
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

Stream Ciphers

One-time pad:

 Ciphertext(Key,Message)=MessageKey

• Key must be a random bit sequence as long as message

Idea: replace “random” with “pseudo-random”

• Use a pseudo-random number generator (PRNG)

• PRNG takes a short, truly random secret seed and
expands it into a long “random-looking” sequence

– E.g., 128-bit seed into a 106-bit

 pseudo-random sequence

Ciphertext(Key,Msg)=IV, MsgPRNG(IV,Key)

• Message processed bit by bit (unlike block cipher)

No efficient algorithm can tell
this sequence from truly random

slide 3

Stream Cipher Terminology

The seed of pseudo-random generator typically
consists of initialization vector (IV) and key

• The key is a secret known only to the sender and the
recipient, not sent with the ciphertext

• IV is usually sent with the ciphertext

The pseudo-random bit stream produced by
PRNG(IV,key) is referred to as keystream

Encrypt message by XORing with keystream

• ciphertext = message keystream

slide 4

Properties of Stream Ciphers

Usually very fast (faster than block ciphers)

• Used where speed is important: WiFi, DVD, RFID, VoIP

Unlike one-time pad, stream ciphers do not
provide perfect secrecy

• Only as secure as the underlying PRNG

• If used properly, can be as secure as block ciphers

PRNG must be cryptographically secure

slide 5

Weaknesses of Stream Ciphers

No integrity

• Associativity & commutativity: (XY)Z=(XZ)Y

• (M1PRNG(seed)) M2 = (M1M2) PRNG(seed)

Known-plaintext attack is very dangerous if
keystream is ever repeated

• Self-cancellation property of XOR: XX=0

• (M1PRNG(seed)) (M2PRNG(seed)) = M1M2

• If attacker knows M1, then easily recovers M2

– Most plaintexts contain enough redundancy that knowledge of
M1 or M2 is not necessary to recover both from M1M2

slide 6

How Random is “Random?”

slide 7

Cryptographically Secure PRNG

Next-bit test: given N bits of the pseudo-random
sequence, predict (N+1)st bit

• Probability of correct prediction should be very close to
1/2 for any efficient adversarial algorithm

 (means what?)

PRNG state compromise

• Even if attacker learns complete or partial state of the
PRNG, he should not be able to reproduce the
previously generated sequence

– … or future sequence, if there’ll be future random seed(s)

Common PRNGs are not cryptographically secure

slide 8

LFSR: Linear Feedback Shift Register

b0

Example:

4-bit LFSR b1 b2 b3

Key is used as the seed

• For example, if the seed is 1001, the generated
sequence is 1001101011110001001…

Repeats after 15 bits (24-1)

add to pseudo-random sequence

slide 9

Each DVD is encrypted with
a disk-specific 40-bit DISK KEY

Each player has its own PLAYER KEY

(409 player manufacturers,

each has its player key)

Content Scrambling System (CSS)

DVD encryption scheme from Matsushita and Toshiba

KEY DATA BLOCK contains disk key encrypted
with 409 different player keys:

• EncryptDiskKey(DiskKey)

• EncryptPlayerKey1(DiskKey) … EncryptPlayerKey409(DiskKey)

This helps attacker
verify his guess of disk key

What happens if even a single
player key is compromised?

slide 10

Attack on CSS Decryption Scheme

 Given known 40-bit plaintext, repeat the following 5 times (once for each plaintext byte):

 guess the byte output by the sum of the two LFSRs; use known ciphertext to verify
 – this takes O(28)

 For each guessed output byte, guess 16 bits contained in LFSR-17 – this takes O(216)

 Clock out 24 bits out of LFSR-17, use subtraction to determine the corresponding

 output bits of LFSR-25 – this reveals all of LFSR-25 except the highest bit

 “Roll back” 24 bits, try both possibilities – this takes O(2)

 Clock out 16 more bits out of both LFSRs, verify the key

 …

 …

LFSR-17

disk key

LFSR-25

24 key bits

16 key bits

“1” seeded in 4th bit

“1” seeded in 1st bit

invert

+mod 256

carry

Encrypted title key
Table-based
“mangling”

Decrypted title key

EncryptDiskKey(DiskKey)

stored on disk

This attack takes O(225)

[Frank Stevenson]

slide 11

DeCSS

In CSS, disk key is encrypted under hundreds of
different player keys… including Xing, a
software DVD player

Reverse engineering the object code of Xing
revealed its decryption key

• Recall that every CSS disk contains the master disk
key encrypted under Xing’s key

• One bad player entire system is broken!

Easy-to-use DeCSS software

slide 12

DeCSS Aftermath

DVD CCA sued Jon Lech Johansen
 (“DVD Jon”), one of DeCSS authors -
 eventually dropped

Publishing DeCSS code violates copyright

• Underground distribution as haikus and T-shirts

• “Court to address DeCSS T-Shirt: When can a T-shirt
become a trade secret? When it tells you how to copy
a DVD.” - From Wired News

slide 13

RC4

Designed by Ron Rivest for RSA in 1987

Simple, fast, widely used

• SSL/TLS for Web security, WEP for wireless

Byte array S[256] contains a permutation of numbers from 0 to 255

i = j := 0

loop

 i := (i+1) mod 256

 j := (j+S[i]) mod 256

 swap(S[i],S[j])

 output (S[i]+S[j]) mod 256

end loop

slide 14

RC4 Initialization

Divide key K into L bytes

for i = 0 to 255 do

 S[i] := i

j := 0

for i = 0 to 255 do

 j := (j+S[i]+K[i mod L]) mod 256

 swap(S[i],S[j])

Key can be any length
up to 2048 bits

Generate initial permutation
from key K

 To use RC4, usually prepend initialization vector (IV) to the key

• IV can be random or a counter

 RC4 is not random enough… First byte of generated sequence depends
only on 3 cells of state array S - this can be used to extract the key!

• To use RC4 securely, RSA suggests discarding first 256 bytes Fluhrer-Mantin-
Shamir attack

N. Borisov, I. Goldberg, D. Wagner

Intercepting Mobile Communications:

The Insecurity of 802.11

(MOBICOM 2001)

slide 16

802.11b Overview

Standard for wireless networks (IEEE 1999)

Two modes: infrastructure and ad hoc

IBSS (ad hoc) mode BSS (infrastructure) mode

slide 17

Access Point SSID

Service Set Identifier (SSID) is the “name” of the
access point

• By default, access point broadcasts its SSID in
plaintext “beacon frames” every few seconds

Default SSIDs are easily guessable

• Manufacturer’s defaults: “linksys”, “tsunami”, etc.

• This gives away the fact that access point is active

Access point settings can be changed to prevent
it from announcing its presence in beacon frames
and from using an easily guessable SSID

• But then every user must know SSID in advance

slide 18

WEP: Wired Equivalent Privacy

Special-purpose protocol for 802.11b

• Intended to make wireless as secure as wired network

Goals: confidentiality, integrity, authentication

Assumes that a secret key is shared between
access point and client

Uses RC4 stream cipher seeded with 24-bit
initialization vector and 40-bit key

• Terrible design choice for wireless environment

slide 19

Shared-Key Authentication

beacon

Prior to communicating data, access point may require client to authenticate

Access Point

Client

association
request

 association
response

 probe request
OR

 challenge

IV, challengeRC4(IV,K)

unauthenticated &
unassociated

authenticated &
unassociated

authenticated &
associated

Passive eavesdropper recovers RC4(IV,K),
can respond to any subsequent challenge
without knowing K

slide 20

How WEP Works

24 bits 40 bits

(IV, shared key) used as RC4 seed

• Must never be repeated (why?)

• There is no key update protocol, so

 security relies on never repeating IV

IV sent in the clear

Worse: changing IV with
each packet is optional!

CRC-32 checksum is linear in :

if attacker flips some plaintext bits, he knows which
bits of CRC to flip to produce the same checksum

no integrity!

slide 21

RC4 Is a Bad Choice for Wireless

Stream ciphers require synchronization of key
streams on both ends of connection

• This is not suitable when packet losses are common

WEP solution: a separate seed for each packet

• Can decrypt a packet even if a previous packet was lost

But number of possible seeds is not large enough!

• RC4 seed = 24-bit initialization vector + fixed key

• Assuming 1500-byte packets at 11 Mbps,

 224 possible IVs will be exhausted in about 5 hours

Seed reuse is deadly for stream ciphers

slide 22

Recovering Keystream

Get access point to encrypt a known plaintext

• Send spam, access point will encrypt and forward it

• Get victim to send an email with known content

If attacker knows plaintext, it is easy to recover
keystream from ciphertext

• C M = (MRC4(IV,key)) M = RC4(IV,key)

• Not a problem if this keystream is not re-used

Even if attacker doesn’t know plaintext, can
exploit regularities (plaintexts are not random)

• For example, IP packet structure is very regular

slide 23

Keystream Will Be Re-Used

In WEP, repeated IV means repeated keystream

Busy network will repeat IVs often

• Many cards reset IV to 0 when re-booted, then
increment by 1 expect re-use of low-value IVs

• If IVs are chosen randomly, expect repetition in O(212)
due to birthday paradox

Recover keystream for each IV, store in a table

• (KnownM RC4(IV,key)) KnownM = RC4(IV,key)

Wait for IV to repeat, decrypt and enjoy plaintext

• (M’ RC4(IV,key)) RC4(IV,key) = M’

slide 24

It Gets Worse

Misuse of RC4 in WEP is a design flaw with no fix

• Longer keys do not help!

– The problem is re-use of IVs, their size is fixed (24 bits)

• Attacks are passive and very difficult to detect

Perfect target for the Fluhrer et al. attack on RC4

• Attack requires known IVs of a special form

• WEP sends IVs in plaintext

• Generating IVs as counters or random numbers will
produce enough “special” IVs in a matter of hours

This results in key recovery (not just keystream)

• Can decrypt even ciphertexts whose IV is unique

slide 25

Fixing the Problem

Extensible Authentication Protocol (EAP)

• Developers can choose their own authentication method

– Passwords (Cisco EAP-LEAP), public-key certificates (Microsoft
EAP-TLS), passwords OR certificates (PEAP), etc.

802.11i standard fixes 802.11b problems

• Patch (TKIP): still RC4, but encrypts IVs and establishes
new shared keys for every 10 KBytes transmitted

– No keystream re-use, prevents exploitation of RC4 weaknesses

– Use same network card, only upgrade firmware

• Long-term: AES in CCMP mode, 128-bit keys, 48-bit IVs

– Block cipher (in special mode) instead of stream cipher

– Requires new network card hardware

slide 26

Hacking MIFARE Chips

Multi-year project on evaluating security of
MIFARE cards at Radboud University in Holland

• http://www.ru.nl/ds/research/rfid/

MIFARE = case study in how not to design
cryptographic authentication systems

The following slides are from
 Peter Van Rossum

http://www.ru.nl/ds/research/rfid/

slide 27

MIFARE Chips

Series of chips used in contactless smart cards

• Developed by NXP Semiconductors in the Netherlands

Very common in transport payment cards

MIFARE Classic: 80% of the market

• Over 1 billion sold, over 200 million in use

uid, manufacturer data

data

data

key A, access conditions, key B

data

data

data

key A,access conditions, key B

data

data

data

key A, access conditions, key B

0 0

1

2

3

4

5

6

7

60

61

62

63

1

15

16 bytes

64 blocks 16 sectors

48 bits 48 bits

slide 28

Memory Structure of the Card

slide 29

 Tag Reader

LFSR stream:

 Initial state of the LFSR is the key

 ai := ki i ∈ [0,47]

 Shift nT + uid into the LFSR

 ai+48 := L(ai,…,ai+47) + nTi + uidi i ∈ [0,31]

 Shift nR into the LFSR

 ai+48 := L(ai,…,ai+47) + nRi-32 i ∈ [32,63]

 After authentication, LFSR keeps shifting

 ai+48 := L(ai,…,ai+47) i ∈ [64, ∞)

Keystream:

 bi := f(ai+9,ai+11,…,ai+47) i ∈ [32, ∞)

auth. ok auth. ok

uid

auth(block)

nT

{nR,aR}

{aT}

pick nT

check aR

aT:=suc96(nR)

check aT

pick nR

aR:=suc64(nT)

slide 30

Challenge-Response in CRYPTO1

Generated
by PRNG

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PRNG in CRYPTO1

• 32-bit nonces

• Linear feedback shift register

• 16-bit internal state

• Period 216 – 1 = 65535

Feedback:

L16(x0,x1,…,x15) := x0+x2+x3+x5

Successor:

suc(x0,x1,…,x31) := (x1,x2,…,x30,L16(x16,x17,…,x31))

slide 31

slide 32

Replay Attack

Good challenge-response authentication requires
some form of “freshness” in each session

• For example, timestamp or strong (pseudo)randomness

MIFARE Classic: no clock + weak randomness

• “Random” challenges repeat a few times per hour

Eavesdrop and record communication session

When challenge repeats, send known plaintext,
extract keystream, use it to decrypt recorded
communication that used the same challenge

[Gans, Hoepman, Garcia]

1. Acquire keystream

• Observe authentication keystream

• 1 to 3 authentication sessions – takes microseconds

2. Invert the filter function

• Keystream internal state of LFSR

• Approx. 226 operations – take seconds

3. Roll back (“unshift”) the LFSR

• Problem: bad PRNG design

• Internal state of LFSR at any time seed (key)

– Cryptographically secure PRNG should not allow rollback
and recovery of the seed even if state is compromised

slide 33

Extracting the Key (Reader Only)

 Tag Reader

auth. ok auth. ok

uid

auth(block)

nT

{nR,aR}

{aT}

pick nT

check aR

aT:=suc96(nT)

check aT

pick nR

aR:=suc64(nT)

 Intercepted communication:

• nT, {aR}, {aT} visible to attacker

• {aR} = suc64(nT), {aT} = suc96(nT)

• 64 keystream bits

 Access to reader only:

• nT under attacker control

• {aR} = suc64(nT) visible to attacker

• 32 keystream bits

Acquiring Keystream

slide 34

keystream: 01100111100110110

Filter function only depends only on 20 odd bits of input easily inverted
• Compute ‘odd’ bits of LFSR using table and deduce ‘even’ bits (linear relation) OR

• Compute ‘odd’ and ‘even’ bits of LFSR using tables separately and combine tables

####################

00000000000000000000

00000000000000000001

00000000000000000011

00000000000000000100

00000000000000000110

…

produces ‘odd’ keystream 0

0 0000000000000000000 0

0 0000000000000000000 1

0 0000000000000000001

0 0000000000000000011 1

0 0000000000000000100 0

…

produces ‘odd’ keystream 01

00 000000000000000000 1

00 000000000000000001 1

00 000000000000000111 0

00 000000000000000111 1

00 000000000000001000

…

produces ‘odd’ keystream 010

219

slide 35

Inverting the Filter Function

Feedback:
 L(x0,x1,…,x47) := x0+x5+x9+x10+x12+x14

 +x15+x17+x19+x24+x25+x27+x29+x35+x39

 +x41+x43

LFSR stream:
 Initial state of the LFSR is the key
 ai := ki i ∈ [0,47]
 Shift nT + uid into the LFSR
 ai+48 := L(ai,…,ai+47) + nTi + uidi i ∈ [0,31]
 Shift nR into the LFSR

 ai+48 := L(ai,…,ai+47) + nRi-32 i ∈ [32,63]
 After authentication, LFSR keeps shifting
 ai+48 := L(ai,…,ai+47) i ∈ [64, ∞)

Keystream:
 bi := f(ai+9,ai+11,…,ai+47) i∈ℕ

Inverting feedback:

 R(x1,…,x47,x48) := x5+x9+x10+x12+x14

 +x15+x17+x19+x24+x25+x27+x29+x35+x39

 +x41+x43+x48

 R(x1,…,x47,L(x0,x1,…,x47)) = x0

Inverting LFSR stream:

 Unshift LFSR until end of authentication

 ai = R(ai+1,…,ai+48) i ∈ [64, ∞)

 Unshift nR from the LFSR

 ai = R(ai+1,…,ai+48) + nRi-32 i ∈ [32,63]

 = R(ai+1,…,ai+48) + {nR}i-32 + bi

 = R(ai+1,…,ai+48) + {nR}i-32 + f(ai+9,…,ai+47)

 Unshift nT + uid from the LFSR

 ai = R(ai+1,…,ai+48) + nTi + uidi i ∈ [0,31]

 Key is the initial state of the LFSR

 ki = ai i ∈ [0,47]

Rolling Back the LFSR

slide 36

Summary: Weaknesses of CRYPTO1

Stream cipher with 48-bit internal state

• Enables brute-force attack

Weak 16-bit random number generator

• Enables chosen-plaintext attack and replay attack

Authentication protocol leaks keystream

Weak “one-way” filter function is easy to invert +
simple LFSR structure

• Enables “rolling back” the internal state to recover key

• 64-bit keystream recover unique key

• 32-bit keystream 216 candidate keys

slide 37

Extracting the Key (Card Only)

Parity bit of plaintext is encrypted with the same
bit of the keystream as the next bit of plaintext

• “One-time” pad is used twice

If parity bit is wrong, encrypted error message is
sent before authentication

• Opens the door to card-only guessing attacks (chosen-
plaintext, chosen-ciphertext) – why?

• Wireless-only attack

Recover secret key from the card in seconds

• Result: full cloning

slide 38

