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Secure Multi-Party Computation 

General framework for describing computation 
between parties who do not trust each other 

Example: elections 

• N parties, each one has a “Yes” or “No” vote 

• Goal: determine whether the majority voted “Yes”, but 
no voter should learn how other people voted 

Example: auctions 

• Each bidder makes an offer 

• Goal: determine whose offer won without revealing 
losing offers 
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More Examples 

Example: distributed data mining 

• Two companies want to compare their datasets 
without revealing them 

– For example, compute the intersection of two customer lists 

Example: database privacy 

• Evaluate a query on the database without revealing 
the query to the database owner 

• Evaluate a statistical query without revealing the 
values of individual entries 
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A Couple of Observations 

We are dealing with distributed multi-party 
protocols 

• “Protocol” describes how parties are supposed to 
exchange messages on the network 

All of these tasks can be easily computed by a 
trusted third party 

• Secure multi-party computation aims to achieve the 
same result without involving a trusted third party 
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How to Define Security? 

Must be mathematically rigorous 

Must capture all realistic attacks that a malicious 
participant may try to stage 

Should be “abstract” 

• Based on the desired “functionality” of the protocol, 
not a specific protocol 

• Goal: define security for an entire class of protocols 
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Functionality 

K mutually distrustful parties want to jointly carry 
out some task 

Model this task as a “functionality” 
 

 f: ({0,1}*)K ({0,1}*)K 

 

 

Assume that this functionality is computable in 
probabilistic polynomial time 

K inputs (one per party); 

each input is a bitstring 

K outputs 
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Ideal Model 

Intuitively, we want the protocol to behave “as if” 
a trusted third party collected the parties’ inputs 
and computed the desired functionality 

• Computation in the ideal model is secure by definition! 

A B 
 

x1 

 

f2(x1,x2) 

 

f1(x1,x2) 
 

x2 
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Slightly More Formally 

A protocol is secure if it emulates an ideal setting 
where the parties hand their inputs to a “trusted 
party,” who locally computes the desired outputs 
and hands them back to the parties   
    [Goldreich-Micali-Wigderson  1987] 

A B 
 

x1 

 

f2(x1,x2) 

 

f1(x1,x2) 
 

x2 
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Adversary Models 

Some participants may be dishonest (corrupt) 

• If all were honest, we would not need secure multi-
party computation 

Semi-honest (aka passive; honest-but-curious) 

• Follows protocol, but tries to learn more from received 
messages than he would learn in the ideal model 

Malicious 

• Deviates from the protocol in arbitrary ways, lies about 
his inputs, may quit at any point 

For now, focus on semi-honest adversaries and 
two-party protocols 
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Correctness and Security 

How do we argue that the real protocol 
“emulates” the ideal protocol? 

Correctness 

• All honest participants should receive the correct result 
of evaluating functionality f 

– Because a trusted third party would compute f correctly 

Security 

• All corrupt participants should learn no more from the 
protocol than what they would learn in the ideal model 

• What does a corrupt participant learn in ideal model? 

– His own input and the result of evaluating f 
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Simulation 

Corrupt participant’s view of the protocol = record 
of messages sent and received  

• In the ideal world, this view consists simply of his input 
and the result of evaluating f 

How to argue that real protocol does not leak 
more useful information than ideal-world view? 

Key idea: simulation 

• If real-world view (i.e., messages received in the real 
protocol) can be simulated with access only to the ideal-
world view, then real-world protocol is secure 

• Simulation must be indistinguishable from real view 
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Technicalities 

Distance between probability distributions A and B 
over a common set X is  

  ½ * sumX(|Pr(A=x) – Pr(B=x)|) 

Probability ensemble Ai is a set of discrete 
probability distributions 

• Index i ranges over some set I 

Function f(n) is negligible if it is asymptotically 
smaller than the inverse of any polynomial 

  constant c m such that |f(n)| < 1/nc n>m 
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Indistinguishability Notions 

Distribution ensembles Ai and Bi are equal 

Distribution ensembles Ai and Bi are statistically 
close if dist(Ai,Bi) is a negligible function of i 

Distribution ensembles Ai and Bi are 
computationally indistinguishable (Ai  Bi) if, for 
any probabilistic polynomial-time algorithm D, 
|Pr(D(Ai)=1) - Pr(D(Bi)=1)| is a negligible 
function of i 

• No efficient algorithm can tell the difference between 
Ai and Bi except with a negligible probability 
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SMC Definition (First Attempt) 

Protocol for computing f(XA,XB) betw. A and B is 
secure if there exist efficient simulator algorithms 
SA and SB such that for all input pairs (xA,xB) … 

Correctness: (yA,yB)  f(xA,xB)  

• Intuition: outputs received by honest parties are 
indistinguishable from the correct result of evaluating f 

Security: viewA(real protocol)  SA(xA,yA) 

   viewB(real protocol)  SB(xB,yB) 

• Intuition: a corrupt party’s view of the protocol can be 
simulated from its input and output 

This definition does not work!  Why? 
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Randomized Ideal Functionality 

Consider a coin flipping functionality 

  f()=(b,-) where b is random bit 

• f() flips a coin and tells A the result; B learns nothing 

The following protocol “implements” f() 

1. A chooses bit b randomly 

2. A sends b to B 

3. A outputs b 

It is obviously insecure (why?) 

Yet it is correct and simulatable according to our 
attempted definition (why?) 
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SMC Definition 

Protocol for computing f(XA,XB) betw. A and B is 
secure if there exist efficient simulator algorithms 
SA and SB such that for all input pairs (xA,xB) … 

Correctness: (yA,yB)  f(xA,xB)  

Security: (viewA(real protocol), yB)  (SA(xA,yA), yB) 

   (viewB(real protocol), yA)  (SB(xB,yB), yA) 

• Intuition: if a corrupt party’s view of the protocol is 
correlated with the honest party’s output, the simulator 
must be able to capture this correlation 

Does this fix the problem with coin-flipping f? 
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Oblivious Transfer (OT)  

Fundamental SMC primitive 

A B 
 

b0, b1 

 

bi 
 

i = 0 or 1 

• A inputs two bits, B inputs the index of one of A’s bits    

• B learns his chosen bit, A learns nothing 

– A does not learn which bit B has chosen; B does not learn the 
value of the bit that he did not choose 

• Generalizes to bitstrings, M instead of 2, etc. 

[Rabin 1981] 
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One-Way Trapdoor Functions 

Intuition: one-way functions are easy to compute, 
but hard to invert (skip formal definition) 

• We will be interested in one-way permutations 

Intution: one-way trapdoor functions are one-way 
functions that are easy to invert given some extra 
information called the trapdoor 

• Example: if n=pq where p and q are large primes and e 
is relatively prime to (n), fe,n(m) = me mod n is easy to 
compute, but it is believed to be hard to invert 

• Given the trapdoor d s.t. de=1 mod (n), fe,n(m) is easy 
to invert because fe,n(m)d = (me)d = m mod n 
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Hard-Core Predicates 

Let f: SS be a one-way function on some set S 

B: S{0,1} is a hard-core predicate for f if 

• Intuition: there is a bit of information about x such that 
learning this bit from f(x) is as hard as inverting f 

• B(x) is easy to compute given xS 

• If an algorithm, given only f(x), computes B(x) correctly 
with prob > ½+, it can be used to invert f(x) easily 

– Consequence: B(x) is hard to compute given only f(x) 

Goldreich-Levin theorem 

• B(x,r)=rx is a hard-core predicate for g(x,r) = (f(x),r) 

– f(x) is any one-way function, rx=(r1x1)  …  (rnxn) 
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Oblivious Transfer Protocol 

Assume the existence of some family of one-way 
trapdoor permutations 

A B 

Chooses his input i (0 or 1) 

Chooses random r0,1, x, ynot i  
Computes yi = F(x) 

Chooses a one-way permutation 
F and corresponding trapdoor T 

 

F 

 

r0, r1, y0, y1  

 

b0(r0T(y0)), b1(r1T(y1))  

Computes mi(rix) 

= (bi(riT(yi)))(rix) 

= (bi(riT(F(x))))(rix) = bi 
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y0 and y1 are uniformly random regardless of 

A’s choice of permutation F (why?) 

Therefore, A’s view is independent of B’s input i. 

Proof of Security for B 

A B 
Chooses random r0,1, x, ynot i  

Computes yi = F(x) 
 

F 

 

r0, r1, y0, y1  

 

b0(r0T(y0)), b1(r1T(y1))  

Computes mi(rix) 
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Proof of Security for A (Sketch) 

Sim B 
Random r0,1, x, ynot i  

yi = F(x) 
 

F 

 

r0, r1, y0, y1  

 

b0(r0T(y0)), b1(r1T(y1))  

Need to build a simulator whose output is 
indistinguishable from B’s view of the protocol 

Chooses random F, 

random r0,1, x, ynot i  

computes yi = F(x), 

sets mi=bi(riT(yi)), 

random mnot i  

 

Knows i and bi (why?) 

The only difference between simulation and real protocol: 

In simulation, mnot i is random (why?) 

In real protocol, mnot i=bnot i(rnot iT(ynot i))  
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Proof of Security for A (Cont’d) 

Why is it computationally infeasible to distinguish 
random m and m’=b(rT(y))? 

• b is some bit, r and y are random, T is the trapdoor of a 
one-way trapdoor permutation 

(rx) is a hard-core bit for g(x,r)=(F(x),r) 

• This means that (rx) is hard to compute given F(x) 

If B can distinguish m and m’=b(rx’) given only 
y=F(x’), we obtain a contradiction with the fact 
that (rx’) is a hard-core bit 

• Proof omitted 
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Naor-Pinkas Oblivious Transfer 

S C 

Choice: bit  

Chooses random k 
Sets PK=gk, PK1-=C/PK  

 

C 

 

PK0 

 

gr, m0Hash((PK0)
r,0), m1Hash((PK1)

r,1) 

Computes (gr)k = (PK)
r and 

decrypts m 

Messages m0 and m1 

Chooser does not 
know discrete log of C 

Setting: order-q subgroup of Z*p, p is prime, q divides p-1 

            g is a generator group for which CDH assumption holds 

Chooses random r,  
computes PK1 

 

Chooser knows discrete log 

either for PK0, or for PK1, but not both  

 

Chooser does not know the discrete log of PK1-, thus cannot 
distinguish between a random value gz and (PK1-)

r   - why? 



A. Yao 

 

Protocols for Secure Computations 

 

(FOCS 1982) 
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1 

0 0 0 

Yao’s Protocol 

Compute any function securely  

… in the semi-honest model; can be extended to malicious 

First, convert the function into a boolean circuit 

AND 

  

 

x y 

z 

Truth table:     
 
 

x y z 

0 1 0 
1 0 0 

1 1 1 

0 0 0 

OR 

  

 

x y 

z 

Truth table:     
 
 

x y z 

0 1 1 
1 0 1 

1 1 

AND 

  

 
OR 

  

 

AND 

  

 

NOT 
 

OR 

  

 

AND 

  

   

  
Alice’s inputs 

 

 

 

  

 

 
 

 

 

 

 
 

 

  

Bob’s inputs 
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1: Pick Random Keys For Each Wire 

Evaluate one gate securely 

• Later generalize to the entire circuit  

Alice picks two random keys for each wire 

• One key corresponds to “0”, the other to “1” 

• 6 keys in total for a gate with 2 input wires 

AND 

  

 

x y 

z k0z, k1z 

 
Alice Bob 

 

 

k0x, k1x 

 

k0y, k1y 
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2: Encrypt Truth Table 

Alice encrypts each row of the truth table by 
encrypting the output-wire key with the 
corresponding pair of input-wire keys  

AND 

  

 

x y 

z 

k0z, k1z 

 
Alice Bob 

 

 

k0x, k1x 

 

k0y, k1y 

 

1 

0 0 0 

Original truth table:     
 
 

x y z 

0 1 0 
1 0 0 

1 1 

Encrypted truth table: 

Ek0x
(Ek0y

(k0z)) 

Ek0x
(Ek1y

(k0z)) 

Ek1x
(Ek0y

(k0z)) 

Ek1x
(Ek1y

(k1z)) 
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3: Send Garbled Truth Table 

Alice randomly permutes (“garbles”) encrypted 
truth table and sends it to Bob  

AND 

  

 

x y 

z 

k0z, k1z 

 
Alice Bob 

 

 

k0x, k1x 

 

k0y, k1y 

 

Garbled truth table: 

Ek0x
(Ek0y

(k0z)) 

Ek0x
(Ek1y

(k0z)) 

Ek1x
(Ek0y

(k0z)) 

Ek1x
(Ek1y

(k1z)) Ek0x
(Ek0y

(k0z)) 

Ek0x
(Ek1y

(k0z)) 

Ek1x
(Ek0y

(k0z)) 

Ek1x
(Ek1y

(k1z)) 

 

Does not know which row of 
garbled table corresponds to 
which row of original table 
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4: Send Keys For Alice’s Inputs  

Alice sends the key corresponding to her input bit 

• Keys are random, so Bob does not learn what this bit is 

AND 

  

 

x y 

z k0z, k1z 

 
Alice Bob 

 

 

k0x, k1x 

 

k0y, k1y 

  If Alice’s bit is 1, she 
simply sends k1x to Bob; 
if 0, she sends k0x 

Learns Kb’x where b’ 
is Alice’s input bit, 
but not b’ (why?) 

Garbled truth table: 

Ek0x
(Ek0y

(k0z)) 

Ek0x
(Ek1y

(k0z)) 
Ek1x

(Ek0y
(k0z)) 

Ek1x
(Ek1y

(k1z)) 
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5: Use OT on Keys for Bob’s Input  

Alice and Bob run oblivious transfer protocol 

• Alice’s input is the two keys corresponding to Bob’s wire 

• Bob’s input into OT is simply his 1-bit input on that wire 

AND 

  

 

x y 

z 

k0z, k1z 

 
Alice Bob 

 

 

k0x, k1x 

 

k0y, k1y 

  Run oblivious transfer 

Alice’s input: k0y, k1y 

Bob’s input: his bit b 

Bob learns kby 

What does Alice learn?  

Knows Kb’x where b’ is 
Alice’s input bit and Kby 
where b is his own input bit 

Garbled truth table: 

Ek0x
(Ek0y

(k0z)) 

Ek0x
(Ek1y

(k0z)) 
Ek1x

(Ek0y
(k0z)) 

Ek1x
(Ek1y

(k1z)) 
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6: Evaluate One Garbled Gate  

Using the two keys that he learned, Bob decrypts 
exactly one of the output-wire keys 

• Bob does not learn if this key corresponds to 0 or 1 

– Why is this important? 

AND 

  

 

x y 

z 

k0z, k1z 

 
Alice Bob 

 

 

k0x, k1x 

 

k0y, k1y 

 

Knows Kb’x where b’ is 
Alice’s input bit and Kby 
where b is his own input bit 

Garbled truth table: 

Ek0x
(Ek0y

(k0z)) 

Ek0x
(Ek1y

(k0z)) 
Ek1x

(Ek0y
(k0z)) 

Ek1x
(Ek1y

(k1z)) 

Suppose b’=0, b=1 

 
This is the only row  

Bob can decrypt. 

He learns K0z 
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In this way, Bob evaluates entire garbled circuit 

• For each wire in the circuit, Bob learns only one key 

• It corresponds to 0 or 1 (Bob does not know which) 

– Therefore, Bob does not learn intermediate values (why?) 

 

 

 

 

 

Bob tells Alice the key for the final output wire and 
she tells him if it corresponds to 0 or 1 

• Bob does not tell her intermediate wire keys (why?)  

7: Evaluate Entire Circuit 

AND 

  

 OR 

  

 

AND 

  

 

NOT  

OR 

  

 

AND 

  

   

  
Alice’s inputs 

 
 
 

  
 

  
 

 
 

 
 

 

  

Bob’s inputs 
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Brief Discussion of Yao’s Protocol 

Function must be converted into a circuit 

• For many functions, circuit will be huge (can use BDD) 

If m gates in the circuit and n inputs, then need 
4m encryptions and n oblivious transfers 

• Oblivious transfers for all inputs can be done in parallel 

Yao’s construction gives a constant-round protocol 
for secure computation of any function in the 
semi-honest model 

• Number of rounds does not depend on the number of 
inputs or the size of the circuit! 


