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Reference Monitor 

Observes execution of the program/process 

• At what level? Possibilities: hardware, OS, network 

Halts or confines execution if the program is about 
to violate the security policy 

• What’s a “security policy”? 

• Which system events are relevant to the policy? 

– Instructions, memory accesses, system calls, network packets… 

Cannot be circumvented by the monitored process 
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Enforceable Security Policies 

Reference monitors can only enforce  
   safety policies  [Schneider ‘98] 

• Execution of a process is a sequence of states 

• Safety policy is a predicate on a prefix of the sequence 

– Policy must depend only on the past of a particular execution; 
once it becomes false, it’s always false 

Not policies that require knowledge of the future 

• “If this server accepts a SYN packet, it will eventually 
send a response” 

Not policies that deal with all possible executions 

• “This program should never reveal a secret” 



 

Reference Monitor Implementation 

– Policies can depend on application semantics 

– Enforcement doesn’t require context switches in the kernel 

– Lower performance overhead 
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Kernelized Wrapper Modified program 

Integrate reference monitor into 
program code during compilation 

or via binary rewriting 
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What Makes a Process Safe? 

Memory safety: all memory accesses are “correct” 

• Respect array bounds, don’t stomp on another process’s 
memory, don’t execute data as if it were code 

Control-flow safety: all control transfers are 
envisioned by the original program 

• No arbitrary jumps, no calls to library routines that the 
original program did not call 

Type safety: all function calls and operations have 
arguments of correct type 
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OS as a Reference Monitor 

Collection of running processes and files 

• Processes are associated with users 

• Files have access control lists (ACLs) saying which 
users can read/write/execute them  

OS enforces a variety of safety policies 

• File accesses are checked against file’s ACL 

• Process cannot write into memory of another process 

• Some operations require superuser privileges 

– But may need to switch back and forth (e.g., setuid in Unix) 

• Enforce CPU sharing, disk quotas, etc. 

Same policy for all processes of the same user 
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Hardware Mechanisms: TLB 

TLB: Translation Lookaside Buffer 

• Maps virtual to physical addresses 

• Located next to the cache 

• Only supervisor process can manipulate TLB 

– But if OS is compromised, malicious code can abuse TLB to 
make itself invisible in virtual memory (Shadow Walker) 

TLB miss raises a page fault exception 

• Control is transferred to OS (in supervisor mode) 

• OS brings the missing page to the memory 

This is an expensive context switch 
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Time 

calls f=fopen(“foo”) 

User Process 

library executes “break” 

Kernel  

 
trap 

saves context, flushes TLB, etc. 

checks UID against ACL, sets up IO  
buffers & file context, pushes ptr to  
context on user’s stack, etc. 

restores context, clears supervisor bit 
 calls fread(f,n,&buf) 

library executes “break” 
 saves context, flushes TLB, etc. 

checks f is a valid file context, does 
disk access into local buffer, copies 
results into user’s buffer, etc. 

restores context, clears supervisor bit 
 

Steps in a System Call 
[Morrisett] 
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Modern Hardware Meets Security 

Modern hardware: large number of registers, big 
memory pages 

Isolation  each process should live in its own 
hardware address space 

… but the performance cost of inter-process 
communication is increasing 

• Context switches are very expensive 

• Trapping into OS kernel requires flushing TLB and 
cache, computing jump destination, copying memory 

Conflict: isolation vs. cheap communication 
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Software Fault Isolation (SFI) 

Processes live in the same hardware address 
space; software reference monitor isolates them 

• Each process is assigned a logical “fault domain” 

• Check all memory references and jumps to ensure they 
don’t leave process’s domain 

Tradeoff: checking vs. communication 

• Pay the cost of executing checks for each memory 
write and control transfer to save the cost of context 
switching when trapping into the kernel 

[Wahbe et al.  SOSP ‘93] 
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Fault Domains 

Process’s code and data in one memory segment 

• Identified by a unique pattern of upper bits 

• Code is separate from data (heap, stack, etc.) 

• Think of a fault domain as a “sandbox” 

Binary modified so that it cannot escape domain 

• Addresses are masked so that all memory writes are to 
addresses within the segment 

– Coarse-grained memory safety (vs. array bounds checking) 

• Code is inserted before each jump to ensure that the 
destination is within the segment 

Does this help much against buffer overflows? 
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Verifying Jumps and Stores 

If target address can be determined statically, 
mask it with the segment’s upper bits 

• Crash, but won’t stomp on another process’s memory 

If address unknown until runtime, insert checking 
code before the instruction 

Ensure that code can’t jump around the checks 

• Target address held in a dedicated register 

• Its value is changed only by inserted code, atomically, 
and only with a value from the data segment 
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Simple SFI Example 

Fault domain = from 0x1200 to 0x12FF 

Original code: write x 

Naïve SFI: x := x & 00FF 

                       x := x | 1200 

      write x 

Better SFI: tmp := x & 00FF 

    tmp := tmp | 1200 

    write tmp 

convert x into an address that 
lies within the fault domain  

What if the code jumps right here? 
 … 
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Inline Reference Monitor 

Generalize SFI to more general safety policies 
than just memory safety 

• Policy specified in some formal language 

• Policy deals with application-level concepts: access to 
system resources, network events, etc. 

– “No process should send to the network after reading a file”, 
“No process should open more than 3 windows”, … 

Policy checks are integrated into the binary code 

• Via binary rewriting or when compiling 

Inserted checks should be uncircumventable 

• Rely on SFI for basic memory safety 
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Policy Specification in SASI 

SASI policies are finite-state automata 

Can express any safety policy 

Easy to analyze, emulate, compile 

Written in SAL language (textual version of diagrams) 

 

 

 

 

No division by zero 

  (op = “div” 
arg2 = 0)  

 
 

    

 

read send

read

No network send after file read 

[Cornell project] 
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Policy Enforcement 

Checking before every instruction is an overkill 

• Check “No division by zero” only before DIV 

SASI uses partial evaluation 

• Insert policy checks before every instruction, then rely 
on static analysis to eliminate unnecessary checks 

There is a “semantic gap” between individual 
instructions and policy-level events 

• Applications use abstractions such as strings, types, 
files, function calls, etc. 

• Reference monitor must synthesize these abstractions 
from low-level assembly code 
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M. Abadi, M. Budiu, U. Erlingsson, J. Ligatti 
 

Control-Flow Integrity: 
Principles, Implementations, and Applications 

 

(CCS 2005) 
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Main idea: pre-determine control flow graph 
(CFG) of an application 

• Static analysis of source code 

• Static binary analysis    CFI 

• Execution profiling 

• Explicit specification of security policy 

Execution must follow the pre-determined 
control flow graph 

CFI: Control-Flow Integrity 
[Abadi et al.] 
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Use binary rewriting to instrument code with 
runtime checks (similar to SFI) 

Inserted checks ensure that the execution always 
stays within the statically determined CFG 

• Whenever an instruction transfers control, destination 
must be valid according to the CFG 

Goal: prevent injection of arbitrary code and 
invalid control transfers (e.g., return-to-libc) 

• Secure even if the attacker has complete control over 
the thread’s address space 

CFI: Binary Instrumentation 
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CFG Example 
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For each control transfer, determine statically its 
possible destination(s) 

Insert a unique bit pattern at every destination 

• Two destinations are equivalent if CFG contains 
edges to each from the same source 

– This is imprecise (why?) 

• Use same bit pattern for equivalent destinations 

Insert binary code that at runtime will check 
whether the bit pattern of the target instruction 
matches the pattern of possible destinations 

CFI: Control Flow Enforcement 
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CFI: Example of Instrumentation 

Original code 

Instrumented code 

 

 

Abuse an x86 assembly instruction to 

insert “12345678” tag into the binary 

 

 

Jump to the destination only if 

the tag is equal to “12345678” 
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Unique IDs 

• Bit patterns chosen as destination IDs must not appear 
anywhere else in the code memory except ID checks 

Non-writable code 

• Program should not modify code memory at runtime 

– What about run-time code generation and self-modification? 

Non-executable data 

• Program should not execute data as if it were code 

Enforcement: hardware support + prohibit system 
calls that change protection state + verification at 
load-time 

CFI: Preventing Circumvention 
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Suppose a call from A goes to C, and a call from B 
goes to either C, or D (when can this happen?) 

• CFI will use the same tag for C and D, but this allows 
an “invalid” call from A to D 

• Possible solution: duplicate code or inline 

• Possible solution: multiple tags 

Function F is called first from A, then from B; 
what’s a valid destination for its return? 

• CFI will use the same tag for both call sites, but this 
allows F to return to B after being called from A 

• Solution: shadow call stack 

Improving CFI Precision 
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CFI: Security Guarantees 

Effective against attacks based on illegitimate 
control-flow transfer 

• Stack-based buffer overflow, return-to-libc exploits, 
pointer subterfuge 

Does not protect against attacks that do not 
violate the program’s original CFG 

• Incorrect arguments to system calls 

• Substitution of file names 

• Other data-only attacks 
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Possible Execution of Memory 
[Erlingsson] 
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Next Step: XFI 

Inline reference monitor added via binary 
rewriting 

• Can be applied to some legacy code 

CFI to prevent circumvention 

Fine-grained access control policies for 
memory regions 

• More than simple memory safety (cf. SFI) 

Relies in part on load-time verification 

• Similar to “proof-carrying code” 

[Erlingsson et al.  OSDI ‘06] 
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Two Stacks 

XFI maintains a separate “scoped stack” with 
return addresses and some local variables 

• Keeps track of function calls, returns and exceptions 

Secure storage area for function-local information 

• Cannot be overflown, accessed via a computed 
reference or pointer, etc. 

• Stack integrity ensured by software guards 

• Presence of guards is determined by static verification 
when program is loaded 

Separate “allocation stack” for arrays and local 
variables whose address can be passed around 
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XFI: Memory Access Control 

Module has access to its own memory 

• With restrictions (e.g., shouldn’t be able to corrupt its 
own scoped stack) 

Host can also grant access to other contiguous 
memory regions 

• Fine-grained: can restrict access to a single byte 

• Access to constant addresses and scoped stack verified 
statically 

• Inline memory guards verify other accesses at runtime 

– Fast inline verification for a certain address range; if fails, call 
special routines that check access control data structures 
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XFI: Preventing Circumvention 

Integrity of the XFI protection environment 

• Basic control-flow integrity 

• “Scoped stack” prevents out-of-order execution paths 
even if they match control-flow graph 

• Dangerous instructions are never executed or their 
execution is restricted 

– For example, privileged instructions that change protection 
state, modify x86 flags, etc. 

Therefore, XFI modules can even run in kernel 
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WIT: Write Integrity Testing 

Combines static analysis … 

• For each memory write, compute the set of memory 
locations that may be the destination of the write 

• For each indirect control transfer, compute the set of 
addresses that may be the destination of the transfer 

• “Color table” assigns matching colors to instruction 
(write or jump) and all statically valid destinations 

– Is this sound? Complete? 

… with dynamic enforcement 

• Code is instrumented with runtime checks to verify 
that destination of write or jump has the right color  

[Akritidis et al.  “Preventing memory error exploits with WIT”  Oakland ‘08] 
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WIT: Write Safety Analysis 

Start with off-the-shelf “points-to” analysis 

• Gives a conservative set of possible values for each ptr 

A memory write instruction is “safe” if… 

• It has no explicit destination operand, or destination 
operand is a temporary, local or global variable 

– Such instructions either modify registers, or a constant number 
of bytes starting at a constant offset from the frame pointer or 
the data segment (example?) 

• … or writes through a pointer that is always in bounds 

– How do we know statically that a pointer is always in bounds? 

Safe instructions require no runtime checks 

Can also infer safe destinations (how?) 
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WIT: Runtime Checks 

Statically, assign a distinct color to each unsafe 
write instruction and all of its possible destinations 

• What if some destination can be written by two 
different instructions? Any security implications? 

Add a runtime check that destination color 
matches the statically assigned color 

• What attack is this intended to prevent? 

Same for indirect (computed) control transfers 

• Except for indirect jumps to library functions (done 
through pointers which are protected by write safety) 

• How is this different from CFI? Hint: think RET address 
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WIT: Additional Protections 

Change layout of stack frames to segregate safe 
and unsafe local variables 

Surround unsafe objects by guards/canaries 

• What attack is this intended to prevent? How? 

Wrappers for malloc()/calloc() and free() 

• malloc() assigns color to newly allocated memory 

• free() is complicated 

– Has the same (statically computed) color as the freed object 

– At runtime, treated as an unsafe write to this object 

– Reset color of object to 0 – what attack does this prevent? 

– Several other subtle details and checks 



 

slide 35 

WIT: Handling Libraries 

Basic WIT doesn’t work for libraries (why?) 

Instead, assign the same, standard color to all 
unsafe objects allocated by library functions and 
surround them by guards 

• Different from the colors of safe objects and guards 

• Prevents buffer overflows 

• What attack does this not prevent? 

Wrappers for memory copying functions 

• For example, memcpy() and strcpy() 

• Receive color of the destination as an extra argument, 
check at runtime that it matches static color 
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B. Yee et al. 
 

Native Client: 
A Sandbox for Portable, Untrusted x86 Native Code 

 

(Oakland 2009) 
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Native Client 

Goal: download an x86 binary and run it “safely” 

• Much better performance than JavaScript, Java, etc.  

ActiveX: verify signature, then unrestricted 

• Critically depends on user’s understanding of trust 

.NET controls: IL bytecode + verification 

Native Client: sandbox for untrusted x86 code 

• Restricted subset of x86 assembly 

• SFI-like sandbox ensures memory safety 

• Restricted system interface 

• (Close to) native performance  
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NaCl Sandbox 

Code is restricted to a subset of x86 assembly 

• Enables reliable disassembly and efficient validation 

• No unsafe instructions 

– syscall, int, ret, memory-dependent jmp and call, privileged 
instructions, modifications of segment state … 

No loads or stores outside dedicated segment 

• Address space constrained to 0 mod 32 segment 

• Similar to SFI 

Control-flow integrity 
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Constraints for NaCl Binaries 



 

slide 40 

Control-Flow Integrity in NaCl 

For each direct branch, statically compute target 
and verify that it’s a valid instruction 

• Must be reachable by fall-through disassembly 

Indirect branches must be encoded as  

  and  %eax, 0xffffffe0 

  jmp  *%eax 

• Guarantees that target is 32-byte aligned 

• Works because of restriction to the zero-based segment 

• Very efficient enforcement of control-flow integrity 

No RET 

• Sandboxing sequence, then indirect jump 
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Interacting with Host Machine 

Trusted runtime environment for thread creation, 
memory management, other system services 

Untrusted  trusted control transfer: trampolines 

• Start at 0 mod 32 addresses (why?) in the first 64K of 
the NaCl module address space 

– First 4K are read- and write-protected (why?) 

• Reset registers, restore thread stack (outside module’s 
address space), invoke trusted service handlers 

Trusted  untrusted control transfer: springboard 

• Start at non-0 mod 32 addresses (why?) 

• Can jump to any untrusted address, start threads 
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Other Aspects of NaCl Sandbox 

No hardware exceptions or external interrupts 

• Because segment register is used for isolation, stack 
appears invalid to the OS   no way to handle 

No network access via OS, only via JavaScript in 
browser 

• No system calls such as connect() and accept() 

• JavaScript networking is subject to same-origin policy 

IMC: inter-module communication service 

• Special IPC socket-like abstraction 

• Accessible from JavaScript via DOM object, can be 
passed around and used to establish shared memory 


