CS 380S

0x1A Great Papers in Computer Security

Vitaly Shmatikov

http://www.cs.utexas.edu/~shmat/courses/cs380s/

Secure Multi-Party Computation

-General framework for describing computation between parties who do not trust each other

- Example: elections
- N parties, each one has a "Yes" or "No" vote
- Goal: determine whether the majority voted "Yes", but no voter should learn how other people voted
- Example: auctions
- Each bidder makes an offer
- Goal: determine whose offer won without revealing losing offers

More Examples

Example: distributed data mining

- Two companies want to compare their datasets without revealing them
- For example, compute the intersection of two customer lists

Example: database privacy

- Evaluate a query on the database without revealing the query to the database owner
- Evaluate a statistical query without revealing the values of individual entries

A Couple of Observations

\checkmark We are dealing with distributed multi-party protocols

- "Protocol" describes how parties are supposed to exchange messages on the network
All of these tasks can be easily computed by a trusted third party
- Secure multi-party computation aims to achieve the same result without involving a trusted third party

How to Define Security?

Must be mathematically rigorous

- Must capture all realistic attacks that a malicious participant may try to stage
-Should be "abstract"
- Based on the desired "functionality" of the protocol, not a specific protocol
- Goal: define security for an entire class of protocols

Functionality

K mutually distrustful parties want to jointly carry out some task

- Model this task as a "functionality"
f: $\left(\{0,1\}^{*}\right)^{\mathrm{K}} \rightarrow\left(\{0,1\}^{*}\right)^{\mathrm{K}}$

K inputs (one per party); K outputs each input is a bitstring
Assume that this functionality is computable in probabilistic polynomial time

Ideal Model

- Intuitively, we want the protocol to behave "as if" a trusted third party collected the parties' inputs and computed the desired functionality
- Computation in the ideal model is secure by definition!

Slightly More Formally

A protocol is secure if it emulates an ideal setting where the parties hand their inputs to a "trusted party," who locally computes the desired outputs and hands them back to the parties
[Goldreich-Micali-Wigderson 1987]

Adversary Models

Some participants may be dishonest (corrupt)

- If all were honest, we would not need secure multiparty computation
Semi-honest (aka passive; honest-but-curious)
- Follows protocol, but tries to learn more from received messages than he would learn in the ideal model
- Malicious
- Deviates from the protocol in arbitrary ways, lies about his inputs, may quit at any point
-For now, focus on semi-honest adversaries and two-party protocols

Correctness and Security

How do we argue that the real protocol "emulates" the ideal protocol?
Correctness

- All honest participants should receive the correct result of evaluating functionality f
- Because a trusted third party would compute f correctly

Security

- All corrupt participants should learn no more from the protocol than what they would learn in the ideal model
- What does a corrupt participant learn in ideal model?
- His own input and the result of evaluating f

Simulation

Corrupt participant's view of the protocol = record of messages sent and received

- In the ideal world, this view consists simply of his input and the result of evaluating f
-How to argue that real protocol does not leak more useful information than ideal-world view?
- Key idea: simulation
- If real-world view (i.e., messages received in the real protocol) can be simulated with access only to the idealworld view, then real-world protocol is secure
- Simulation must be indistinguishable from real view

Technicalities

- Distance between probability distributions A and B over a common set X is

$$
1 / 2 * \operatorname{sum}_{x}(|\operatorname{Pr}(A=x)-\operatorname{Pr}(B=x)|)
$$

Probability ensemble A_{i} is a set of discrete probability distributions

- Index i ranges over some set I

Function $f(n)$ is negligible if it is asymptotically smaller than the inverse of any polynomial \forall constant $\mathrm{c} \exists \mathrm{m}$ such that $|\mathrm{f}(\mathrm{n})|<1 / \mathrm{n}^{\mathrm{c}} \forall \mathrm{n}>\mathrm{m}$

Indistinguishability Notions

\rightarrow Distribution ensembles A_{i} and B_{i} are equal
\rightarrow Distribution ensembles A_{i} and B_{i} are statistically close if $\operatorname{dist}\left(A_{i}, B_{i}\right)$ is a negligible function of i
\triangle Distribution ensembles A_{i} and B_{i} are computationally indistinguishable ($A_{i} \approx B_{i}$) if, for any probabilistic polynomial-time algorithm D, $\left|\operatorname{Pr}\left(D\left(A_{i}\right)=1\right)-\operatorname{Pr}\left(D\left(B_{i}\right)=1\right)\right|$ is a negligible function of i

- No efficient algorithm can tell the difference between A_{i} and B_{i} except with a negligible probability

SMC Definition (First Attempt)

\rightarrow Protocol for computing $f\left(X_{A}, X_{B}\right)$ betw. A and B is secure if there exist efficient simulator algorithms S_{A} and S_{B} such that for all input pairs $\left(\mathrm{x}_{\mathrm{A}}, \mathrm{x}_{\mathrm{B}}\right) \ldots$
Correctness: $\left(y_{A}, y_{B}\right) \approx f\left(x_{A}, x_{B}\right)$

- Intuition: outputs received by honest parties are indistinguishable from the correct result of evaluating f
Security: view $_{A}($ real protocol $) \approx S_{A}\left(x_{A}, y_{A}\right)$

$$
\operatorname{view}_{B}(\text { real protocol }) \approx S_{B}\left(x_{B}, y_{B}\right)
$$

- Intuition: a corrupt party's view of the protocol can be simulated from its input and output
-This definition does not work! Why?

Randomized Ideal Functionality

\checkmark Consider a coin flipping functionality $f()=(b,-)$ where b is random bit

- $f()$ flips a coin and tells A the result; B learns nothing
-The following protocol "implements" f()

1. A chooses bit b randomly
2. A sends b to B
3. A outputs b
\rightarrow It is obviously insecure (why?)

- Yet it is correct and simulatable according to our attempted definition (why?)

SMC Definition

- Protocol for computing $f\left(X_{A}, X_{B}\right)$ betw. A and B is secure if there exist efficient simulator algorithms S_{A} and S_{B} such that for all input pairs $\left(\mathrm{x}_{\mathrm{A}}, \mathrm{x}_{\mathrm{B}}\right) \ldots$
Correctness: $\left(y_{A}, y_{B}\right) \approx f\left(x_{A}, x_{B}\right)$
Security: $\left(\right.$ view $_{A}$ (real protocol $\left.), y_{B}\right) \approx\left(S_{A}\left(x_{A}, y_{A}\right), y_{B}\right)$ $\left(\operatorname{view}_{B}(\right.$ real protocol $\left.), y_{A}\right) \approx\left(S_{B}\left(x_{B}, y_{B}\right), y_{A}\right)$
- Intuition: if a corrupt party's view of the protocol is correlated with the honest party's output, the simulator must be able to capture this correlation
Does this fix the problem with coin-flipping f?

Oblivious Transfer (OT)

Fundamental SMC primitive

- A inputs two bits, B inputs the index of one of A 's bits
- B learns his chosen bit, A learns nothing
- A does not learn which bit B has chosen; B does not learn the value of the bit that he did not choose
- Generalizes to bitstrings, M instead of 2, etc.

One-Way Trapdoor Functions

- Intuition: one-way functions are easy to compute, but hard to invert (skip formal definition)
- We will be interested in one-way permutations
\rightarrow Intution: one-way trapdoor functions are one-way functions that are easy to invert given some extra information called the trapdoor
- Example: if $\mathrm{n}=\mathrm{pq}$ where p and q are large primes and e is relatively prime to $\varphi(\mathrm{n}), \mathrm{f}_{\mathrm{e}, \mathrm{n}}(\mathrm{m})=\mathrm{m}^{\mathrm{e}} \bmod \mathrm{n}$ is easy to compute, but it is believed to be hard to invert
- Given the trapdoor d s.t. de=1 $\bmod \varphi(\mathrm{n}), \mathrm{f}_{\mathrm{e}, \mathrm{n}}(\mathrm{m})$ is easy to invert because $f_{e, n}(m)^{d}=\left(m^{e}\right)^{d}=m \bmod n$

Hard-Core Predicates

Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{S}$ be a one-way function on some set S
B : $S \rightarrow\{0,1\}$ is a hard-core predicate for f if

- Intuition: there is a bit of information about x such that learning this bit from $f(x)$ is as hard as inverting f
- $B(x)$ is easy to compute given $x \in S$
- If an algorithm, given only $f(x)$, computes $B(x)$ correctly with prob $>1 / 2+\varepsilon$, it can be used to invert $f(x)$ easily
- Consequence: $B(x)$ is hard to compute given only $f(x)$

Goldreich-Levin theorem

- $B(x, r)=r \bullet x$ is a hard-core predicate for $g(x, r)=(f(x), r)$
$-f(x)$ is any one-way function, $r \bullet x=\left(r_{1} x_{1}\right) \oplus \ldots \oplus\left(r_{n} x_{n}\right)$

Oblivious Transfer Protocol

Assume the existence of some family of one-way trapdoor permutations

Proof of Security for B

Proof of Security for A (Sketch)

Need to build a simulator whose output is indistinguishable from B's view of the protocol

The only difference between simulation and real protocol: In simulation, $\mathrm{m}_{\text {not }}$ is random (why?)
In real protocol, $\mathrm{m}_{\text {not } i}=\mathrm{b}_{\text {not } i} \oplus\left(\mathrm{r}_{\text {not }} \bullet \mathrm{T}\left(\mathrm{y}_{\text {not }} \mathrm{i}\right)\right)$

Proof of Security for A (Cont'd)

Why is it computationally infeasible to distinguish random m and $\mathrm{m}^{\prime}=\mathrm{b} \oplus(\mathrm{r} \bullet \mathrm{T}(\mathrm{y}))$?

- b is some bit, r and y are random, T is the trapdoor of a one-way trapdoor permutation
$\diamond(\mathrm{r} \bullet \mathrm{x})$ is a hard-core bit for $\mathrm{g}(\mathrm{x}, \mathrm{r})=(\mathrm{F}(\mathrm{x}), \mathrm{r})$
- This means that ($\mathrm{r} \times \mathrm{x}$) is hard to compute given $F(x)$
- If B can distinguish m and $m^{\prime}=b \oplus\left(r \bullet x^{\prime}\right)$ given only $y=F\left(x^{\prime}\right)$, we obtain a contradiction with the fact that ($\mathrm{r} \bullet \mathrm{x}^{\prime}$) is a hard-core bit
- Proof omitted

Naor-Pinkas Oblivious Transfer

Setting: order- q subgroup of $Z^{*} p, p$ is prime, q divides $p-1$ g is a generator group for which CDH assumption holds

Messages m_{0} and m_{1}
Chooser does not know discrete log of C

Choice: bit σ

$\mathrm{g}^{r}, \mathrm{~m}_{0} \oplus \operatorname{Hash}\left(\left(\mathrm{PK}_{0}\right)^{r}, 0\right), \mathrm{m}_{1} \oplus \operatorname{Hash}\left(\left(\mathrm{PK}_{1}\right)^{r}, 1\right)$

Chooser knows discrete log either for PK_{0}, or for PK_{1}, but not both

Computes $\left(\mathrm{g}^{r}\right)^{\mathrm{k}}=\left(\mathrm{PK}_{\sigma}\right)^{r}$ and decrypts m_{σ}

Chooser does not know the discrete \log of $\mathrm{PK}_{1-\sigma}$, thus cannot distinguish between a random value g_{z} and $\left(\mathrm{PK}_{1-\sigma}\right)^{r}$ - why?

A. Yao

Protocols for Secure Computations

(FOCS 1982)

Yao's Protocol

-Compute any function securely
... in the semi-honest model; can be extended to malicious

- First, convert the function into a boolean circuit

Alice's inputs

\mathbf{X}	\mathbf{y}	\mathbf{Z}
0	0	0
0	1	0
1	0	0
1	1	1

1: Pick Random Keys For Each Wire

- Evaluate one gate securely
- Later generalize to the entire circuit
\checkmark Alice picks two random keys for each wire
- One key corresponds to " 0 ", the other to " 1 "
- 6 keys in total for a gate with 2 input wires

2: Encrypt Truth Table

- Alice encrypts each row of the truth table by encrypting the output-wire key with the corresponding pair of input-wire keys

3: Send Garbled Truth Table

- Alice randomly permutes ("garbles") encrypted truth table and sends it to Bob

4: Send Keys For Alice's Inputs

- Alice sends the key corresponding to her input bit
- Keys are random, so Bob does not learn what this bit is

5: Use OT on Keys for Bob’s Input

- Alice and Bob run oblivious transfer protocol
- Alice's input is the two keys corresponding to Bob's wire
- Bob's input into OT is simply his 1-bit input on that wire

6: Evaluate One Garbled Gate

Using the two keys that he learned, Bob decrypts exactly one of the output-wire keys

- Bob does not learn if this key corresponds to 0 or 1
- Why is this important?

7: Evaluate Entire Circuit

- In this way, Bob evaluates entire garbled circuit
- For each wire in the circuit, Bob learns only one key
- It corresponds to 0 or 1 (Bob does not know which)
- Therefore, Bob does not learn intermediate values (why?)

-Bob tells Alice the key for the final output wire and she tells him if it corresponds to 0 or 1
- Bob does not tell her intermediate wire keys (why?)

Brief Discussion of Yao's Protocol

-Function must be converted into a circuit

- For many functions, circuit will be huge (can use BDD)
- If m gates in the circuit and n inputs, then need 4 m encryptions and n oblivious transfers
- Oblivious transfers for all inputs can be done in parallel
-Yao's construction gives a constant-round protocol for secure computation of any function in the semi-honest model
- Number of rounds does not depend on the number of inputs or the size of the circuit!

