each 
packet (requires a separate seed for each packet) 

• Can decrypt a packet even if a previous packet was lost 

But there aren’t enough possible seeds! 

• RC4 seed = 24-bit initialization vector + fixed key 

• Assuming 1500-byte packets at 11 Mbps,  

   224 possible IVs will be exhausted in about 5 hours 

Seed reuse is deadly for stream ciphers 
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Recovering the Keystream 

Get access point to encrypt a known plaintext 

• Send spam, access point will encrypt and forward it 

• Get victim to send an email with known content 

With known plaintext, easy to recover keystream 

• C  M = (MRC4(IV,key))  M = RC4(IV,key) 

Even without knowing the plaintext, can exploit 
plaintext regularities to recover partial keystream 

• Plaintexts are not random: for example, IP packet 
structure is very regular 

Not a problem if the keystream is not re-used 
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Keystream Will Be Re-Used 

In WEP, repeated IV means repeated keystream 

Busy network will repeat IVs often 

• Many cards reset IV to 0 when re-booted, then 
increment by 1  expect re-use of low-value IVs 

• If IVs are chosen randomly, expect repetition in O(212) 
due to birthday paradox 

Recover keystream for each IV, store in a table 

• (KnownM  RC4(IV,key))  KnownM = RC4(IV,key) 

Wait for IV to repeat, decrypt, enjoy plaintext 

• (M’  RC4(IV,key))  RC4(IV,key) = M’ 
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It Gets Worse 

Misuse of RC4 in WEP is a design flaw with no fix 

• Longer keys do not help! 

– The problem is re-use of IVs, their size is fixed (24 bits) 

• Attacks are passive and very difficult to detect 

Perfect target for the Fluhrer et al. attack on RC4 

• Attack requires known IVs of a special form 

• WEP sends IVs in plaintext 

• Generating IVs as counters or random numbers will 
produce enough “special” IVs in a matter of hours 

This results in key recovery (not just keystream) 

• Can decrypt even ciphertexts whose IV is unique 
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Fixing the Problem 

Extensible Authentication Protocol (EAP) 

• Developers can choose their own authentication method 

– Passwords (Cisco EAP-LEAP), public-key certificates (Microsoft 
EAP-TLS), passwords OR certificates (PEAP), etc. 

802.11i standard fixes 802.11b problems 

• Patch (TKIP): still RC4, but encrypts IVs and establishes 
new shared keys for every 10 KBytes transmitted 

– Use same network card, only upgrade firmware 

– Deprecated by the Wi-Fi alliance  

• Long-term: AES in CCMP mode, 128-bit keys, 48-bit IVs 

– Block cipher in a stream cipher-like mode 
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Hacking MIFARE Chips 

Multi-year project on evaluating security of 
MIFARE cards at Radboud University in Holland 

• http://www.ru.nl/ds/research/rfid/ 

MIFARE = a case study in how not to design 
cryptographic authentication systems 

The following slides are from  
   Peter Van Rossum 

 

 

 

 

http://www.ru.nl/ds/research/rfid/
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MIFARE Chips 

Series of chips used in contactless smart cards 

• Developed by NXP Semiconductors in the Netherlands 

Very common in transport payment cards 

 

 

 

 

MIFARE Classic: 80% of the market 

• Over 1 billion sold, over 200 million in use 



 
uid, manufacturer data 

data 

data 

key A, access conditions, key B 

data 

data 

data 

key A,access conditions, key B 

data 

data 

data 

key A, access conditions, key B 

0 0 

1 

2 

3 

4 

5 

6 

7 

60 

61 

62 

63 

1 

15 

16 bytes 

64 blocks 16 sectors 

48 bits 48 bits 
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Memory Structure of the Card 
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LFSR 

 

Home-brewed 
“filter” function 



 Tag Reader 

LFSR stream: 

    Initial state of the LFSR is the key 

    ai := ki        i ∈ [0,47] 

 

     

 

 

 

    Shift nT + uid into the LFSR 

    ai+48 := L(ai,…,ai+47) + nTi + uidi    i ∈ [0,31] 

 

     

 

    Shift nR into the LFSR  

    ai+48 := L(ai,…,ai+47) + nRi-32               i ∈ [32,63] 

    After authentication, LFSR keeps shifting  

    ai+48 := L(ai,…,ai+47)                      i ∈ [64, ∞)  

 

Keystream: 

    bi := f(ai+9,ai+11,…,ai+47)              i ∈ [32, ∞) 

auth. ok auth. ok 

uid 

auth(block) 

nT 

{nR,aR} 

{aT} 

pick nT 

check aR 

aT:=suc96(nR) 

check aT 

pick nR 

aR:=suc64(nT) 
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Challenge-Response in CRYPTO1 

Generated 
by PRNG 



 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PRNG in CRYPTO1 

• Linear feedback shift register 

• 16-bit internal state 

• Period 216 – 1 = 65535 
 
Feedback: 

L16(x0,x1,…,x15) := x0+x2+x3+x5 

Successor: 

suc(x0,x1,…,x31) := (x1,x2,…,x30,L16(x16,x17,…,x31)) 
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Replay Attack 

Good challenge-response authentication requires 
some form of “freshness” in each session 

• For example, timestamp or strong (pseudo)randomness 

MIFARE Classic: no clock + weak randomness 

• “Random” challenges repeat a few times per hour 

Eavesdrop and record communication session 

When challenge repeats, send known plaintext, 
extract keystream, use it to decrypt recorded 
communication that used the same challenge 

[Gans, Hoepman, Garcia] 



 

1. Acquire keystream 

• Observe authentication  keystream 

• 1 to 3 authentication sessions – takes microseconds 

2. Invert the filter function 

• Keystream  internal state of LFSR 

• Approx. 226 operations – takes seconds 

3. Roll back (“unshift”) the LFSR 

• Internal state of LFSR at any time  seed (= key) 

• Problem: bad PRNG design… cryptographically 
secure PRNG should not allow rollback and recovery 
of the seed even if state is compromised 
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Extracting the Key from Reader 



 Tag Reader 

auth. ok auth. ok 

uid 

auth(block) 

nT 

{nR,aR} 

{aT} 

pick nT 

check aR 

aT:=suc96(nT) 

check aT 

pick nR 

aR:=suc64(nT) 

 Intercepted communication: 

• nT, {aR}, {aT} visible to attacker 

• {aR} = suc64(nT), {aT} = suc96(nT)  

• 64 keystream bits 

 

OR 

 

 Access to reader only: 

• nT under attacker control 

• {aR} = suc64(nT) visible to attacker 

• 32 keystream bits 

 

Acquiring Keystream 
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# # # # # # # # # # # # # # # # # # # # 

keystream: 01100111100110110 

Filter function only depends only on 20 odd bits of input  easily inverted 
• Compute ‘odd’ bits of LFSR using table and deduce ‘even’ bits (linear relation) OR 

• Compute ‘odd’ and ‘even’ bits of LFSR using tables separately and combine tables 

#################### 

 

00000000000000000000 

00000000000000000001 

00000000000000000011 

00000000000000000100 

00000000000000000110 

… 

produces ‘odd’ keystream 0 

# ################### # 

 

0 0000000000000000000 0 

0 0000000000000000000 1 

0 0000000000000000001 

0 0000000000000000011 1 

0 0000000000000000100 0 

… 

produces ‘odd’ keystream 01 

## ################## # 

 

00 000000000000000000 1 

00 000000000000000001 1 

00 000000000000000111 0 

00 000000000000000111 1 

00 000000000000001000 

… 

produces ‘odd’ keystream 010 

219              
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Inverting the Filter Function 



 

Feedback: 
    L(x0,x1,…,x47) := x0+x5+x9+x10+x12+x14 

        +x15+x17+x19+x24+x25+x27+x29+x35+x39 

        +x41+x43 
 
LFSR stream: 
    Initial state of the LFSR is the key 
    ai := ki                      i ∈ [0,47] 
    Shift nT + uid into the LFSR 
    ai+48 := L(ai,…,ai+47) + nTi + uidi  i ∈ [0,31] 
    Shift nR into the LFSR  

    ai+48 := L(ai,…,ai+47) + nRi-32            i ∈ [32,63] 
    After authentication, LFSR keeps shifting  
    ai+48 := L(ai,…,ai+47)                    i ∈ [64, ∞)  

 
Keystream: 
    bi := f(ai+9,ai+11,…,ai+47)              i∈ℕ 
 
 

Inverting feedback: 

   R(x1,…,x47,x48) := x5+x9+x10+x12+x14    

        +x15+x17+x19+x24+x25+x27+x29+x35+x39 

        +x41+x43+x48 

   R(x1,…,x47,L(x0,x1,…,x47)) = x0 

 

Inverting LFSR stream: 

    Unshift LFSR until end of authentication 

    ai = R(ai+1,…,ai+48)                    i ∈ [64, ∞) 

    Unshift nR from the LFSR  

    ai = R(ai+1,…,ai+48) + nRi-32            i ∈ [32,63] 

        = R(ai+1,…,ai+48) + {nR}i-32 + bi 

        = R(ai+1,…,ai+48) + {nR}i-32 + f(ai+9,…,ai+47) 

    Unshift nT + uid from the LFSR 

    ai = R(ai+1,…,ai+48) + nTi + uidi  i ∈ [0,31] 

    Key is the initial state of the LFSR  

    ki = ai                   i ∈ [0,47] 

                 
                                                 

                 
                                                 

Rolling Back the LFSR 
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Summary: Weaknesses of CRYPTO1 

Stream cipher with 48-bit internal state 

• Enables brute-force attack 

Weak 16-bit random number generator 

• Enables chosen-plaintext attack and replay attack 

Keystream based on simple LFSR structure + 
weak “one-way” filter function 

• Invert filter function  obtain state of LFSR 

• Roll back LFSR  recover the key 

– 64-bit keystream  recover unique key 

– 32-bit keystream  216 candidate keys 
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Extracting the Key (Card Only) 

Parity bit of plaintext is encrypted with the same 
bit of the keystream as the next bit of plaintext 

• “One-time” pad is used twice 

If parity bit is wrong, encrypted error message is 
sent before authentication 

• Opens the door to card-only guessing attacks (chosen-
plaintext, chosen-ciphertext) – why? 

• Wireless-only attack 

Recover secret key from the card in seconds 

• Result: full cloning of the card 
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