Just Fast Keying (JFK) Protocol

Outline

- "Rational derivation" of the JFK protocol
 - Combine known techniques for shared secret creation, authentication, identity and anti-DoS protection
 - [Datta, Mitchell, Pavlovic

Tech report 2002]

- Just Fast Keying (JFK) protocol
 - State-of-the-art key establishment protocol
 - [Aiello, Bellovin, Blaze, Canetti,
 Ioannidis, Keromytis, Reingold CCS 2002]
- Modeling JFK in applied pi calculus
 - Specification of security properties as equivalences
 - [Abadi,Fournet

POPL 2001]

[Abadi, Blanchet, Fournet

ESOP 2004]

Design Objectives for Key Exchange

Shared secret

 Create and agree on a secret which is known only to protocol participants

Authentication

Participants need to verify each other's identity

Identity protection

 Eavesdropper should not be able to infer participants' identities by observing protocol execution

Protection against denial of service

 Malicious participant should not be able to exploit the protocol to cause the other party to waste resources

Ingredient 1: Diffie-Hellman

- $A \rightarrow B$: g^a
- $B \rightarrow A: g^b$
- Shared secret: gab
 - Diffie-Hellman guarantees perfect forward secrecy
- Authentication
- Identity protection
- DoS protection

Ingredient 2: Challenge-Response

- $A \rightarrow B: m, A$
- $B \rightarrow A: n, sig_{R}\{m, n, A\}$
- $A \rightarrow B: sig_A\{m, n, B\}$
- Shared secret
- Authentication
 - A receives his own number m signed by B's private key and deduces that B is on the other end; similar for B
- Identity protection
- DoS protection

DH + Challenge-Response

ISO 9798-3 protocol:

```
A \rightarrow B: g^a, A
```

$$B \rightarrow A$$
: g^b , $sig_R\{g^a, g^b, A\}$

$$A \rightarrow B$$
: $sig_A\{g^a, g^b, B\}$

$$m := g^a$$

$$n := g^b$$

- Shared secret: gab
- Authentication
- Identity protection
- DoS protection

Ingredient 3: Encryption

Encrypt signatures to protect identities:

```
A \rightarrow B: g^a, A

B \rightarrow A: g^b, E_K\{sig_B\{g^a, g^b, A\}\}

A \rightarrow B: E_K\{sig_A\{g^a, g^b, B\}\}
```

- Shared secret: gab
- Authentication
- Identity protection (for responder only!)
- DoS protection

Refresher: Anti-DoS Cookie

Typical protocol:

- Client sends request (message #1) to server
- Server sets up connection, responds with message #2
- Client may complete session or not (potential DoS)

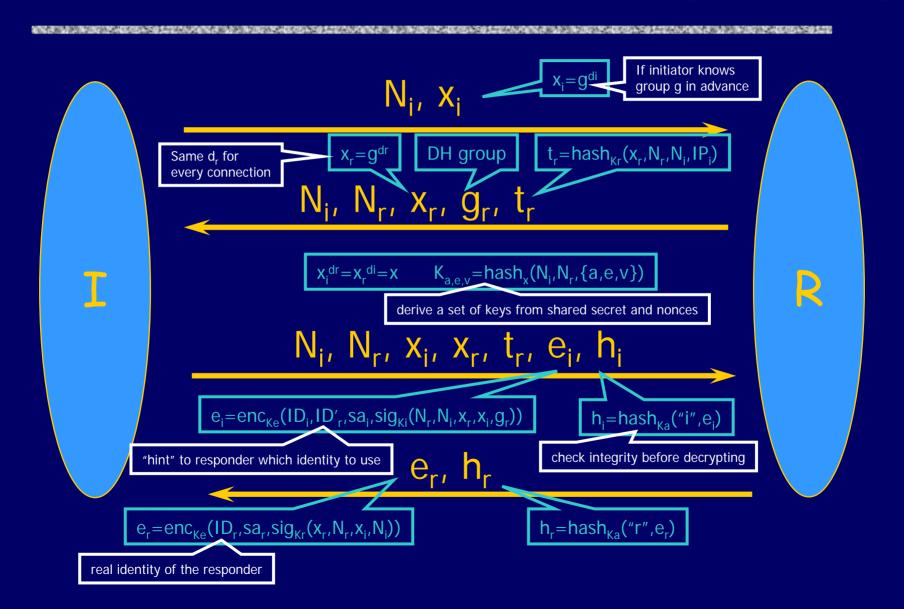
Cookie version:

- Client sends request to server
- Server sends hashed connection data back
 - Send message #2 later, after client confirms
- Client confirms by returning hashed data
- Need extra step to send postponed message

Ingredient 4: Anti-DoS Cookie

```
"Almost-JFK" protocol:

A \rightarrow B: \ g^a, \ A
B \rightarrow A: \ g^b, \ hash_{Kb}\{g^b, \ g^a\}
A \rightarrow B: \ g^a, \ g^b, \ hash_{Kb}\{g^b, \ g^a\}
E_K\{sig_A\{g^a, \ g^b, \ B\}\}
B \rightarrow A: \ g^b, \ E_K\{sig_B\{g^a, \ g^b, \ A\}\}
```


- Shared secret: g^{ab}
- Authentication
- Identity protection
- DoS protection?

Additional Features of JFK

- ◆Keep g^a, g^b values medium-term, use (g^a,nonce)
 - Use same Diffie-Hellman value for every connection (helps against DoS), update every 10 minutes or so
 - Nonce guarantees freshness
 - More efficient, because computing g^a, g^b, g^{ab} is costly
- ◆Two variants: JFKr and JFKi
 - JFKr protects identity of responder against active attacks and of initiator against passive attacks
 - JFKi protects only initiator's identity from active attack
- Responder may keep an authorization list
 - May reject connection after learning initiator's identity

JFKr Protocol

[Aiello et al.]

