
CS 380S - 0x1A Great Papers in Computer Security
Fall 2012

Homework #2

Due: 2pm CDT (in class), October 25, 2012

NO LATE SUBMISSIONS WILL BE ACCEPTED

YOUR NAME:

Collaboration policy

No collaboration is permitted on this assignment. Any cheating (e.g., submitting another
person’s work as your own, or permitting your work to be copied) will automatically result
in a failing grade. The Computer Sciences department code of conduct can be found at
http://www.cs.utexas.edu/academics/conduct/.

1



Homework #2 (30 points)

Problem 1

Problem 1a (2 points)

Explain why enforcement of the same origin policy in modern browsers fundamentally relies
on the integrity of the DNS (Domain Name System).

Problem 1b (2 points)

One solution for enforcing the same origin policy even when DNS may be compromised is
to associate the server’s public key with each Web object retrieved over HTTPS. When one
Web object attempts to access another object, the browser checks whether the keys match.

Does this solution provide complete enforcement of the same origin policy, or can it still
be subverted for certain Web objects by an attacker who controls DNS? Explain.

2



Problem 2

The Molvan̂ıan Institute of Cryptology proposes the following variant of RSA encryption.
Recall that an RSA public key is a pair (N, e). To encrypt some message m, first generate a
fresh random value r of the same length as m. Use r as if it were a one-time pad to encrypt
m (i.e., let s = m⊕ r), and then encrypt r using plain RSA (i.e., let t = re mod N). The
ciphertext is the (s, t) pair.

Problem 2a (2 points)

How does decryption work in this scheme?

Problem 2b (4 points)

Is this encryption scheme semantically secure? Explain.

3



Problem 3 (4 points)

Molvan̂ıan Telecom encrypts voice-over-IP datagrams using a stream cipher based on the
following pseudo-random generator:

The generator is initialized with the key, the first 4 bits of the keystream are discarded,
and the rest is used for encryption.

Suppose you want to completely break this cipher (i.e., recover the key) using a known-
plaintext attack. How long should your plaintext be? How would the attack proceed (de-
scribe all details)?

4



Problem 4

The Yahalom protocol is a 3-party key establishment and authentication protocol between
Alice (A), Bob (B) and a trusted Server (S). In the beginning of the protocol, A and S
share the symmetric key Kas, B and S share the symmetric key Kbs. The objective of the
protocol is to (i) create a fresh symmetric key Kab between A and B, and (ii) authenticate
A to B. The protocol proceeds as follows:

1. A → B A, Na

2. B → S B, {A, Nb, Na}Kbs

3. S → A {B, Kab, Na, Nb}Kas , {A, Kab}Kbs

4. A → B {A, Kab}Kbs
, {Nb}Kab

A starts the protocol by generating a fresh random number (nonce) Na, and sends Na to
B together with A’s identity.

B generates his own nonce Nb, creates a message consisting of A’s identity and the two
nonces, encrypts it with the symmetric key Kbs and sends it to S together with his identity.

S decrypts the message and learns A’s identity and the nonces. S then generates a fresh
symmetric key Kab for A and B, and sends a two-part message to A. In the first part, the
new key Kab is encrypted together with B’s identity and the nonces by the symmetric key
Kas, which is shared between S and A. In the second part, Kab is encrypted together with
A’s identity by the symmetric key Kbs, which is shared between S and B (but not A).

Finally, A decrypts the first part of the message from S and learns Kab. A then forwards
the second part (which he cannot decrypt) to B. To prove that A successfully decrypted the
first part and learned the new key Kab, A also sends B’s own nonce back to B encrypted
with Kab.

Problem 4a (10 points)

The first objective of the Yahalom protocol is secrecy. No party other than A, B, or S should
be able to learn the new key Kab.

Write a Murϕ model of the Yahalom protocol, specify the secrecy property for Kab as
a state invariant, and verify whether it holds for every reachable state of your finite-state
model.

Hint: consider more than one concurrent session of the protocol, and investigate intruder
rules that ignore message formats (e.g., the attacker may put two nonces in a message even
if only one nonce is expected by the recipient).

Problem 4b (6 points)

The second objective of the Yahalom protocol is authentication. If B thinks that he is talking
to A after the protocol has completed, then it should always be the case that he is indeed
talking to A.

Specify the authentication property as a state invariant, add it to the model you imple-
mented for Problem 4a, and verify whether it holds for the Yahalom protocol.

5



Downloading and running Murϕ

Download Murϕ from http://mclab.di.uniroma1.it/software_cmurphi.html

Murϕ tutorial and user manual are in the doc directory. The Murϕ model of the Needham-
Schroeder public-key protocol is in ex/secur/ns-old.m

Tips:

• Always run your Murϕ model with the -ndl option to make sure verification does not
stop once a deadlock state is reached (typically, deadlock is not an issue for security
protocols).

• Scalarsets are enumerated types. They are similar to enum types in C++. For example,
type declaration AgentId:scalarset(5) says that variables of type AgentId can take
one of 5 (unnamed) values. Scalarset types are simply finite, unordered sets of values.

If you write ruleset i: ScalarType where ScalarType is a Scalarset type, then the
enclosed rule will be executed once for every possible value of ScalarType. For each
execution, the current value can be accessed as i.

• Multisets are data structures. A multiset is a set in which the same element may
be included more than once. Multisets are similar to arrays, except that they are
unordered.

If you write multisetcount(m:mset,P) where mset is declared as a multiset and P is
a predicate (i.e., a function returning true or false), then P will be applied to every
element of the multiset mset, and the return value of multisetcount will be the
number of elements of mset on which P evaluated to true. Within the body of P, the
current element (i.e., the element to which the predicate P is being applied) can be
accessed as mset[m].

Submission instructions

Combine your Murϕ models and text descriptions of the results (e.g., text files containing
Murϕ printouts of attack traces) into a single tar file, and send it as an email attachment
to mgeorgiev@utexas.edu with CS 380S hw#2 in the subject line.

6


