
CS 380S - 0x1A Great Papers in Computer Security

Fall 2012

Homework #1

Due: 2pm CDT (in class), Sep 27, 2012

NO LATE SUBMISSIONS WILL BE ACCEPTED

YOUR NAME:

Collaboration policy

No collaboration is permitted on this assignment. Any cheating (e.g., submitting another
person’s work as your own, or permitting your work to be copied) will automatically result
in a failing grade.

1

Homework #1 (30 points)

Problem 1

Molvan̂ıan Security Defense Operating System (MS-DOS) protects against memory corrup-
tion exploits as follows. MS-DOS ensures that heap, stack, and code sections of the program
are all page-aligned. On a 32-bit x86 machine (the only kind they use in Molvan̂ıa), each page
is 4096 bytes. MS-DOS randomizes memory layout using a modified runtime loader: each
time a binary is loaded in the process address space, the loader selects a random page-aligned
address for the code, data, and heap segments.

Problem 1a (1 point)

What is this defense based on?

Problem 1b (2 points)

The famous Molvan̂ıan hacker R00tkowski has found an exploitable stack-based buffer over-
flow in the MS-DOS login program and decides to exploit it using a return-to-libc attack.
He must correctly guess the buffer start address, as well as the location of execve call (which
is the target of the control transfer in his attack) in the system call table. If the guess is
incorrect, the login program crashes and then automatically restarts.

How many guesses are necessary, on average, to ensure a successful attack? Explain.

Problem 2

All Molvan̂ıan C compilers for x86 insert stack canaries into generated code to prevent
stack-smashing attacks. Nevertheless, Molvan̂ıan Cyber-Security Bureau mandates the use
of libsafe with all executables compiled from C.

2

libsafe is a wrapper around the C string library, intended to ensure that string oper-
ations cannot overwrite any control information stored on the stack (such as saved return
address, saved frame pointer, etc.). For example, the libsafe wrapper around strcpy adds
the following check before strcpy(src,dest) is executed:

|framePointer - dest| > strlen(src)

Problem 2a (3 points)

What additional protections are gained by using libsafe with canary-equipped executables?

Problem 2b (2 points)

Give a short snippet of C code that contains a single call to a libsafe-protected strcpy,
and yet is vulnerable to a memory corruption attack as a result of this call. Your attack
must also bypass compiler-inserted stack canaries.

3

Problem 3

x68 is Molvan̂ıan homegrown chip architecture. Unlike on x86, the stack on x68 grows
upwards.

Problem 3a (2 points)

How does a stack-based overflow attack work on x68?

Problem 3b (2 points)

How would you implement StackGuard on x68? What would be the main differences from
x86?

Problem 3c (2 points)

How would you implement libsafe on x68? What would be the main differences from x86?

4

Problem 4 (4 points)

Sandboxing x86 (as opposed to RISC) code is difficult because variable-length x86 instruc-
tions are hard for the verifier to parse. In Molvan̂ıa, however, code is shipped as ASCII
assembly language source. The verifier modifies the source to ensure the following proper-
ties:

• Register %edx is only used to define the logical fault domain (i.e., for segment match-
ing).

• Every instruction that modifies memory. . .

– . . . is relative to the stack or frame pointer (with a small enough offset not to go
out of bounds), or

– . . . uses the %edx register for segment matching with the following code:

mov DEST, %edx

bound %edx, domainrange

INST SRC, (%edx)

Here DEST is the memory location that is being written, domainrange is the
location of pointers to the beginning and end of the fault domain’s data segment,
the bound instruction traps if %edx is not within that range, and INST and SRC
can be any instruction and source that modify the memory pointed to by DEST.

The verifier allows relative branches to any byte within the fault domain’s code segment,
but control transfers outside the code segment use a jump table which transfers to trusted
code stubs not in the code segment.

Explain how, even with this scheme, malicious code could escape the sandbox and modify
other regions of a process’s address space.

5

Problem 5

Problem 5a (3 points)

What is the exact control-flow property that Native Client enforces? Is it weaker, stronger,
or the same as control-flow integrity?

Problem 5b (2 points)

In Native Client, “springboards” are snippets of trusted code which are located in the mem-
ory of the untrusted binary module. Their purpose is to enable control transfers from the
trusted runtime environment to untrusted code. Because the sprinboard code is trusted, it
may include privileged instructions which are not normally available to the untrusted code.

What prevents untrusted code from executing these instructions by passing control—via
either a jump, or sequential execution—to the springboard code located in its memory?

Problem 6

Consider the following snippet of C code:

static char logfile[]="log.txt";

int checklog() {

return (access(logfile, O_RDWR));

}

int openlog() {

return (open(logfile, O_RDWR));

}

int writelog(int fd, int len) {

if (fd > 0)

write(fd, "", len);

}

void log() {

6

int fd;

if (checklog()) {

fd=openlog();

for(int i=0; i<5; i++)

writelog(fd,64);

writelog(fd,32);

}

}

}

Problem 6a (6 points)

Write the Dyck model of the control flow of this code. If you are unable to write the Dyck
model, write the callgraph and explain why it is imprecise and why a Dyck model would
provide more precision.

Problem 6b (1 points)

Can you use a reference monitor based on the above Dyck model to prevent TOCTTOU
attacks on this code? If yes, explain how; if no, explain why.

7

