
0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

Secure Multi-Party Computation

General framework for describing computation
between parties who do not trust each other

Example: elections

• N parties, each one has a “Yes” or “No” vote

• Goal: determine whether the majority voted “Yes”, but
no voter should learn how other people voted

Example: auctions

• Each bidder makes an offer

• Goal: determine whose offer won without revealing
losing offers

slide 3

More Examples

Example: distributed data mining

• Two companies want to compare their datasets
without revealing them

– For example, compute the intersection of two customer lists

Example: database privacy

• Evaluate a query on the database without revealing
the query to the database owner

• Evaluate a statistical query without revealing the
values of individual entries

slide 4

A Couple of Observations

We are dealing with distributed multi-party
protocols

• “Protocol” describes how parties are supposed to
exchange messages on the network

All of these tasks can be easily computed by a
trusted third party

• Secure multi-party computation aims to achieve the
same result without involving a trusted third party

slide 5

How to Define Security?

Must be mathematically rigorous

Must capture all realistic attacks that a malicious
participant may try to stage

Should be “abstract”

• Based on the desired “functionality” of the protocol,
not a specific protocol

• Goal: define security for an entire class of protocols

slide 6

Functionality

K mutually distrustful parties want to jointly carry
out some task

Model this task as a “functionality”

 f: ({0,1}*)K ({0,1}*)K

Assume that this functionality is computable in
probabilistic polynomial time

K inputs (one per party);

each input is a bitstring

K outputs

slide 7

Ideal Model

Intuitively, we want the protocol to behave “as if”
a trusted third party collected the parties’ inputs
and computed the desired functionality

• Computation in the ideal model is secure by definition!

A B

x1

f2(x1,x2)

f1(x1,x2)

x2

slide 8

Slightly More Formally

A protocol is secure if it emulates an ideal setting
where the parties hand their inputs to a “trusted
party,” who locally computes the desired outputs
and hands them back to the parties
 [Goldreich-Micali-Wigderson 1987]

A B

x1

f2(x1,x2)

f1(x1,x2)

x2

slide 9

Adversary Models

Some participants may be dishonest (corrupt)

• If all were honest, we would not need secure multi-
party computation

Semi-honest (aka passive; honest-but-curious)

• Follows protocol, but tries to learn more from received
messages than he would learn in the ideal model

Malicious

• Deviates from the protocol in arbitrary ways, lies about
his inputs, may quit at any point

For now, focus on semi-honest adversaries and
two-party protocols

slide 10

Correctness and Security

How do we argue that the real protocol
“emulates” the ideal protocol?

Correctness

• All honest participants should receive the correct result
of evaluating functionality f

– Because a trusted third party would compute f correctly

Security

• All corrupt participants should learn no more from the
protocol than what they would learn in the ideal model

• What does a corrupt participant learn in ideal model?

– His own input and the result of evaluating f

slide 11

Simulation

Corrupt participant’s view of the protocol = record
of messages sent and received

• In the ideal world, this view consists simply of his input
and the result of evaluating f

How to argue that real protocol does not leak
more useful information than ideal-world view?

Key idea: simulation

• If real-world view (i.e., messages received in the real
protocol) can be simulated with access only to the ideal-
world view, then real-world protocol is secure

• Simulation must be indistinguishable from real view

slide 12

Technicalities

Distance between probability distributions A and B
over a common set X is

 ½ * sumX(|Pr(A=x) – Pr(B=x)|)

Probability ensemble Ai is a set of discrete
probability distributions

• Index i ranges over some set I

Function f(n) is negligible if it is asymptotically
smaller than the inverse of any polynomial

 constant c m such that |f(n)| < 1/nc n>m

slide 13

Indistinguishability Notions

Distribution ensembles Ai and Bi are equal

Distribution ensembles Ai and Bi are statistically
close if dist(Ai,Bi) is a negligible function of i

Distribution ensembles Ai and Bi are
computationally indistinguishable (Ai Bi) if, for
any probabilistic polynomial-time algorithm D,
|Pr(D(Ai)=1) - Pr(D(Bi)=1)| is a negligible
function of i

• No efficient algorithm can tell the difference between
Ai and Bi except with a negligible probability

slide 14

SMC Definition (First Attempt)

Protocol for computing f(XA,XB) betw. A and B is
secure if there exist efficient simulator algorithms
SA and SB such that for all input pairs (xA,xB) …

Correctness: (yA,yB) f(xA,xB)

• Intuition: outputs received by honest parties are
indistinguishable from the correct result of evaluating f

Security: viewA(real protocol) SA(xA,yA)

 viewB(real protocol) SB(xB,yB)

• Intuition: a corrupt party’s view of the protocol can be
simulated from its input and output

This definition does not work! Why?

slide 15

Randomized Ideal Functionality

Consider a coin flipping functionality

 f()=(b,-) where b is random bit

• f() flips a coin and tells A the result; B learns nothing

The following protocol “implements” f()

1. A chooses bit b randomly

2. A sends b to B

3. A outputs b

It is obviously insecure (why?)

Yet it is correct and simulatable according to our
attempted definition (why?)

slide 16

SMC Definition

Protocol for computing f(XA,XB) betw. A and B is
secure if there exist efficient simulator algorithms
SA and SB such that for all input pairs (xA,xB) …

Correctness: (yA,yB) f(xA,xB)

Security: (viewA(real protocol), yB) (SA(xA,yA), yB)

 (viewB(real protocol), yA) (SB(xB,yB), yA)

• Intuition: if a corrupt party’s view of the protocol is
correlated with the honest party’s output, the simulator
must be able to capture this correlation

Does this fix the problem with coin-flipping f?

slide 17

Oblivious Transfer (OT)

Fundamental SMC primitive

A B

b0, b1

bi

i = 0 or 1

• A inputs two bits, B inputs the index of one of A’s bits

• B learns his chosen bit, A learns nothing

– A does not learn which bit B has chosen; B does not learn the
value of the bit that he did not choose

• Generalizes to bitstrings, M instead of 2, etc.

[Rabin 1981]

slide 18

One-Way Trapdoor Functions

Intuition: one-way functions are easy to compute,
but hard to invert (skip formal definition)

• We will be interested in one-way permutations

Intution: one-way trapdoor functions are one-way
functions that are easy to invert given some extra
information called the trapdoor

• Example: if n=pq where p and q are large primes and e
is relatively prime to (n), fe,n(m) = me mod n is easy to
compute, but it is believed to be hard to invert

• Given the trapdoor d s.t. de=1 mod (n), fe,n(m) is easy
to invert because fe,n(m)d = (me)d = m mod n

slide 19

Hard-Core Predicates

Let f: SS be a one-way function on some set S

B: S{0,1} is a hard-core predicate for f if

• Intuition: there is a bit of information about x such that
learning this bit from f(x) is as hard as inverting f

• B(x) is easy to compute given xS

• If an algorithm, given only f(x), computes B(x) correctly
with prob > ½+, it can be used to invert f(x) easily

– Consequence: B(x) is hard to compute given only f(x)

Goldreich-Levin theorem

• B(x,r)=rx is a hard-core predicate for g(x,r) = (f(x),r)

– f(x) is any one-way function, rx=(r1x1) … (rnxn)

slide 20

Oblivious Transfer Protocol

Assume the existence of some family of one-way
trapdoor permutations

A B

Chooses his input i (0 or 1)

Chooses random r0,1, x, ynot i
Computes yi = F(x)

Chooses a one-way permutation
F and corresponding trapdoor T

F

r0, r1, y0, y1

b0(r0T(y0)), b1(r1T(y1))

Computes mi(rix)

= (bi(riT(yi)))(rix)

= (bi(riT(F(x))))(rix) = bi

slide 21

y0 and y1 are uniformly random regardless of

A’s choice of permutation F (why?)

Therefore, A’s view is independent of B’s input i.

Proof of Security for B

A B
Chooses random r0,1, x, ynot i

Computes yi = F(x)

F

r0, r1, y0, y1

b0(r0T(y0)), b1(r1T(y1))

Computes mi(rix)

slide 22

Proof of Security for A (Sketch)

Sim B
Random r0,1, x, ynot i

yi = F(x)

F

r0, r1, y0, y1

b0(r0T(y0)), b1(r1T(y1))

Need to build a simulator whose output is
indistinguishable from B’s view of the protocol

Chooses random F,

random r0,1, x, ynot i

computes yi = F(x),

sets mi=bi(riT(yi)),

random mnot i

Knows i and bi (why?)

The only difference between simulation and real protocol:

In simulation, mnot i is random (why?)

In real protocol, mnot i=bnot i(rnot iT(ynot i))

slide 23

Proof of Security for A (Cont’d)

Why is it computationally infeasible to distinguish
random m and m’=b(rT(y))?

• b is some bit, r and y are random, T is the trapdoor of a
one-way trapdoor permutation

(rx) is a hard-core bit for g(x,r)=(F(x),r)

• This means that (rx) is hard to compute given F(x)

If B can distinguish m and m’=b(rx’) given only
y=F(x’), we obtain a contradiction with the fact
that (rx’) is a hard-core bit

• Proof omitted

slide 24

Naor-Pinkas Oblivious Transfer

S C

Choice: bit

Chooses random k
Sets PK=gk, PK1-=C/PK

C

PK0

gr, m0Hash((PK0)
r,0), m1Hash((PK1)

r,1)

Computes (gr)k = (PK)
r and

decrypts m

Messages m0 and m1

Chooser does not
know discrete log of C

Setting: order-q subgroup of Z*p, p is prime, q divides p-1

 g is a generator group for which CDH assumption holds

Chooses random r,
computes PK1

Chooser knows discrete log

either for PK0, or for PK1, but not both

Chooser does not know the discrete log of PK1-, thus cannot
distinguish between a random value gz and (PK1-)

r - why?

A. Yao

Protocols for Secure Computations

(FOCS 1982)

slide 26

1

0 0 0

Yao’s Protocol

Compute any function securely

… in the semi-honest model; can be extended to malicious

First, convert the function into a boolean circuit

AND

x y

z

Truth table:

x y z

0 1 0
1 0 0

1 1 1

0 0 0

OR

x y

z

Truth table:

x y z

0 1 1
1 0 1

1 1

AND

OR

AND

NOT

OR

AND

Alice’s inputs

Bob’s inputs

slide 27

1: Pick Random Keys For Each Wire

Evaluate one gate securely

• Later generalize to the entire circuit

Alice picks two random keys for each wire

• One key corresponds to “0”, the other to “1”

• 6 keys in total for a gate with 2 input wires

AND

x y

z k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

slide 28

2: Encrypt Truth Table

Alice encrypts each row of the truth table by
encrypting the output-wire key with the
corresponding pair of input-wire keys

AND

x y

z

k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

1

0 0 0

Original truth table:

x y z

0 1 0
1 0 0

1 1

Encrypted truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

slide 29

3: Send Garbled Truth Table

Alice randomly permutes (“garbles”) encrypted
truth table and sends it to Bob

AND

x y

z

k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

Garbled truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z)) Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Does not know which row of
garbled table corresponds to
which row of original table

slide 30

4: Send Keys For Alice’s Inputs

Alice sends the key corresponding to her input bit

• Keys are random, so Bob does not learn what this bit is

AND

x y

z k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

 If Alice’s bit is 1, she
simply sends k1x to Bob;
if 0, she sends k0x

Learns Kb’x where b’
is Alice’s input bit,
but not b’ (why?)

Garbled truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))
Ek1x

(Ek0y
(k0z))

Ek1x
(Ek1y

(k1z))

slide 31

5: Use OT on Keys for Bob’s Input

Alice and Bob run oblivious transfer protocol

• Alice’s input is the two keys corresponding to Bob’s wire

• Bob’s input into OT is simply his 1-bit input on that wire

AND

x y

z

k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

 Run oblivious transfer

Alice’s input: k0y, k1y

Bob’s input: his bit b

Bob learns kby

What does Alice learn?

Knows Kb’x where b’ is
Alice’s input bit and Kby
where b is his own input bit

Garbled truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))
Ek1x

(Ek0y
(k0z))

Ek1x
(Ek1y

(k1z))

slide 32

6: Evaluate One Garbled Gate

Using the two keys that he learned, Bob decrypts
exactly one of the output-wire keys

• Bob does not learn if this key corresponds to 0 or 1

– Why is this important?

AND

x y

z

k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

Knows Kb’x where b’ is
Alice’s input bit and Kby
where b is his own input bit

Garbled truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))
Ek1x

(Ek0y
(k0z))

Ek1x
(Ek1y

(k1z))

Suppose b’=0, b=1

This is the only row

Bob can decrypt.

He learns K0z

slide 33

In this way, Bob evaluates entire garbled circuit

• For each wire in the circuit, Bob learns only one key

• It corresponds to 0 or 1 (Bob does not know which)

– Therefore, Bob does not learn intermediate values (why?)

Bob tells Alice the key for the final output wire and
she tells him if it corresponds to 0 or 1

• Bob does not tell her intermediate wire keys (why?)

7: Evaluate Entire Circuit

AND

 OR

AND

NOT

OR

AND

Alice’s inputs

Bob’s inputs

slide 34

Brief Discussion of Yao’s Protocol

Function must be converted into a circuit

• For many functions, circuit will be huge (can use BDD)

If m gates in the circuit and n inputs, then need
4m encryptions and n oblivious transfers

• Oblivious transfers for all inputs can be done in parallel

Yao’s construction gives a constant-round protocol
for secure computation of any function in the
semi-honest model

• Number of rounds does not depend on the number of
inputs or the size of the circuit!

