
CS 395T

Security in Process Calculi

Overview

Pi calculus
• Core language for parallel programming
• Modeling security via name scoping

Applied pi calculus
• Modeling cryptographic primitives with functions and

equational theories
• Equivalence-based notions of security
• A little bit of operational semantics
• Security as testing equivalence

Pi Calculus [Milner et al.]

Fundamental language for concurrent systems
• High-level mathematical model of parallel processes
• The “core” of concurrent programming languages
• By comparison, lambda-calculus is the “core” of

functional programming languages

Mobility is a basic primitive
• Basic computational step is the transfer of a

communication link between two processes
• Interconnections between processes change as they

communicate

Can be used as a general programming language

A Little Bit of History

1980: Calculus of communicating systems (CCS)
1992: Pi calculus [Milner, Parrow, Walker]

• Ability to pass channel names between processes

1998: Spi calculus [Abadi, Gordon]

• Adds cryptographic primitives to pi calculus
• Security modeled as scoping
• Equivalence-based specification of security properties
• Connection with computational models of cryptography

2001: Applied pi calculus [Abadi, Fournet]

• Generic functions, including crypto primitives

[Milner]

Pi Calculus Syntax

Terms
• M, N ::= x variables

| n names

Processes
• P,Q ::= nil empty process

| ū〈N〉.P send term N on channel u

| u(x).P receive term from channel P and assign to x

| !P replicate process P

| P|Q run processes P and Q in parallel

| (νn)P restrict name n to process P

} Let u range over
names and variables

Modeling Secrecy with Scoping

A sends M to B over secure channel c

A BM

channel c

A(M) = c〈M〉
B = c(x).nil

P(M) = (νc)(A(M)|B)
This restriction ensures that channel c is
“invisible” to any process except A and B
(other processes don’t know name c)

-

Secrecy as Equivalence

A(M) = c〈M〉.nil
B = c(x).nil

P(M) = (νc)(A(M)|B)

Without (νc), attacker could run
process c(x) and tell the difference
between P(M) and P(M’)

-

P(M) and P(M’) are “equivalent” for any values
of M and M’
• No attacker can distinguish P(M) and P(M’)

Different notions of “equivalence”
• Testing equivalence or observational congruence
• Indistinguishability by any probabilistic polynomial-

time Turing machine

Another Formulation of Secrecy

A(M) = c〈M〉.nil
B = c(x).nil

P(M) = (νc)(A(M)|B)

-

No attacker can learn name n from P(n)
• Let Q be an arbitrary attacker process, and suppose

it runs in parallel with P(n)
• Specification of secrecy:

For any process Q in which n does not occur free,
P(n) | Q will never output n

Modeling Authentication with Scoping

A sends M to B over secure channel c
B announces received value on public channel d

A B

A(M) = c〈M〉
B = c(x).d〈x〉

P(M) = (νc)(A(M)|B)

M M

channel c channel d

-
-

Specifying Authentication

A(M) = c〈M〉
B = c(x).d〈x〉

P(M) = (νc)(A(M)|B)

-
-

Specification of authentication:
For any value of M, if B outputs M on channel d,
then A previously sent M on channel c

A Key Establishment Protocol

A B

S
CAS CSB

Create new
channel CAB

Send name CAB Send name CAB

M

channel dSend data on CAB

M

1. A and B have pre-established pairwise keys with server S
Model these keys as names of pre-existing communication channels

3. A sends M to B encrypted with the new key, B outputs M

2. A creates a new key and sends it to S, who forwards it to B
Model this as creation of a new channel name

Key Establishment in Pi Calculus

A(M) =
S =
B =

P(M) = (νcAS)(νcSB)(A(M)|B|S)

.cSB〈x〉
cSB(x)

__
Note communication on a channel
with a dynamically generated name

A B

S
CAS CSB

Send name CAB Send name CAB

M

channel dSend data on CAB

M

.d〈y〉
_

Create new
channel CAB

(νcAB)cAS〈cAB〉
__

cAS(x)
.cAB〈M〉
__

.x(y)

Applied Pi Calculus

In pi calculus, channels are the only primitive
This is enough to model some forms of security
• Name of a communication channel can be viewed as an

“encryption key” for traffic on that channel
– A process that doesn’t know the name can’t access the channel

• Channel names can be passed between processes
– Useful for modeling key establishment protocols

To simplify protocol specification, applied pi
calculus adds functions to pi calculus
• Crypto primitives modeled by functions and equations

Applied Pi Calculus: Terms

M, N ::= x Variable

| n Name

| f(M1,...,Mk) Function application

Standard functions
• pair(), encrypt(), hash(), …

Simple type system for terms
• Integer, Key, Channel〈Integer〉, Channel〈Key〉

Applied Pi Calculus: Processes

P,Q ::= nil empty process

| ū〈N〉.P send term N on channel u

| u(x).P receive from channel P and assign to x

| !P replicate process P

| P|Q run processes P and Q in parallel

| (νn)P restrict name n to process P

| if M = N conditional

then P else Q

Modeling Crypto with Functions

Introduce special function symbols to model
cryptographic primitives
Equational theory models cryptographic properties
Pairing
• Functions pair, first, second with equations:

first(pair(x,y)) = x
second(pair(x,y)) = y

Symmetric-key encryption
• Functions symenc, symdec with equation:

symdec(symenc(x,k),k)=x

More Equational Theories

Public-key encryption
• Functions pk,sk generate public/private key pair

pk(x),sk(x) from a random seed x
• Functions pdec,penc model encryption and decryption

with equation:
pdec(penc(y,pk(x)),sk(x)) = y

• Can also model “probabilistic” encryption:
pdec(penc(y,pk(x),z),sk(x)) = y

Hashing
• Unary function hash with no equations
• hash(M) models applying a one-way function to term M

Models random salt
(necessary for semantic security)

Yet More Equational Theories

Public-key digital signatures
• As before, functions pk,sk generate public/private key

pair pk(x),sk(x) from a random seed x
• Functions sign,verify model signing and verification with

equation:
verify(y,sign(y,sk(x)),pk(x)) = y

XOR
• Model self-cancellation property with equation:

xor(xor(x,y),y) = x
• Can also model properties of cyclic redundancy codes:

crc(xor(x,y)) = xor(crc(x),crc(y))

Dynamically Generated Data

Use built-in name generation capability of pi
calculus to model creation of new keys and nonces

A(M) = c〈(M,s)〉
B = c(x).if second(x)=s

then d〈first(x)〉
P(M) = (νs)(A(M)|B)

A B(M,s)

channel c

-

M

channel d

-

Models creation of fresh capability
every time A and B communicate

capability s may
be intercepted!

Better Protocol with Capabilities

A B

A(M) = c〈(M,hash(s,M))〉
B = c(x).if second(x)=

hash(s,first(x))
then d〈first(x)〉

P(M) = (νs)(A(M)|B)

(M,hash(s,M)) M

channel c channel d
Hashing protects integrity
of M and secrecy of s

-

-

	Security in Process Calculi
	Overview
	Pi Calculus
	A Little Bit of History
	Pi Calculus Syntax
	Modeling Secrecy with Scoping
	Secrecy as Equivalence
	Another Formulation of Secrecy
	Modeling Authentication with Scoping
	Specifying Authentication
	A Key Establishment Protocol
	Key Establishment in Pi Calculus
	Applied Pi Calculus
	Applied Pi Calculus: Terms
	Applied Pi Calculus: Processes
	Modeling Crypto with Functions
	More Equational Theories
	Yet More Equational Theories
	Dynamically Generated Data
	Better Protocol with Capabilities

