CS 380S

Ox1A Great Papers In
Computer Security

Vitaly Shmatikov

http://www.cs.utexas.edu/~shmat/courses/cs380s/

Reference Monitor

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Observes execution of the program/process
o At what level? Possibilities: hardware, OS, network

® Halts or confines execution if the program is about
to violate the security policy
e What's a “security policy™?

e Which system events are relevant to the policy?
— Instructions, memory accesses, system calls, network packets...

Cannot be circumvented by the monitored process

slide 2

Enforceable Security Policies

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

® Reference monitors can only enforce
safety policies [schneider 98]
e Execution of a process is a sequence of states

o Safety policy is a predicate on a prefix of the sequence

— Policy must depend only on the past of a particular execution;
once it becomes false, it's always false

® Not policies that require knowledge of the future

e "If this server accepts a SYN packet, it will eventually
send a response”

@ Not policies that deal with all possible executions
e “This program should never reveal a secret”

slide 3

Reference Monitor Implementation
Kernelized Wrapper Modified program
P RM Program
(Gl Program RM
Lt Lt Lt
RM Kernel Kernel
Kernel

Integrate reference monitor into
program code during compilation
or via binary rewriting

— Policies can depend on application semantics
— Enforcement doesn't require context switches in the kernel
— Lower performance overhead

slide 4

What Makes a Process Safe?

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

® Memory safety: all memory accesses are “correct”

e Respect array bounds, don‘t stomp on another process'’s
memory, don't execute data as if it were code

@ Control-flow safety: all control transfers are
envisioned by the original program

e No arbitrary jumps, no calls to library routines that the
original program did not call

@ Type safety: all function calls and operations have
arguments of correct type

slide 5

OS as a Reference Monitor

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Collection of running processes and files
e Processes are associated with users
e Files have access control lists (ACLs) saying which
users can read/write/execute them
€ 0OS enforces a variety of safety policies
o File accesses are checked against file's ACL
e Process cannot write into memory of another process

e Some operations require superuser privileges
— But may need to switch back and forth (e.g., setuid in Unix)

e Enforce CPU sharing, disk quotas, etc.
€ Same policy for all processes of the same user

slide 6

Hardware Mechanisms: TLB

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

€ TLB: Translation Lookaside Buffer

e Maps virtual to physical addresses
e Located next to the cache

e Only supervisor process can manipulate TLB

— But if OS is compromised, malicious code can abuse TLB to
make itself invisible in virtual memory (Shadow Walker)

€ TLB miss raises a page fault exception
e Control is transferred to OS (in supervisor mode)
e OS brings the missing page to the memory

@ This is an expensive context switch

slide 7

AN P i G ST e W T P S S ST B R S T P P R G ST B A e W R L

Time

P N LSRG AN S B [Morrisett]

User Process . Kernel
calls f=fopen(“foo”) :

library executes “break-
T saves context, flushes TLB, etc.

trap _
: checks UID against ACL, sets up IO
buffers & file context, pushes ptr to
context on user’s stack, etc.

restores context, clears supervisor bit
calls fread(f,n,&buf) 4“1

library executes “break \ saves context, flushes TLB, etc.

checks f is a valid file context, does
disk access into local buffer, copies
results into user’s buffer, etc.

/ restores context, clears supervisor bit

slide 8

Modern Hardware Meets Securlty

AN P e G ST e W P P S ST B R S T P i S ST W PR O S ST S S W R LY WANTIEN

® Modern hardware: large number of registers, big
memory pages

® Isolation = each process should live in its own
hardware address space

¢ ... but the performance cost of inter-process
communication is increasing
e Context switches are very expensive

e Trapping into OS kernel requires flushing TLB and
cache, computing jump destination, copying memory

@ Conflict: isolation vs. cheap communication

slide 9

Software Fault Isolation (SFI)

CWEE PR i G ST B A W VPR O ST B A N W R R R T P A R R PR RN [Wa h be et a I . SOS P ‘9 3]

@ Processes live in the same hardware address
space; software reference monitor isolates them
e Each process is assigned a logical “fault domain”

e Check all memory references and jumps to ensure they
don't leave process’s domain

@ Tradeoff: checking vs. communication

o Pay the cost of executing checks for each memory
write and control transfer to save the cost of context
switching when trapping into the kernel

slide 10

Fault Domains

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Process’s code and data in one memory segment
o Identified by a unique pattern of upper bits
e Code is separate from data (heap, stack, etc.)
e Think of a fault domain as a “sandbox”

Binary modified so that it cannot escape domain

e Addresses are masked so that all memory writes are to
addresses within the segment
— Coarse-grained memory safety (vs. array bounds checking)

e Code is inserted before each jump to ensure that the
destination is within the segment

@ Does this help much against buffer overflows?

slide 11

Verlfymg Jumps and Stores

R G T B A W VPR R G T B A W VPR O i ST B A O R O D ST P A O R L RO G ST A

@ If target address can be determined statically,
mask it with the segment’s upper bits
e Crash, but won't stomp on another process’s memory

@ If address unknown until runtime, insert checking
code before the instruction

@ Ensure that code can’t jump around the checks

e Target address held in a dedicated register

e Its value is changed only by inserted code, atomically,
and only with a value from the data segment

slide 12

Simple SFI Example
® Fault domain = from 0x1200 to Ox12FF
Original code: write x
Naive SFI: X:=X& OOFF\> convert x into an address that
x 1= x | 1200 lies within the fault domain
/_,, write x — V-\7hat if the code jumps right here?
@ Better SFI.: tmp := x & O0FF
tmp :=tmp | 1200
write tmp

slide 13

Inline Reference Monitor

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Generalize SFI to more general safety policies
than just memory safety
e Policy specified in some formal language

e Policy deals with application-level concepts: access to
system resources, network events, etc.

— “No process should send to the network after reading a file”,
“No process should open more than 3 windows”, ...

@ Policy checks are integrated into the binary code
e Via binary rewriting or when compiling

® Inserted checks should be uncircumventable
e Rely on SFI for basic memory safety

slide 14

Pollcy SpeC|f|cat|on in SASI

~ [Cornell project]

— (op = “div” —read —send
A arg2 = 0)
read

No division by zero No network send after file read

SASI policies are finite-state automata

€ Can express any safety policy

€ Easy to analyze, emulate, compile

€ Written in SAL language (textual version of diagrams)

slide 15

Policy Enforcement

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Checking before every instruction is an overkill
e Check “No division by zero” only before DIV

€ SASI uses partial evaluation
o Insert policy checks before every instruction, then rely
on static analysis to eliminate unnecessary checks
® There is a “semantic gap” between individual
instructions and policy-level events

o Applications use abstractions such as strings, types,
files, function calls, etc.

e Reference monitor must synthesize these abstractions
from low-level assembly code

slide 16

M. Abadi, M. Budiu, U. Erlingsson, J. Ligatti

Control-Flow Integrity:
Principles, Implementations, and Applications

(CCS 2005)

slide 17

CFI Control FIow Integrlty

LA B0 N LA S A NS W N LA R TA NG B0 N LA R S TN S B N LA A Y [Abadl etal]

€ Main idea: pre-determine control flow graph
(CFG) of an application
e Static analysis of source code
e Static binary analysis <« CFI
e Execution profiling
o Explicit specification of security policy

® Execution must follow the pre-determined
control flow graph

slide 18

CFI: Binary Instrumentation

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Use binary rewriting to instrument code with
runtime checks (similar to SFI)

@ Inserted checks ensure that the execution always

stays within the statically determined CFG

e \WWhenever an instruction transfers control, destination
must be valid according to the CFG

Goal: prevent injection of arbitrary code and
invalid control transfers (e.g., return-to-libc)

e Secure even if the attacker has complete control over
the thread’s address space

slide 19

B W VPR O D ST B A O R PR i G ST A

sort2 () : sort(): 1e():
Ly
bool 1t(int x, int y) { g B § pr Label 17
return x < y; / 2
} call sort”] call 17,RY]
e et 23
& TN
return x > y; 2 g ~ t():
“ ;g—
} A ~ N label 17
call sort e ret 55 '\\
-~
. . . - by g
sort2(int al[l, int b[], int len) label co&F N
{ ret 23
sort(a, len, 1t); g
, sort(b, len, gt); ot

slide 20

CFI: Control Flow Enforcement

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ For each control transfer, determine statically its
possible destination(s)

@ Insert a unique bit pattern at every destination

e Two destinations are equivalent if CFG contains
edges to each from the same source
— This is imprecise (why?)
e Use same bit pattern for equivalent destinations

@ Insert binary code that at runtime will check
whether the bit pattern of the target instruction
matches the pattern of possible destinations

slide 21

CFI: Example of Instrumentation

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Original code

Source Destination
Opcode bytes Instructions Opcode bytes Instructions
FF El jmp ecx ; computed jump 8B 44 24 04 mov eax, [espt4] ; dst

Instrumented code

B8 77 56 34 12 345677h ; load ID-1 3E OF 18 05 ; label
40 n¢ eax ; add 1 for ID 78 56 34 12 3 ID
39 41 04 5 [ecx+4], es ; compare w/dst 8B 44 24 04 ; dst
75 13 jne abel ; 1f V= fail

FF E1 jmp ; jump to label

Abuse an x86 assembly instruction to

Jump to the destination only if insert “12345678" tag into the binary
the tag is equal to "12345678"

slide 22

CFI: Preventing Circumvention

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Unique IDs

e Bit patterns chosen as destination IDs must not appear
anywhere else in the code memory except ID checks
Non-writable code
e Program should not modify code memory at runtime
— What about run-time code generation and self-modification?
Non-executable data
e Program should not execute data as if it were code

® Enforcement: hardware support + prohibit system
calls that change protection state + verification at
load-time

slide 23

Improving CFI Precision

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Suppose a call from A goes to C, and a call from B
goes to either C, or D (when can this happen?)

e CFI will use the same tag for C and D, but this allows
an “invalid” call from A to D

e Possible solution: duplicate code or inline
e Possible solution: multiple tags

@ Function F is called first from A, then from B;
what's a valid destination for its return?

o CFI will use the same tag for both call sites, but this
allows F to return to B after being called from A

e Solution: shadow call stack

slide 24

CFI: Security Guarantees

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

® Effective against attacks based on illegitimate
control-flow transfer

o Stack-based buffer overflow, return-to-libc exploits,
pointer subterfuge

@ Does not protect against attacks that do not
violate the program’s original CFG
e Incorrect arguments to system calls
e Substitution of file names
e Other data-only attacks

slide 25

P055|ble Executlon of Memory

- By s - [Erlingsson]

h h

Possible control

flow destination Possible Execution of Memory
|:| Safe code/data

Data memory {

Code memotry
for function A

for function B

Code memory {

l l |
X86 XBEMNX RISC/INX x86/CFI

slide 26

Next Step: XFI

AT S N W P O G ST B A W W Y [Erllngsson et aI- OSDI ‘06]

® Inline reference monitor added via binary
rewriting
e Can be applied to some legacy code

@ CFI to prevent circumvention

@ Fine-grained access control policies for
memory regions
e More than simple memory safety (cf. SFI)

® Relies in part on load-time verification
e Similar to “proof-carrying code”

slide 27

Two Stacks

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

€ XFI maintains a separate “scoped stack” with
return addresses and some local variables

e Keeps track of function calls, returns and exceptions

@ Secure storage area for function-local information

e Cannot be overflown, accessed via a computed
reference or pointer, etc.

e Stack integrity ensured by software guards
e Presence of guards is determined by static verification
when program is loaded
@ Separate “allocation stack” for arrays and local
variables whose address can be passed around

slide 28

XFI: Memory Access Control

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

€ Module has access to its own memory
o With restrictions (e.g., shouldnt be able to corrupt its
own scoped stack)
@ Host can also grant access to other contiguous
memory regions
e Fine-grained: can restrict access to a single byte

o Access to constant addresses and scoped stack verified
statically

e Inline memory guards verify other accesses at runtime

— Fast inline verification for a certain address range; if fails, call
special routines that check access control data structures

slide 29

XFI: Preventing Circumvention

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Integrity of the XFI protection environment
e Basic control-flow integrity

e “Scoped stack” prevents out-of-order execution paths
even if they match control-flow graph

e Dangerous instructions are never executed or their
execution is restricted

— For example, privileged instructions that change protection
state, modify x86 flags, etc.

@ Therefore, XFI modules can even run in kernel

slide 30

WIT: Write Integrity Testing

remmmsmmemmm_= T Akritidis et al. “Preventing memory error exploits with WIT” Oakland *08]

€ Combines static analysis ...

e For each memory write, compute the set of memory
locations that may be the destination of the write

e For each indirect control transfer, compute the set of
addresses that may be the destination of the transfer

e "Color table” assigns matching colors to instruction
(write or jump) and all statically valid destinations
— Is this sound? Complete?

¢ ... with dynamic enforcement

e Code is instrumented with runtime checks to verify
that destination of write or jump has the right color

slide 31

WIT: Write Safety Analysis

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

& Start with off-the-shelf “points-to” analysis
e Gives a conservative set of possible values for each ptr

€ A memory write instruction is “safe” if...

e It has no explicit destination operand, or destination
operand is a temporary, local or global variable

— Such instructions either modify registers, or a constant number
of bytes starting at a constant offset from the frame pointer or
the data segment (example?)

e ... or writes through a pointer that is always in bounds
— How do we know statically that a pointer is always in bounds?

@ Safe instructions require no runtime checks
Can also infer safe destinations (how?) e

WIT Runtime Checks

L TP G ST e N I P G ST B e W T P S G S TS B R N TP R G ST B S N W R PR O G ST R A

@ Statically, assign a distinct color to each unsafe
write instruction and all of its possible destinations

o What if some destination can be written by two
different instructions? Any security implications?

€ Add a runtime check that destination color
matches the statically assigned color

o What attack is this intended to prevent?

€ Same for indirect (computed) control transfers

o Except for indirect jumps to library functions (done
through pointers which are protected by write safety)

e How is this different from CFI? Hint: think RET address

slide 33

WIT Additional Protections

S TP G TN S N T TP O G ST e N T TP P G ST B R P P S G ST B S W O RV PR N G ST A

€ Change layout of stack frames to segregate safe
and unsafe local variables

@ Surround unsafe objects by guards/canaries
e What attack is this intended to prevent? How?

@® Wrappers for malloc()/calloc() and free()
e malloc() assigns color to newly allocated memory

o free() is complicated
— Has the same (statically computed) color as the freed object
— At runtime, treated as an unsafe write to this object
— Reset color of object to 0 — what attack does this prevent?
— Several other subtle details and checks

slide 34

WIT Handlmg L|brar|es

S TP G TN S N T TP O G ST e N T TP P G ST B R P P S G ST B S W O RV PR N G ST A

#Basic WIT doesn’t work for libraries (why?)

® Instead, assign the same, standard color to all
unsafe objects allocated by library functions and
surround them by guards
e Different from the colors of safe objects and guards
e Prevents buffer overflows
o What attack does this not prevent?

@ Wrappers for memory copying functions

 For example, memcpy() and strcpy()

e Receive color of the destination as an extra argument,
check at runtime that it matches static color

slide 35

B. Yee et al.

Native Client:
A Sandbox for Portable, Untrusted x86 Native Code

(Oakland 2009)

slide 36

Native Client

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Goal: download an x86 binary and run it "safely”
e Much better performance than JavaScript, Java, etc.

@ ActiveX: verify signature, then unrestricted
e Critically depends on user’s understanding of trust

€ .NET controls: IL bytecode + verification

Native Client: sandbox for untrusted x86 code
o Restricted subset of x86 assembly
o SFI-like sandbox ensures memory safety
o Restricted system interface
e (Close to) native performance

slide 37

NaCISandbox

W TP G ST e N T TP G T e N T P O G TN B W P P O S ST B S W O RV PR N G ST A

® Code is restricted to a subset of x86 assembly
e Enables reliable disassembly and efficient validation

e No unsafe instructions

— syscall, int, ret, memory-dependent jmp and call, privileged
instructions, modifications of segment state ...

@ No loads or stores outside dedicated segment

e Address space constrained to 0 mod 32 segment
e Similar to SFI

@ Control-flow integrity

slide 38

Constraints for NaCl Binaries

TN AL 2T,
- - .. - - ,_2 Do TN VN0 b

Cl1

2

C3

C4

C5

Co

Once loaded into the memory, the binary is not writable,
enforced by OS-level protection mechanisms during execu-
tion.

The binary is statically linked at a start address of zero, with
the first byte of text at 64K.

All indirect control transfers use a naclijmp psendo-
instruction {defined below).

The binary is padded up to the nearest page with at least
one hlt instruction (0xfd),

The binary contains no instructions or pseudo-instructions
overlapping a 32-byte boundary.

All valid instruction addresses are reachable by a fall-
through disassembly that starts at the load (base) address.
All direct control transfers target valid instructions.

slide 39

Control-Flow Integrity in NaCl

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ For each direct branch, statically compute target
and verify that it’s a valid instruction
e Must be reachable by fall-through disassembly

@ Indirect branches must be encoded as
and %eax, 0xffffffe0
jmp *%eax
e Guarantees that target is 32-byte aligned
e Works because of restriction to the zero-based segment
o Very efficient enforcement of control-flow integrity

®No RET
e Sandboxing sequence, then indirect jump

slide 40

Interacting with Host Machine

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Trusted runtime environment for thread creation,
memory management, other system services

€ Untrusted — trusted control transfer: trampolines

o Start at 0 mod 32 addresses (why?) in the first 64K of
the NaCl module address space
— First 4K are read- and write-protected (why?)

o Reset registers, restore thread stack (outside module’s
address space), invoke trusted service handlers

@ Trusted — untrusted control transfer: springboard
e Start at non-0 mod 32 addresses (why?)
e Can jump to any untrusted address, start threads

slide 41

Other Aspects of NaCl Sandbox

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

¥ No hardware exceptions or external interrupts
e Because segment register is used for isolation, stack
appears invalid to the OS = no way to handle
@ No network access via OS, only via JavaScript in
browser
e No system calls such as connect() and accept()
e JavaScript networking is subject to same-origin policy

€ IMC: inter-module communication service
o Special IPC socket-like abstraction

e Accessible from JavaScript via DOM object, can be
passed around and used to establish shared memory

slide 42

