
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

Reference Monitor

Observes execution of the program/process

• At what level? Possibilities: hardware, OS, network

Halts or confines execution if the program is about
to violate the security policy

• What’s a “security policy”?

• Which system events are relevant to the policy?

– Instructions, memory accesses, system calls, network packets…

Cannot be circumvented by the monitored process

slide 3

Enforceable Security Policies

Reference monitors can only enforce
 safety policies [Schneider ‘98]

• Execution of a process is a sequence of states

• Safety policy is a predicate on a prefix of the sequence

– Policy must depend only on the past of a particular execution;
once it becomes false, it’s always false

Not policies that require knowledge of the future

• “If this server accepts a SYN packet, it will eventually
send a response”

Not policies that deal with all possible executions

• “This program should never reveal a secret”

Reference Monitor Implementation

– Policies can depend on application semantics

– Enforcement doesn’t require context switches in the kernel

– Lower performance overhead

Program

RM

Kernel

RM

Program

Kernel

Program

Kernel

RM

Kernelized Wrapper Modified program

Integrate reference monitor into
program code during compilation

or via binary rewriting

slide 4

slide 5

What Makes a Process Safe?

Memory safety: all memory accesses are “correct”

• Respect array bounds, don’t stomp on another process’s
memory, don’t execute data as if it were code

Control-flow safety: all control transfers are
envisioned by the original program

• No arbitrary jumps, no calls to library routines that the
original program did not call

Type safety: all function calls and operations have
arguments of correct type

slide 6

OS as a Reference Monitor

Collection of running processes and files

• Processes are associated with users

• Files have access control lists (ACLs) saying which
users can read/write/execute them

OS enforces a variety of safety policies

• File accesses are checked against file’s ACL

• Process cannot write into memory of another process

• Some operations require superuser privileges

– But may need to switch back and forth (e.g., setuid in Unix)

• Enforce CPU sharing, disk quotas, etc.

Same policy for all processes of the same user

slide 7

Hardware Mechanisms: TLB

TLB: Translation Lookaside Buffer

• Maps virtual to physical addresses

• Located next to the cache

• Only supervisor process can manipulate TLB

– But if OS is compromised, malicious code can abuse TLB to
make itself invisible in virtual memory (Shadow Walker)

TLB miss raises a page fault exception

• Control is transferred to OS (in supervisor mode)

• OS brings the missing page to the memory

This is an expensive context switch

slide 8

Time

calls f=fopen(“foo”)

User Process

library executes “break”

Kernel

trap

saves context, flushes TLB, etc.

checks UID against ACL, sets up IO
buffers & file context, pushes ptr to
context on user’s stack, etc.

restores context, clears supervisor bit
 calls fread(f,n,&buf)

library executes “break”
 saves context, flushes TLB, etc.

checks f is a valid file context, does
disk access into local buffer, copies
results into user’s buffer, etc.

restores context, clears supervisor bit

Steps in a System Call
[Morrisett]

slide 9

Modern Hardware Meets Security

Modern hardware: large number of registers, big
memory pages

Isolation each process should live in its own
hardware address space

… but the performance cost of inter-process
communication is increasing

• Context switches are very expensive

• Trapping into OS kernel requires flushing TLB and
cache, computing jump destination, copying memory

Conflict: isolation vs. cheap communication

slide 10

Software Fault Isolation (SFI)

Processes live in the same hardware address
space; software reference monitor isolates them

• Each process is assigned a logical “fault domain”

• Check all memory references and jumps to ensure they
don’t leave process’s domain

Tradeoff: checking vs. communication

• Pay the cost of executing checks for each memory
write and control transfer to save the cost of context
switching when trapping into the kernel

[Wahbe et al. SOSP ‘93]

slide 11

Fault Domains

Process’s code and data in one memory segment

• Identified by a unique pattern of upper bits

• Code is separate from data (heap, stack, etc.)

• Think of a fault domain as a “sandbox”

Binary modified so that it cannot escape domain

• Addresses are masked so that all memory writes are to
addresses within the segment

– Coarse-grained memory safety (vs. array bounds checking)

• Code is inserted before each jump to ensure that the
destination is within the segment

Does this help much against buffer overflows?

slide 12

Verifying Jumps and Stores

If target address can be determined statically,
mask it with the segment’s upper bits

• Crash, but won’t stomp on another process’s memory

If address unknown until runtime, insert checking
code before the instruction

Ensure that code can’t jump around the checks

• Target address held in a dedicated register

• Its value is changed only by inserted code, atomically,
and only with a value from the data segment

slide 13

Simple SFI Example

Fault domain = from 0x1200 to 0x12FF

Original code: write x

Naïve SFI: x := x & 00FF

 x := x | 1200

 write x

Better SFI: tmp := x & 00FF

 tmp := tmp | 1200

 write tmp

convert x into an address that
lies within the fault domain

What if the code jumps right here?
 …

slide 14

Inline Reference Monitor

Generalize SFI to more general safety policies
than just memory safety

• Policy specified in some formal language

• Policy deals with application-level concepts: access to
system resources, network events, etc.

– “No process should send to the network after reading a file”,
“No process should open more than 3 windows”, …

Policy checks are integrated into the binary code

• Via binary rewriting or when compiling

Inserted checks should be uncircumventable

• Rely on SFI for basic memory safety

slide 15

Policy Specification in SASI

SASI policies are finite-state automata

Can express any safety policy

Easy to analyze, emulate, compile

Written in SAL language (textual version of diagrams)

No division by zero

 (op = “div”
arg2 = 0)

read send

read

No network send after file read

[Cornell project]

slide 16

Policy Enforcement

Checking before every instruction is an overkill

• Check “No division by zero” only before DIV

SASI uses partial evaluation

• Insert policy checks before every instruction, then rely
on static analysis to eliminate unnecessary checks

There is a “semantic gap” between individual
instructions and policy-level events

• Applications use abstractions such as strings, types,
files, function calls, etc.

• Reference monitor must synthesize these abstractions
from low-level assembly code

slide 17

M. Abadi, M. Budiu, U. Erlingsson, J. Ligatti

Control-Flow Integrity:
Principles, Implementations, and Applications

(CCS 2005)

slide 18

Main idea: pre-determine control flow graph
(CFG) of an application

• Static analysis of source code

• Static binary analysis CFI

• Execution profiling

• Explicit specification of security policy

Execution must follow the pre-determined
control flow graph

CFI: Control-Flow Integrity
[Abadi et al.]

slide 19

Use binary rewriting to instrument code with
runtime checks (similar to SFI)

Inserted checks ensure that the execution always
stays within the statically determined CFG

• Whenever an instruction transfers control, destination
must be valid according to the CFG

Goal: prevent injection of arbitrary code and
invalid control transfers (e.g., return-to-libc)

• Secure even if the attacker has complete control over
the thread’s address space

CFI: Binary Instrumentation

slide 20

CFG Example

slide 21

For each control transfer, determine statically its
possible destination(s)

Insert a unique bit pattern at every destination

• Two destinations are equivalent if CFG contains
edges to each from the same source

– This is imprecise (why?)

• Use same bit pattern for equivalent destinations

Insert binary code that at runtime will check
whether the bit pattern of the target instruction
matches the pattern of possible destinations

CFI: Control Flow Enforcement

slide 22

CFI: Example of Instrumentation

Original code

Instrumented code

Abuse an x86 assembly instruction to

insert “12345678” tag into the binary

Jump to the destination only if

the tag is equal to “12345678”

slide 23

Unique IDs

• Bit patterns chosen as destination IDs must not appear
anywhere else in the code memory except ID checks

Non-writable code

• Program should not modify code memory at runtime

– What about run-time code generation and self-modification?

Non-executable data

• Program should not execute data as if it were code

Enforcement: hardware support + prohibit system
calls that change protection state + verification at
load-time

CFI: Preventing Circumvention

slide 24

Suppose a call from A goes to C, and a call from B
goes to either C, or D (when can this happen?)

• CFI will use the same tag for C and D, but this allows
an “invalid” call from A to D

• Possible solution: duplicate code or inline

• Possible solution: multiple tags

Function F is called first from A, then from B;
what’s a valid destination for its return?

• CFI will use the same tag for both call sites, but this
allows F to return to B after being called from A

• Solution: shadow call stack

Improving CFI Precision

slide 25

CFI: Security Guarantees

Effective against attacks based on illegitimate
control-flow transfer

• Stack-based buffer overflow, return-to-libc exploits,
pointer subterfuge

Does not protect against attacks that do not
violate the program’s original CFG

• Incorrect arguments to system calls

• Substitution of file names

• Other data-only attacks

slide 26

Possible Execution of Memory
[Erlingsson]

slide 27

Next Step: XFI

Inline reference monitor added via binary
rewriting

• Can be applied to some legacy code

CFI to prevent circumvention

Fine-grained access control policies for
memory regions

• More than simple memory safety (cf. SFI)

Relies in part on load-time verification

• Similar to “proof-carrying code”

[Erlingsson et al. OSDI ‘06]

slide 28

Two Stacks

XFI maintains a separate “scoped stack” with
return addresses and some local variables

• Keeps track of function calls, returns and exceptions

Secure storage area for function-local information

• Cannot be overflown, accessed via a computed
reference or pointer, etc.

• Stack integrity ensured by software guards

• Presence of guards is determined by static verification
when program is loaded

Separate “allocation stack” for arrays and local
variables whose address can be passed around

slide 29

XFI: Memory Access Control

Module has access to its own memory

• With restrictions (e.g., shouldn’t be able to corrupt its
own scoped stack)

Host can also grant access to other contiguous
memory regions

• Fine-grained: can restrict access to a single byte

• Access to constant addresses and scoped stack verified
statically

• Inline memory guards verify other accesses at runtime

– Fast inline verification for a certain address range; if fails, call
special routines that check access control data structures

slide 30

XFI: Preventing Circumvention

Integrity of the XFI protection environment

• Basic control-flow integrity

• “Scoped stack” prevents out-of-order execution paths
even if they match control-flow graph

• Dangerous instructions are never executed or their
execution is restricted

– For example, privileged instructions that change protection
state, modify x86 flags, etc.

Therefore, XFI modules can even run in kernel

slide 31

WIT: Write Integrity Testing

Combines static analysis …

• For each memory write, compute the set of memory
locations that may be the destination of the write

• For each indirect control transfer, compute the set of
addresses that may be the destination of the transfer

• “Color table” assigns matching colors to instruction
(write or jump) and all statically valid destinations

– Is this sound? Complete?

… with dynamic enforcement

• Code is instrumented with runtime checks to verify
that destination of write or jump has the right color

[Akritidis et al. “Preventing memory error exploits with WIT” Oakland ‘08]

slide 32

WIT: Write Safety Analysis

Start with off-the-shelf “points-to” analysis

• Gives a conservative set of possible values for each ptr

A memory write instruction is “safe” if…

• It has no explicit destination operand, or destination
operand is a temporary, local or global variable

– Such instructions either modify registers, or a constant number
of bytes starting at a constant offset from the frame pointer or
the data segment (example?)

• … or writes through a pointer that is always in bounds

– How do we know statically that a pointer is always in bounds?

Safe instructions require no runtime checks

Can also infer safe destinations (how?)

slide 33

WIT: Runtime Checks

Statically, assign a distinct color to each unsafe
write instruction and all of its possible destinations

• What if some destination can be written by two
different instructions? Any security implications?

Add a runtime check that destination color
matches the statically assigned color

• What attack is this intended to prevent?

Same for indirect (computed) control transfers

• Except for indirect jumps to library functions (done
through pointers which are protected by write safety)

• How is this different from CFI? Hint: think RET address

slide 34

WIT: Additional Protections

Change layout of stack frames to segregate safe
and unsafe local variables

Surround unsafe objects by guards/canaries

• What attack is this intended to prevent? How?

Wrappers for malloc()/calloc() and free()

• malloc() assigns color to newly allocated memory

• free() is complicated

– Has the same (statically computed) color as the freed object

– At runtime, treated as an unsafe write to this object

– Reset color of object to 0 – what attack does this prevent?

– Several other subtle details and checks

slide 35

WIT: Handling Libraries

Basic WIT doesn’t work for libraries (why?)

Instead, assign the same, standard color to all
unsafe objects allocated by library functions and
surround them by guards

• Different from the colors of safe objects and guards

• Prevents buffer overflows

• What attack does this not prevent?

Wrappers for memory copying functions

• For example, memcpy() and strcpy()

• Receive color of the destination as an extra argument,
check at runtime that it matches static color

slide 36

B. Yee et al.

Native Client:
A Sandbox for Portable, Untrusted x86 Native Code

(Oakland 2009)

slide 37

Native Client

Goal: download an x86 binary and run it “safely”

• Much better performance than JavaScript, Java, etc.

ActiveX: verify signature, then unrestricted

• Critically depends on user’s understanding of trust

.NET controls: IL bytecode + verification

Native Client: sandbox for untrusted x86 code

• Restricted subset of x86 assembly

• SFI-like sandbox ensures memory safety

• Restricted system interface

• (Close to) native performance

slide 38

NaCl Sandbox

Code is restricted to a subset of x86 assembly

• Enables reliable disassembly and efficient validation

• No unsafe instructions

– syscall, int, ret, memory-dependent jmp and call, privileged
instructions, modifications of segment state …

No loads or stores outside dedicated segment

• Address space constrained to 0 mod 32 segment

• Similar to SFI

Control-flow integrity

slide 39

Constraints for NaCl Binaries

slide 40

Control-Flow Integrity in NaCl

For each direct branch, statically compute target
and verify that it’s a valid instruction

• Must be reachable by fall-through disassembly

Indirect branches must be encoded as

 and %eax, 0xffffffe0

 jmp *%eax

• Guarantees that target is 32-byte aligned

• Works because of restriction to the zero-based segment

• Very efficient enforcement of control-flow integrity

No RET

• Sandboxing sequence, then indirect jump

slide 41

Interacting with Host Machine

Trusted runtime environment for thread creation,
memory management, other system services

Untrusted trusted control transfer: trampolines

• Start at 0 mod 32 addresses (why?) in the first 64K of
the NaCl module address space

– First 4K are read- and write-protected (why?)

• Reset registers, restore thread stack (outside module’s
address space), invoke trusted service handlers

Trusted untrusted control transfer: springboard

• Start at non-0 mod 32 addresses (why?)

• Can jump to any untrusted address, start threads

slide 42

Other Aspects of NaCl Sandbox

No hardware exceptions or external interrupts

• Because segment register is used for isolation, stack
appears invalid to the OS no way to handle

No network access via OS, only via JavaScript in
browser

• No system calls such as connect() and accept()

• JavaScript networking is subject to same-origin policy

IMC: inter-module communication service

• Special IPC socket-like abstraction

• Accessible from JavaScript via DOM object, can be
passed around and used to establish shared memory

