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Stream Ciphers 

One-time pad: 

   Ciphertext(Key,Message)=MessageKey 

• Key must be a random bit sequence as long as message 

Idea: replace “random” with “pseudo-random” 

• Use a pseudo-random number generator (PRNG) 

• PRNG takes a short, truly random secret seed and 
expands it into a long “random-looking” sequence 

– E.g., 128-bit seed into a 106-bit  

   pseudo-random sequence 

Ciphertext(Key,Msg)=IV, MsgPRNG(IV,Key) 

• Message processed bit by bit (unlike block cipher) 

No efficient algorithm can tell 
this sequence from truly random 
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Stream Cipher Terminology 

The seed of pseudo-random generator typically 
consists of initialization vector (IV) and key  

• The key is a secret known only to the sender and the 
recipient, not sent with the ciphertext 

• IV is usually sent with the ciphertext 

The pseudo-random bit stream produced by 
PRNG(IV,key) is referred to as keystream 

Encrypt message by XORing with keystream 

• ciphertext = message  keystream 
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Properties of Stream Ciphers 

Usually very fast (faster than block ciphers) 

• Used where speed is important: WiFi, DVD, RFID, VoIP 

Unlike one-time pad, stream ciphers do not 
provide perfect secrecy 

• Only as secure as the underlying PRNG 

• If used properly, can be as secure as block ciphers 

PRNG must be cryptographically secure 
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Weaknesses of Stream Ciphers 

No integrity 

• Associativity & commutativity: (XY)Z=(XZ)Y 

• (M1PRNG(seed))  M2 = (M1M2)  PRNG(seed) 

Known-plaintext attack is very dangerous if 
keystream is ever repeated 

• Self-cancellation property of XOR: XX=0 

• (M1PRNG(seed))  (M2PRNG(seed)) = M1M2 

• If attacker knows M1, then easily recovers M2 

– Most plaintexts contain enough redundancy that knowledge of 
M1 or M2 is not necessary to recover both from M1M2  
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How Random is “Random?” 
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Cryptographically Secure PRNG 

Next-bit test: given N bits of the pseudo-random 
sequence, predict (N+1)st bit 

• Probability of correct prediction should be very close to 
1/2 for any efficient adversarial algorithm  

   (means what?) 

PRNG state compromise 

• Even if attacker learns complete or partial state of the 
PRNG, he should not be able to reproduce the 
previously generated sequence 

– … or future sequence, if there’ll be future random seed(s) 

Common PRNGs are not cryptographically secure  
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LFSR: Linear Feedback Shift Register 

b0 

Example: 

4-bit LFSR b1 b2 b3    
 

  
 

 

Key is used as the seed 

• For example, if the seed is 1001, the generated 
sequence is 1001101011110001001… 

Repeats after 15 bits (24-1) 

add to pseudo-random sequence 
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Each DVD is encrypted with 
a disk-specific 40-bit DISK KEY 

 
Each player has its own PLAYER KEY 

(409 player manufacturers, 

each has its player key) 

Content Scrambling System (CSS) 

DVD encryption scheme from Matsushita and Toshiba 

KEY DATA BLOCK contains disk key encrypted 
with 409 different player keys: 

• EncryptDiskKey(DiskKey) 

• EncryptPlayerKey1(DiskKey) … EncryptPlayerKey409(DiskKey) 
 

This helps attacker 
verify his guess of disk key 

 
What happens if even a single 
player key is compromised? 
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Attack on CSS Decryption Scheme 

 Given known 40-bit plaintext, repeat the following 5 times (once for each plaintext byte):  

    guess the byte output by the sum of the two LFSRs; use known ciphertext to verify 
    – this takes O(28)    

 For each guessed output byte, guess 16 bits contained in LFSR-17 – this takes O(216) 

 Clock out 24 bits out of LFSR-17, use subtraction to determine the corresponding 

    output bits of LFSR-25 – this reveals all of LFSR-25 except the highest bit 

 “Roll back” 24 bits, try both possibilities – this takes O(2) 

 Clock out 16 more bits out of both LFSRs, verify the key 

   … 

   … 

LFSR-17 

disk key 

  
LFSR-25 

 

 
24 key bits 

16 key bits 

“1” seeded in 4th bit  

“1” seeded in 1st bit  

 

 

invert  
 

+mod 256 

carry 

  

Encrypted title key 
Table-based 
“mangling”  

 
Decrypted title key  

 
 

 
 

 

 

EncryptDiskKey(DiskKey) 

stored on disk  

This attack takes O(225)  

[Frank Stevenson] 
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DeCSS 

In CSS, disk key is encrypted under hundreds of 
different player keys… including Xing, a 
software DVD player 

Reverse engineering the object code of Xing 
revealed its decryption key 

• Recall that every CSS disk contains the master disk 
key encrypted under Xing’s key 

• One bad player  entire system is broken! 

Easy-to-use DeCSS software 
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DeCSS Aftermath 

DVD CCA sued Jon Lech Johansen 
   (“DVD Jon”), one of DeCSS authors -  
   eventually dropped 

Publishing DeCSS code violates copyright 

• Underground distribution as haikus and T-shirts 

• “Court to address DeCSS T-Shirt: When can a T-shirt 
become a trade secret? When it tells you how to copy 
a DVD.”  - From Wired News 
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RC4 

Designed by Ron Rivest for RSA in 1987 

Simple, fast, widely used 

• SSL/TLS for Web security, WEP for wireless 
 
Byte array S[256] contains a permutation of numbers from 0 to 255 

i = j := 0 

loop 

 i := (i+1) mod 256 

 j := (j+S[i]) mod 256 

 swap(S[i],S[j]) 

 output (S[i]+S[j]) mod 256 

end loop 
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RC4 Initialization 

Divide key K into L bytes 

for i = 0 to 255 do 

     S[i] := i 

j := 0 

for i = 0 to 255 do 

 j := (j+S[i]+K[i mod L]) mod 256 

 swap(S[i],S[j]) 

Key can be any length 
up to 2048 bits 

Generate initial permutation 
from key K  

 To use RC4, usually prepend initialization vector (IV) to the key 

• IV can be random or a counter 

 RC4 is not random enough… First byte of generated sequence depends 
only on 3 cells of state array S - this can be used to extract the key! 

• To use RC4 securely, RSA suggests discarding first 256 bytes Fluhrer-Mantin-
Shamir attack 



N. Borisov, I. Goldberg, D. Wagner 

 

Intercepting Mobile Communications: 

The Insecurity of 802.11 

 
(MOBICOM 2001) 
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802.11b Overview 

Standard for wireless networks (IEEE 1999) 

Two modes: infrastructure and ad hoc 

 

IBSS (ad hoc) mode BSS (infrastructure) mode 
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Access Point SSID 

Service Set Identifier (SSID) is the “name” of the 
access point 

• By default, access point broadcasts its SSID in 
plaintext “beacon frames” every few seconds 

Default SSIDs are easily guessable 

• Manufacturer’s defaults: “linksys”, “tsunami”, etc. 

• This gives away the fact that access point is active 

Access point settings can be changed to prevent 
it from announcing its presence in beacon frames 
and from using an easily guessable SSID 

• But then every user must know SSID in advance 
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WEP: Wired Equivalent Privacy 

Special-purpose protocol for 802.11b 

• Intended to make wireless as secure as wired network 

Goals: confidentiality, integrity, authentication 

Assumes that a secret key is shared between 
access point and client 

Uses RC4 stream cipher seeded with 24-bit 
initialization vector and 40-bit key 

• Terrible design choice for wireless environment 
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Shared-Key Authentication 

 

beacon 

Prior to communicating data, access point may require client to authenticate 

Access Point 
 

 

Client 

 

 

 

association 
request 

 association 
response 

 probe request 
OR 

 challenge 

IV, challengeRC4(IV,K) 

unauthenticated & 
unassociated 

authenticated & 
unassociated 

 

authenticated & 
associated 

 

Passive eavesdropper recovers RC4(IV,K),  
can respond to any subsequent challenge  
without knowing K 
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How WEP Works 

24 bits 40 bits 

 
(IV, shared key) used as RC4 seed 

• Must never be repeated (why?) 

• There is no key update protocol, so 

   security relies on never repeating IV 

IV sent in the clear 

Worse: changing IV with 
each packet is optional! 

CRC-32 checksum is linear in :  

if attacker flips some plaintext bits, he knows which 
bits of CRC to flip to produce the same checksum 

no integrity! 
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RC4 Is a Bad Choice for Wireless 

Stream ciphers require synchronization of key 
streams on both ends of connection 

• This is not suitable when packet losses are common 

WEP solution: a separate seed for each packet 

• Can decrypt a packet even if a previous packet was lost 

But number of possible seeds is not large enough! 

• RC4 seed = 24-bit initialization vector + fixed key 

• Assuming 1500-byte packets at 11 Mbps,  

   224 possible IVs will be exhausted in about 5 hours 

Seed reuse is deadly for stream ciphers 
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Recovering Keystream 

Get access point to encrypt a known plaintext 

• Send spam, access point will encrypt and forward it 

• Get victim to send an email with known content 

If attacker knows plaintext, it is easy to recover 
keystream from ciphertext 

• C  M = (MRC4(IV,key))  M = RC4(IV,key) 

• Not a problem if this keystream is not re-used 

Even if attacker doesn’t know plaintext, can 
exploit regularities (plaintexts are not random) 

• For example, IP packet structure is very regular 
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Keystream Will Be Re-Used 

In WEP, repeated IV means repeated keystream 

Busy network will repeat IVs often 

• Many cards reset IV to 0 when re-booted, then 
increment by 1  expect re-use of low-value IVs 

• If IVs are chosen randomly, expect repetition in O(212) 
due to birthday paradox 

Recover keystream for each IV, store in a table 

• (KnownM  RC4(IV,key))  KnownM = RC4(IV,key) 

Wait for IV to repeat, decrypt and enjoy plaintext 

• (M’  RC4(IV,key))  RC4(IV,key) = M’ 
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It Gets Worse 

Misuse of RC4 in WEP is a design flaw with no fix 

• Longer keys do not help! 

– The problem is re-use of IVs, their size is fixed (24 bits) 

• Attacks are passive and very difficult to detect 

Perfect target for the Fluhrer et al. attack on RC4 

• Attack requires known IVs of a special form 

• WEP sends IVs in plaintext 

• Generating IVs as counters or random numbers will 
produce enough “special” IVs in a matter of hours 

This results in key recovery (not just keystream) 

• Can decrypt even ciphertexts whose IV is unique 
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Fixing the Problem 

Extensible Authentication Protocol (EAP) 

• Developers can choose their own authentication method 

– Passwords (Cisco EAP-LEAP), public-key certificates (Microsoft 
EAP-TLS), passwords OR certificates (PEAP), etc. 

802.11i standard fixes 802.11b problems 

• Patch (TKIP): still RC4, but encrypts IVs and establishes 
new shared keys for every 10 KBytes transmitted 

– No keystream re-use, prevents exploitation of RC4 weaknesses 

– Use same network card, only upgrade firmware  

• Long-term: AES in CCMP mode, 128-bit keys, 48-bit IVs 

– Block cipher (in special mode) instead of stream cipher 

– Requires new network card hardware 
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Hacking MIFARE Chips 

Multi-year project on evaluating security of 
MIFARE cards at Radboud University in Holland 

• http://www.ru.nl/ds/research/rfid/ 

MIFARE = case study in how not to design 
cryptographic authentication systems 

The following slides are from  
   Peter Van Rossum 

 

 

 

 

http://www.ru.nl/ds/research/rfid/
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MIFARE Chips 

Series of chips used in contactless smart cards 

• Developed by NXP Semiconductors in the Netherlands 

Very common in transport payment cards 

 

 

 

 

MIFARE Classic: 80% of the market 

• Over 1 billion sold, over 200 million in use 



 
uid, manufacturer data 

data 

data 

key A, access conditions, key B 

data 

data 

data 

key A,access conditions, key B 

data 

data 

data 

key A, access conditions, key B 

0 0 

1 
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7 

60 

61 

62 

63 

1 

15 

16 bytes 

64 blocks 16 sectors 

48 bits 48 bits 

slide 28 

Memory Structure of the Card 
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 Tag Reader 

LFSR stream: 

    Initial state of the LFSR is the key 

    ai := ki        i ∈ [0,47] 

 

     

 

 

 

    Shift nT + uid into the LFSR 

    ai+48 := L(ai,…,ai+47) + nTi + uidi    i ∈ [0,31] 

 

     

 

    Shift nR into the LFSR  

    ai+48 := L(ai,…,ai+47) + nRi-32               i ∈ [32,63] 

    After authentication, LFSR keeps shifting  

    ai+48 := L(ai,…,ai+47)                      i ∈ [64, ∞)  

 

Keystream: 

    bi := f(ai+9,ai+11,…,ai+47)              i ∈ [32, ∞) 

auth. ok auth. ok 

uid 

auth(block) 

nT 

{nR,aR} 

{aT} 

pick nT 

check aR 

aT:=suc96(nR) 

check aT 

pick nR 

aR:=suc64(nT) 
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Challenge-Response in CRYPTO1 

Generated 
by PRNG 



 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PRNG in CRYPTO1 

• 32-bit nonces 

• Linear feedback shift register 

• 16-bit internal state 

• Period 216 – 1 = 65535 
 
Feedback: 

L16(x0,x1,…,x15) := x0+x2+x3+x5 

Successor: 

suc(x0,x1,…,x31) := (x1,x2,…,x30,L16(x16,x17,…,x31)) 
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Replay Attack 

Good challenge-response authentication requires 
some form of “freshness” in each session 

• For example, timestamp or strong (pseudo)randomness 

MIFARE Classic: no clock + weak randomness 

• “Random” challenges repeat a few times per hour 

Eavesdrop and record communication session 

When challenge repeats, send known plaintext, 
extract keystream, use it to decrypt recorded 
communication that used the same challenge 

[Gans, Hoepman, Garcia] 



 

1. Acquire keystream 

• Observe authentication  keystream 

• 1 to 3 authentication sessions – takes microseconds 

2. Invert the filter function 

• Keystream  internal state of LFSR 

• Approx. 226 operations – take seconds 

3. Roll back (“unshift”) the LFSR 

• Problem: bad PRNG design 

• Internal state of LFSR at any time  seed (key) 

– Cryptographically secure PRNG should not allow rollback 
and recovery of the seed even if state is compromised 
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Extracting the Key (Reader Only) 



 Tag Reader 

auth. ok auth. ok 

uid 

auth(block) 

nT 

{nR,aR} 

{aT} 

pick nT 

check aR 

aT:=suc96(nT) 

check aT 

pick nR 

aR:=suc64(nT) 

 Intercepted communication: 

• nT, {aR}, {aT} visible to attacker 

• {aR} = suc64(nT), {aT} = suc96(nT)  

• 64 keystream bits 

 

 Access to reader only: 

• nT under attacker control 

• {aR} = suc64(nT) visible to attacker 

• 32 keystream bits 

 

Acquiring Keystream 
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# # # # # # # # # # # # # # # # # # # # 

keystream: 01100111100110110 

Filter function only depends only on 20 odd bits of input  easily inverted 
• Compute ‘odd’ bits of LFSR using table and deduce ‘even’ bits (linear relation) OR 

• Compute ‘odd’ and ‘even’ bits of LFSR using tables separately and combine tables 

#################### 

 

00000000000000000000 

00000000000000000001 

00000000000000000011 

00000000000000000100 

00000000000000000110 

… 

produces ‘odd’ keystream 0 

# ################### # 

 

0 0000000000000000000 0 

0 0000000000000000000 1 

0 0000000000000000001 

0 0000000000000000011 1 

0 0000000000000000100 0 

… 

produces ‘odd’ keystream 01 

## ################## # 

 

00 000000000000000000 1 

00 000000000000000001 1 

00 000000000000000111 0 

00 000000000000000111 1 

00 000000000000001000 

… 

produces ‘odd’ keystream 010 

219              
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Inverting the Filter Function 



 

Feedback: 
    L(x0,x1,…,x47) := x0+x5+x9+x10+x12+x14 

        +x15+x17+x19+x24+x25+x27+x29+x35+x39 

        +x41+x43 
 
LFSR stream: 
    Initial state of the LFSR is the key 
    ai := ki                      i ∈ [0,47] 
    Shift nT + uid into the LFSR 
    ai+48 := L(ai,…,ai+47) + nTi + uidi  i ∈ [0,31] 
    Shift nR into the LFSR  

    ai+48 := L(ai,…,ai+47) + nRi-32            i ∈ [32,63] 
    After authentication, LFSR keeps shifting  
    ai+48 := L(ai,…,ai+47)                    i ∈ [64, ∞)  

 
Keystream: 
    bi := f(ai+9,ai+11,…,ai+47)              i∈ℕ 
 
 

Inverting feedback: 

   R(x1,…,x47,x48) := x5+x9+x10+x12+x14    

        +x15+x17+x19+x24+x25+x27+x29+x35+x39 

        +x41+x43+x48 

   R(x1,…,x47,L(x0,x1,…,x47)) = x0 

 

Inverting LFSR stream: 

    Unshift LFSR until end of authentication 

    ai = R(ai+1,…,ai+48)                    i ∈ [64, ∞) 

    Unshift nR from the LFSR  

    ai = R(ai+1,…,ai+48) + nRi-32            i ∈ [32,63] 

        = R(ai+1,…,ai+48) + {nR}i-32 + bi 

        = R(ai+1,…,ai+48) + {nR}i-32 + f(ai+9,…,ai+47) 

    Unshift nT + uid from the LFSR 

    ai = R(ai+1,…,ai+48) + nTi + uidi  i ∈ [0,31] 

    Key is the initial state of the LFSR  

    ki = ai                   i ∈ [0,47] 

                 
                                                 

                 
                                                 

Rolling Back the LFSR 
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Summary: Weaknesses of CRYPTO1 

Stream cipher with 48-bit internal state 

• Enables brute-force attack 

Weak 16-bit random number generator 

• Enables chosen-plaintext attack and replay attack 

Authentication protocol leaks keystream 

Weak “one-way” filter function is easy to invert + 
simple LFSR structure 

• Enables “rolling back” the internal state to recover key 

• 64-bit keystream  recover unique key 

• 32-bit keystream  216 candidate keys 
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Extracting the Key (Card Only) 

Parity bit of plaintext is encrypted with the same 
bit of the keystream as the next bit of plaintext 

• “One-time” pad is used twice 

If parity bit is wrong, encrypted error message is 
sent before authentication 

• Opens the door to card-only guessing attacks (chosen-
plaintext, chosen-ciphertext) – why? 

• Wireless-only attack 

Recover secret key from the card in seconds 

• Result: full cloning 
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