
slide 1

Vitaly Shmatikov

(most slides from the Stanford Web security group)

CS 380S

Web Browser Security

slide 2

Reading Assignment

Jackson and Barth. “Beware of Finer-Grained
Origins” (W2SP 2008).
Chen et al. “Pretty-Bad-Proxy: An Overlooked
Adversary in Browsers’ HTTPS Deployments”
(Oakland 2009).
Optional: Barth et al. “Securing Frame
Communication in Browsers” (Usenix Security
2008 and CACM).
Optional: Barth et al. “Cross-Origin JavaScript
Capability Leaks” (Usenix Security 2009).

JavaScript Security Model (Redux)

Same-origin policy
• Frame can only read properties of documents and

windows from same place: server, protocol, port

Does not apply to scripts loaded in enclosing
frame from arbitrary site

• This script runs as if it were loaded from the site that
provided the page!

<script type="text/javascript">

src="http://www.example.com/scripts/somescript.js">

</script>

slide 3

OS vs. Browser Analogies (Redux)

Primitives
• System calls
• Processes
• Disk

Principals: Users
• Discretionary access control

Vulnerabilities
• Buffer overflow
• Root exploit

Primitives
• Document object model
• Frames
• Cookies / localStorage

Principals: “Origins”
• Mandatory access control

Vulnerabilities
• Cross-site scripting
• Universal scripting

Operating system Web browser

slide 4

JavaScript Contexts

JavaScript context 1

JavaScript context 2 JavaScript context 3

slide 5

DOM and Access Control

DOM Reference Monitor

Object

JavaScript Context

Granted: give reference to object to JavaScript

Access?

slide 6

[Barth et al.]

Is accessing context
allowed to handle

the object?

DOM: performs access control checks
• When a DOM object is initially accessed, check if

it’s Ok to give out a reference to this object

JavaScript engine: uses references as if they
were capabilities
• If context has a reference to an object, can use it

without any access control checks

… but these are the same DOM objects!
What if a reference to an object leaks from
one JavaScript context to another?

DOM vs. JavaScript Engine

slide 7

[Barth et al.]

Cross-Context References

slide 8

[Barth et al.]

Window 1 Window 2

Global Object Global Object

document function
foo()

document function
bar()

Each window &
frame has one

DOM reference monitor
prevents bar() from
acquiring these references
via global object

If bar() somehow managed to acquire direct references,
no access checks would be performed on them!

Instrument WebKit’s JavaScript engine with calls
to heap analysis library
• On object creation, reference, and destruction

Goal: detect references between two contexts
Sample heap graphs

Detecting Reference Leaks

slide 9

[Barth et al.]

Empty page google.com (not much JS there)

Empty page
• 82 nodes, 170 edges

google.com
• 384 nodes, 733 edges

store.apple.com/us
• 5332 nodes, 11691 edges

gmail.com
• 55106 nodes, 133567 edges

Heap Graph Statistics

slide 10

[Barth et al.]

Computing JavaScript Contexts

slide 11

[Barth et al.]

Object Prototype

Global Object

Object

Context is defined by its global object
(new context: create new global object)

Ultimate parent of all objects
in prototype class hierarchy

Object

__proto__
When an object is created, there is
a path to prototype via __proto__

property (direct or indirect)
Context is the transitive closure
of __proto__ references

Signal a problem if ever see a reference between
non-global objects of different contexts

Example Vulnerability in WebKit

slide 12

[Barth et al.]

If the location object was
created during the execution
of another context, it would be
created with the wrong Object prototype.

Attacker’s object can then redefine the behavior of functions,
such as toString, that apply to all Objects created in the other context,
so that they execute arbitrary JavaScript.

Add access control to JavaScript references
• get and put: check that context matches

2% overhead
• Inline caching helps: when a property is looked up for

the first time, look up in hash table and record offset;
subsequent accesses use recorded offset directly

– If offset is available, no need for access control checks (why?)

• 10% overhead without caching

See “Cross-Origin JavaScript Capability Leaks” for
details

Solution

slide 13

Origins are similar to processes
• One origin should not interfere with another

Sites often want and need to communicate
• Google AdSense

– <script src="http://googlesyndication.com/show_ads.js">

• Mashups
• Gadget aggregators - iGoogle, live.com …
• To communicate with B, site A must give B full control

– <script src=http://siteB.com/script.html>

• Now script from site B runs as if its origin were site A

Web Browser: the New OS

slide 14

Sending a Cross-Domain GET

Script can send anywhere
• This is the basis of cross-site request forgery (XSRF)

Data must be URL encoded

• Browser sends

GET file.cgi?foo=1&bar=x%20y HTTP/1.1

Can’t send to some restricted ports
• For example, port 25 (SMTP)

Can use GET for denial of service (DoS) attacks
• A popular site can DoS another site [Puppetnets]

slide 15

Mashups

slide 16

iGoogle

slide 17

Windows Live.com

slide 18

Browser Security Policy

Frame-Frame relationships
• canScript(A,B)

– Can Frame A execute a script that manipulates
arbitrary/nontrivial DOM elements of Frame B?

• canNavigate(A,B)
– Can Frame A change the origin of content for Frame B?

Frame-principal relationships
• readCookie(A,S), writeCookie(A,S)

– Can Frame A read/write cookies from site S?

Security indicator (lock icon)
• securityIndicator(W) - is it displayed for window W?

slide 19

Common Misunderstanding

Often simply stated as “same-origin policy”
• This usually just refers to the canScript relation

Full policy of current browsers is complex
• Evolved via “penetrate-and-patch”
• Different features evolved slightly different policies

Common scripting and cookie policies
• canScript considers: scheme, host, and port
• canReadCookie considers: scheme, host, and path
• canWriteCookie considers: host

slide 20

Cross-Frame Scripting

canScript(A,B) - only if Origin(A) = Origin(B)
• Basic same-origin policy, where origin is the scheme,

host and port from which the frame was loaded

What about frame content?
Some browsers allow any frame to navigate any
other frame

slide 21

Suppose the following HTML is hosted at site.com
Disallowed access
<iframe src="http://othersite.com"></iframe>
alert(frames[0].contentDocument.body.innerHTML)
alert(frames[0].src)

Allowed access

alert(images[0].height)
or
frames[0].location.href = “http://mysite.com/”

SOP Examples

Navigating child frame is allowed,
but reading frame[0].src is not

slide 22

Guninski Attack

window.open("https://www.google.com/...")window.open("https://www.attacker.com/...", "awglogin")

awglogin

If bad frame can navigate good frame, attacker gets password! slide 23

Gadget Hijacking in Mashups

top.frames[1].location = "http:/www.attacker.com/...“;
top.frames[2].location = "http:/www.attacker.com/...“;

...

slide 24

Gadget Hijacking

slide 25

Policy Behavior

Permissive

Window

Descendant

Child

Possible Frame Navigation Policies

slide 26

Implemented Browser Policies

Browser Policy
IE 6 (default) Permissive
IE 6 (option) Child
IE7 (no Flash) Descendant
IE7 (with Flash) Permissive
Firefox 2 Window
Safari 3 Permissive
Opera 9 Window
HTML 5 Child

slide 27

Principle: Pixel Delegation

Frames delegate screen pixels
• Child cannot draw outside its frame
• Parent can draw over the child’s pixels

Navigation similar to drawing
• Navigation replaces frame contents
• “Simulate” by drawing over frame

Policy ought to match pixel delegation
• Navigate a frame if can draw over the frame

slide 28

Best Solution: Descendant Policy

Best security / compatiblity trade-off
• Security: respects pixel delegation
• Compatibly: least restrictive such policy

Implementation (Adam Barth, Collin Jackson)
• Wrote patches for Firefox and Safari
• Wrote over 1000 lines of regression tests

Deployment
• Apple released patch as security update
• Mozilla implemented in Firefox 3

slide 29

Frame Communication

If frames provide isolation, how can they
communicate?
Desirable properties of interframe
communication
• Confidentiality
• Integrity
• Authentication

slide 30

Fragment Identifier Messaging

Send information by navigating a frame
• http://gadget.com/#hello

Navigating to fragment doesn’t reload frame
• No network traffic, but frame can read its fragment

Not a secure channel
• Confidentiality
• Integrity
• Authentication

D. Thorpe, Secure Cross-Domain Communication in the Browser
http://msdn2.microsoft.com/en-us/library/bb735305.aspx

slide 31

Identifier Messaging: Example

function sendData() {
iframe.src = “http://bar.com/receiver.html#data_here”;

}

window.onLoad = function () {
data = window.location.hash;

}

Host page: foo.com/main.html

iframe: bar.com/receiver.html

slide 32

Problems and Limitations

No ack that the iframe received the data
Message overwrites
• Host doesn’t know when the iframe is done processing

a message… when is it safe to send the next message?

Capacity limits
• URL length limit varies by browser family

Data has unknown origin
No replies
Loss of context
• Page is reloaded with every message, losing DOM state

slide 33

function sendDataToBar() {
iframe.src = “ http://bar.com/receiver.html#data_here”;

}

window.onLoad = function () {
data = window.location.hash;

}
function sendDataToFoo(){

iframe2.src = “http://foo.com/receiver.html#data_here”;
}

Host page: foo.com/main.html

iframe: bar.com/receiver.html

window.onLoad = function () {
window.parent.parent.receiveFromBar(

window.location.hash);
}

iframe2: foo.com/receiver.html

slide 34

With Return Communication

postMessage

New API for inter-frame communication
Supported in latest betas of many browsers

Not a secure channel
• Confidentiality
• Integrity
• Authentication

slide 35

Example of postMessage Usage

frames[0].postMessage("Hello world.");

document.addEventListener("message", receiver);
function receiver(e) {
if (e.domain == "example.com") {
if (e.data == "Hello world")
e.source.postMessage("Hello");

}
}

slide 36

Message Eavesdropping (1)

Descendant frame navigation policy

slide 37

Message Eavesdropping (2)

Works in all navigation policies

slide 38

Finer-Grained Origins

Some browser features grant privileges to a
subset of documents in an origin
• Cookie paths
• Mixed content

– For example, documents with invalid certificates mixed with
documents with valid certificates

Any “less trusted” document can inject an
arbitrary script into a “more trusted” one (why?)
• Gain the same privileges as the most trusted

document in the same origin!

slide 39

The Lock Icon

Goal: identify secure connection
• This is a network security issue

SSL/TLS is used between client and server to
protect against active network attacker
Lock icon should only be shown when page is
secure against network attacker

slide 40

Checkered History of the Lock

Positive trust indicator
Semantics subtle and not widely understood
• This page is not under the control of an active

network attacker (unless the principal named in the
location bar has chosen to trust the attacker)

Innovation required in user interface design
• Lock icon largely ignored by users
• Innovations require browser accuracy in determining

whether to show security indicators

slide 41

Problem with Embedded Content

Show lock icon if …
Page retrieved over HTTPS
Every embedded object retrieved over HTTPS
• Firefox allows HTTP images, but it’s a known bug

Every frame would have shown lock icon

slide 42

Mixed Content: HTTP and HTTPS

Page loads over HTTPS, but contains content
over HTTP
IE: displays mixed-content dialog to user
• Flash files over HTTP are loaded with no warning (!)
• Flash can script the embedding page!

Firefox: red slash over lock icon (no dialog)
• Flash files over HTTP do not trigger the slash

Safari: does not attempt to detect mixed content

slide 43

Mixed Content: UI Challenges

silly dialogs

slide 44

Banks: after login, all content served over HTTPS
Developer error: somewhere on bank site write
<script src=http://www.site.com/script.js> </script>
• Active network attacker can now hijack any session

Better way to include content:
<script src=//www.site.com/script.js> </script>
• Served over the same protocol as embedding page

Mixed Content and Network Attacks

slide 45

Mixed Content Issues

All browsers fail to account for canScript
• One fix: Safelock browser extension revokes the

ability to dispay the lock icon from all documents in
the same origin as an insecure document

Lots of other bugs
• Fail to detect insecure SWF movies (IE, Firefox)
• Navigation forgets mixed content (Firefox)
• Firefox architecture make detection difficult

slide 46

Example of a Vulnerability

Chase used a SWF movie served over HTTP to
perform authentication on the banking login page –
active network attacker can steal password!

slide 47

Origin Contamination

slide 48

Picture-in-Picture Attacks

Trained users are more likely to fall victim to this!
slide 49

SSL/TLS and Its Adversary Model

HTTPS: end-to-end secure protocol for Web
Designed to be secure against man-in-the-middle
(MITM) attacks

HTTPS provides encryption and integrity checking

slide 50

[Chen et al.]

browser HTTPS server
Internetproxy

SSL tunnel

PBP: Pretty-Bad-Proxy

Bad proxy can exploit browser bugs to render
unencrypted, potentially malicious content in the
context of an HTTPS session!

slide 51

[Chen et al.]

TCP/IPTCP/IP

HTTP/HTTPS

Rendering modules

Unencrypted

SSL tunnel, encrypted

HTTP/HTTPS

Attack #1: Error Response

Proxy error page: 502, other 4xx/5xx response
Script in error page runs in HTTPS context!

[Chen et al.]

<iframe src=
“https://bank.com”>

browser PBP bank.com
https://bank.com

502:Server not found

https://bank.com

slide 52

Attack #2: Redirection (3XX)
[Chen et al.]

browser PBP

bank.com

https://bank.com

https://evil.com

slide 53

evil.com

Script will run in the context
of https://bank.com

<script src=
“https://js. bank.com/foo.js”>

https://js.bank.com

HTTP 302: redirection
to https://evil.com

Attack #3: HPIHSL Pages

Many websites provide both HTTP and HTTPS
services
• Sensitive pages: HTTPS only

– Login, checkout, etc.

• Non-sensitive pages: intended for HTTP
– For example, merchandise pages

• Non-sensitive pages often accessible through HTTPS
– HPIHSL: HTTP-intended-but-HTTPS-loadable

What’s wrong with HPIHSL pages?
• They often import scripts through HTTP …
• … these scripts will run in HTTPS context

slide 54

[Chen et al.]

Browsers Warn About This, Right?

Browsers warn about loading HTTP resources in
HTTPS contexts

The objective of this detection logic is to
determine the appearance of the address bar
• Address bar only concerns the top-level page!

slide 55

Bypassing Detection Logic
[Chen et al.]

slide 56

Using an HTTPS iframe in an HTTP top-level page

Hidden iframe:
HTTPS for an
HPIHSL page

Top level: HTTP

Prevalence of HPIHSL Pages

Chen et al. show 12 major websites with
HPIHSL pages that import scripts
• Online shopping sites
• Banks, credit card companies
• Open-source projects management site
• Top computer science departments
• Even the home domain of a leading certificate

authority

You cannot trust their SSL!

slide 57

Attack #4: Visual Context
[Chen et al.]

slide 58

IE, Opera, Chrome display a certificate on the
GUI as long as it in the certificate cache

Phishing page (5xx)

Schedule a one‐second timer for refreshing the page.

<head>

<meta HTTP‐EQUIV=“Refresh” CONTENT=“1;
URL=https://www.paypal.com”>

</head>

Before the timer is expired, cache a PayPal certificate

Perfect GUI spoofing attack!
Fresh browser, single tab, address bar input

Feasibility of Exploitation

Malicious proxy
• Who uses proxies? Corporate and university

networks, hospitals, hotels, third-party free proxies…
• Security of HTTPS depends on proxy’s security!

Malicious link-level attacker acting as a proxy
• Can sniff the network at the link layer
• Browser has its proxy capability turned on

slide 59

[Chen et al.]

WPAD: Web Proxy Auto Discovery

PAC script: Proxy Auto Config script

Manual configuration

Vulnerability Status (May 2009)

slide 60

[Chen et al.]

IE 8
(since
beta 2)

Firefox
3.0.10

Safari 3.2.2
(or before)

Opera since
Dec 2007

Chrome
1.0.154.53

Error-response
issue

Fixed Fixed Fixed Fixed Fixed

Redirection
issue

N/A Fixed Fixed Fixed N/A

HPIHSL issue Fix
suggested
for next
version

Fix proposed Acknowledged Acknowledged Acknowledged

Cached
certificate issue

Fixed N/A N/A Fixed Fixed

	Web Browser Security
	Reading Assignment
	JavaScript Security Model (Redux)
	OS vs. Browser Analogies (Redux)
	JavaScript Contexts
	DOM and Access Control
	DOM vs. JavaScript Engine
	Cross-Context References
	Detecting Reference Leaks
	Heap Graph Statistics
	Computing JavaScript Contexts
	Example Vulnerability in WebKit
	Solution
	Web Browser: the New OS
	Sending a Cross-Domain GET
	Mashups
	iGoogle
	Windows Live.com
	Browser Security Policy
	Common Misunderstanding
	Cross-Frame Scripting
	SOP Examples
	Guninski Attack
	Gadget Hijacking in Mashups
	Gadget Hijacking
	Possible Frame Navigation Policies
	Implemented Browser Policies
	Principle: Pixel Delegation
	Best Solution: Descendant Policy
	Frame Communication
	Fragment Identifier Messaging
	Identifier Messaging: Example
	Problems and Limitations
	With Return Communication
	postMessage
	Example of postMessage Usage
	Message Eavesdropping (1)
	Message Eavesdropping (2)
	Finer-Grained Origins
	The Lock Icon
	Checkered History of the Lock
	Problem with Embedded Content
	Mixed Content: HTTP and HTTPS
	Mixed Content: UI Challenges
	Mixed Content and Network Attacks
	Mixed Content Issues
	Example of a Vulnerability
	Origin Contamination
	Picture-in-Picture Attacks
	SSL/TLS and Its Adversary Model
	PBP: Pretty-Bad-Proxy
	Attack #1: Error Response
	Attack #2: Redirection (3XX)
	Attack #3: HPIHSL Pages
	Browsers Warn About This, Right?
	Bypassing Detection Logic
	Prevalence of HPIHSL Pages
	Attack #4: Visual Context
	Feasibility of Exploitation
	Vulnerability Status (May 2009)

