
CS 380S - Theory and Practice of Secure Systems

Fall 2009

Homework #3

Due: 2pm CST (in class), November 19, 2009

NO LATE SUBMISSIONS WILL BE ACCEPTED

YOUR NAME:

Collaboration policy

No collaboration is permitted on this assignment. Any cheating (e.g., submitting another
person’s work as your own, or permitting your work to be copied) will automatically result
in a failing grade. The Computer Sciences department code of conduct can be found at
http://www.cs.utexas.edu/academics/conduct/
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Homework #3 (30 points)

Problem 1

Consider the following variant of RSA encryption. Recall that an RSA public key is a pair
(N, e). To encrypt some message m, first generate a fresh random value r of the same length
as m. Use r as if it were a one-time pad to encrypt m (i.e., let s = m⊕ r), and then encrypt
r using plain RSA (i.e., let t = re mod N). The ciphertext is the (s, t) pair.

Problem 1a (2 points)

How does decryption work in this scheme?

Problem 1b (4 points)

Is this encryption scheme semantically secure? Explain.

Problem 2

Recall the oblivious transfer protocol between the Sender (S) and the Chooser (C) based on
the hard-core predicate of a one-way trapdoor permutation. The Sender chooses a one-way
trapdoor permutation F (let T be the trapdoor, and H the hard-core predicate of F ). Let
b0,1 be the Sender’s input bits, and let c be the bit indicating the Chooser’s choice.

The protocol proceeds as follows:
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S → C F

S ← C y0, y1 where yc = F (xc) for a random xc; yc is random

S → C m0 = b0 ⊕H(T (y0)), m1 = b1 ⊕H(T (y1))

The Chooser computes bc as mc⊕H(xc) = (bc⊕H(T (yc)))⊕H(xc) = (bc⊕H(T (F (xc))))⊕
H(xc) = (bc ⊕H(xc))⊕H(xc) = bc.

Problem 2a (3 points)

Suppose the Sender is malicious rather than semi-honest. Is the above protocol secure? If
not, explain precisely what a malicious Sender can do to make his view of the real-world
protocol unsimulatable in the ideal world.

Problem 2b (3 points)

Suppose the Chooser is malicious rather than semi-honest. Is the above protocol secure? If
not, explain precisely what a malicious Chooser can do to make his view of the real-world
protocol unsimulatable in the ideal world.
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Problem 3

Recall Schnorr’s ID protocol, which is an honest-verifier zero-knowledge proof of knowledge
of the discrete logarithm s of t mod p, where p is a large prime, and g is a generator of an
order-q subgroup. Let P be the prover, V the verifier.

P → V x = gr mod p where r is a random value between 1 and q − 1
P ← V c where c is a random k-bit value
P → V y = sc + r mod q

Verifier accepts the proof if x · tc = gy.

Problem 3a (4 points)

Suppose Larry and Moe execute the above protocol with Larry acting as the prover and
Moe acting as the verifier. Now Moe wants to convince Curly that he knows the discrete
logarithm of t. He records the transcript of his conversation with Larry and gives it to Curly.

Should Curly be convinced that Moe knows the discrete logarithm of t? Explain.

Problem 3b (4 points)

Suppose that instead of sending his messages directly to Moe (the verifier), Larry (the prover)
signs his messages and gives them to Curly, who forwards them to Moe. Similarly, Moe signs
his messages and gives them to Curly, who forwards them to Larry.

Assume that they are using an unforgeable digital signature scheme, i.e., it is not feasible
for Curly to forge Larry’s (respectively, Moe’s) signature on a message that Larry (respec-
tively, Moe) did not sign. Also assume that Larry knows Moe’s public signature verification
key, and vice versa.

Should Moe be convinced that Larry knows the discrete logarithm of t? Explain.

4



Should Curly be convinced that Larry knows the discrete logarithm of t? Explain.

Problem 4 (4 points)

Let (N, e) be Larry’s RSA public key, and d the corresponding private key. Both Moe and
Curly know a ciphertext c encrypted under Larry’s public key. Moe claims that he knows
the corresponding plaintext m (recall that with RSA, m = cd mod N), and that he can
prove this to Curly without revealing m.

He does it via the following protocol:

• Moe generates a random number r mod N , encrypts it under Larry’s public key to
obtain x = re mod N , and sends x to Curly.

• Curly flips a fair coin.

Coin comes up heads: Curly asks Moe to send him the plaintext of x, i.e., xd

mod N . Moe sends him y = r. Curly verifies the answer by checking x = ye

mod N .

Coin comes up tails: Curly asks Moe to sends him the plaintext of c ·x, i.e., (c ·x)d

mod N . Moe sends Curly y = m · r. Curly verifies the answer by checking
x · c = ye mod N .

Prove that this protocol is zero-knowledge even if Curly is malicious. Hint: it is sufficient
to write a simulator that with probability 1

2
creates a transcript which is indistinguishable

from the transcript of Moe and Curly’s conversation.
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Problem 5

Let N be a product of two large primes, and let y = x2 mod N for some x (assume that
y and N are relatively prime). Both Larry and Moe know y and N . Furthermore, Larry
claims that he knows x.

Larry proves this to Moe as follows:

• Larry generates a random x0 and sets x1 = xx−1

0
mod N . He sends Moe y0 = x2

0

mod N and y1 = x2

1
mod N .

• Moe verifies that y0y1 = y mod N .

• Moe generates a random bit i and asks Larry for xi. He then verifies that x2

i = yi

mod N . If verification is successful, we say that Larry has passed the protocol.

This protocol is repeated until Moe is convinced (i.e., Larry successfully passes every
instance of the protocol).

Problem 5a (3 points)

If Larry does not know x, can he find y0 and y1 such that (i) y0y1 = y mod N and (ii) he
knows x0 and x1 such that y0 = x2

0
mod N and y1 = x2

1
mod N? Why or why not?

Problem 5b (3 points)

Suppose Moe’s bit i always comes out as 1, and Larry knows this. Can Larry exploit this to
pass the protocol every time? (Larry could try to always set x1 = 1, but let’s assume that
Moe checks for this.)
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