

Compositional Protocol Logic

Outline

Floyd-Hoare logic of programs

- Compositional reasoning about properties of programs
- DDMP protocol logic
 - Developed by Datta, Derek, Mitchell, and Pavlovic for logical reasoning about security properties

Floyd-Hoare Logic

Main idea: before-after assertions

- F <P> G
 - If F is true before executing P, then G is true after
- Total correctness or partial correctness
 - Total correctness: F [P] G
 - If F is true, then <u>P will halt</u> and G will be true
 - Partial correctness: F {P} G
 - If F is true and if P halts, then G will be true

While Programs

where x is any variable e is any integer expression B is a Boolean expression (true or false)

Assignment and Rule of Consequence

Assignment axiom: $F(t) \{ x := t \} F(x)$

- If F holds for t, and t is assigned to x, then F holds for x aftewards
- This assumes that there is no aliasing!
- Examples:

7=7{ x := 7 }x=7(y+1)>0{ x := y+1 }x>0x+1=2{ x := x+1 }x=2

Rule of consequence:
If F { P } G and F' \rightarrow F and G \rightarrow G',
then F' { P } G'

Simple Examples

 $\mathbf{X} =$

Assertion: x=1 { x := x+1 } x=2 Proof: x+1=2 { x := x+1 } x=2

Conditional

F & B { P } G F & B { Q } G F { if B then P else Q } G

• Example:

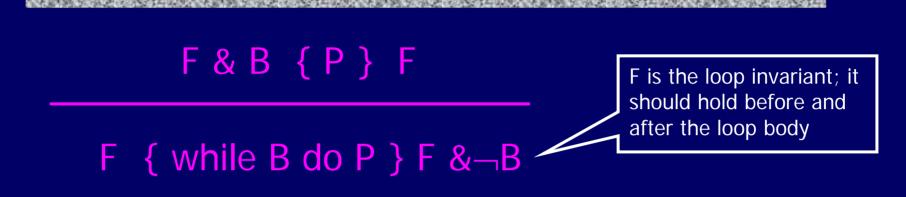
true { if $y \ge 0$ then x := y else x := -y } $x \ge 0$

F { P } G G { Q } H F { P; Q } H

• Example:

 $x=0 \{ x := x+1 ; x := x+1 \} x=2$

Loop Invariant



• Example:

true { while $x \neq 0$ do x := x-1 } x=0

Example: Compute d=x-y

Assertion: $y \le x$ {d:=0; while (y+d) < x do d := d+1} y+d=x
P
B
Q
Proof:
• Choose loop invariant $F = y+d \le x$ $y+d \le x \& B \ \{Q\} \ y+d \le x$ $y+d \le x \ \{while \ B \ do \ Q\} \ y+d \le x \& \neg B$ Assertion: $y \le d \le x \& \neg (y+d \le x), thus \ y+d \le x \&$

- <u>Important</u>: proving a property of the entire loop has been reduced to proving a property of one iteration of the loop
- To prove y+d≤x & B {Q} y+d≤x, use assignment axiom and sequence rule

Goal: Logic for Security Protocols

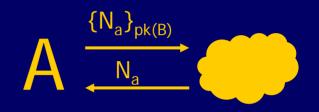
"Floyd-Hoare" reasoning about security properties

- Would like to derive <u>global</u> properties of protocols from <u>local</u> assertions about each protocol participant
- Use a rigorous logical framework to formalize the reasoning that each participant carries out
- Compositionality is important
 - Security properties must hold even if the protocol is executed in parallel with other protocols
 - Compositionality is the main advantage of process calculi and protocol logics

Intuition

Reason about local information

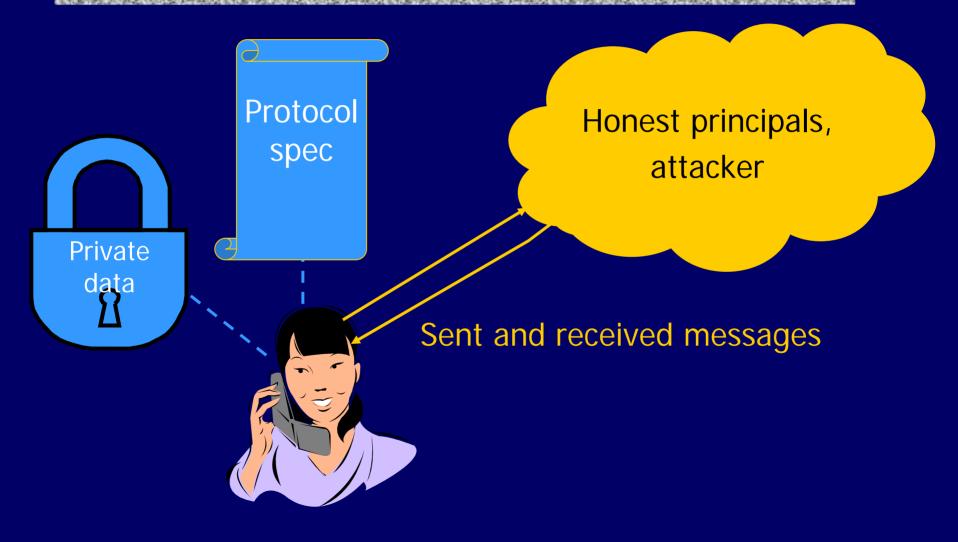
- I chose a fresh, unpredictable number
- I sent it out encrypted
- I received it decrypted
- Therefore: someone decrypted it



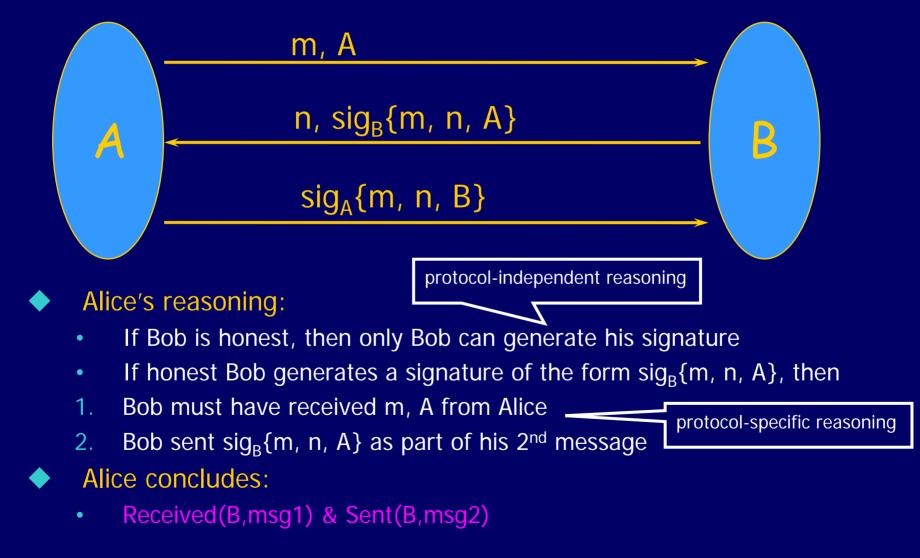
Incorporate knowledge about protocol into reasoning

- According to the protocol specification, server only sends m if it received m'
- If server not corrupt and I receive m signed by server, then server received m'

Alice's "View" of the Protocol



Example: Challenge-Response



Protocol Composition Logic

[Datta et al.]

A formal language for describing protocols

- Terms and actions instead of informal arrows-andmessages notation
- Operational semantics
 - Describe how the protocol executes

Protocol logic

• State security properties (in particular, secrecy and authentication)

Proof system

 Axioms and inference rules for formally proving security properties

Terms

constant variable name key tuple signature encryption

Actions

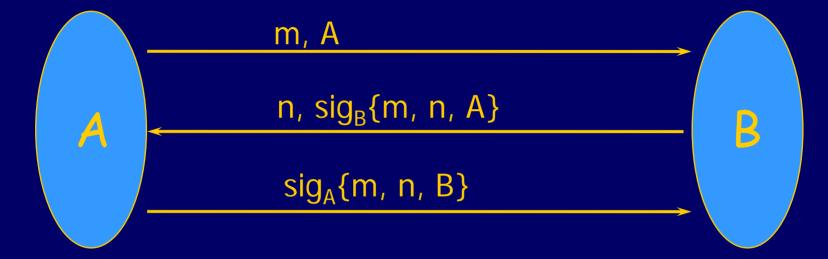
new mgeneratesend U, V, tsend terr

receive U, V, x match t/p(x) generate fresh value send term t from U to V receive term and assign into variable x match term t against pattern p(x)

♦ A thread is a sequence of actions

- Defines the "program" for a protocol participant, i.e., what messages he sends and receives and the checks he performs
- For notational convenience, omit "match" actions
 - Write "receive $sig_B{A, n}$ " instead of "receive x; match x/sig_B{A, n}"

Challenge-Response Threads



InitCR(A, X) = [

]

```
new m;
send A, X, {m, A};
receive X, A, {x, sig<sub>x</sub>{m, x, A}};
send A, X, sig<sub>A</sub>{m, x, X};
```

RespCR(B) = [
 receive Y, B, {y, Y};
 new n;
 send B, Y, {n, sig_B{y, n, Y}};
 receive Y, B, sig_Y{y, n, B};
]

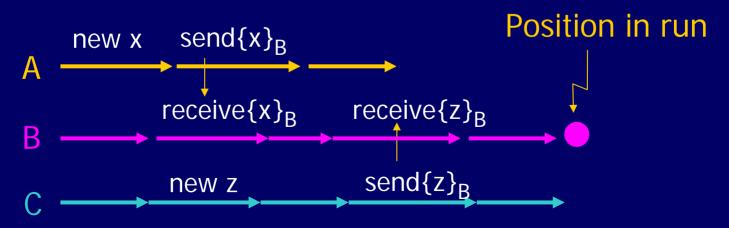
Execution Model

A protocol is a finite set of roles

 Initial configuration specifies a set of principals and keys; assignment of ≥1 role to each principal

A run is a concurrent execution of the roles

- Models a protocol session
- Send and receive actions are matched up



Action Formulas

 Predicates over action sequences
 a ::= Send(X,m) | Message m was sent in thread X Receive(X,m) | Message m was received in thread X New(X,t) | Term t was generated as new in X Decrypt(X,t) | Term t was decrypted in thread X Verify(X,t) | Term t was verified in X

Formulas

 $\phi ::= a$ Has(X,m)

> Fresh(X,t) Honest(N)

Contains(t,t') | $\neg \phi \mid \phi_1 \land \phi_2 \mid \exists x \phi \mid$ $\bigcirc \phi \mid \diamondsuit \phi$ $\phi was true$

Modal operator [actions]_χ φ

Action formula

Thread X created m or received a message containing m and has keys to extract m from the message Term t hasn't been "seen" outside X Principal N follows protocol rules in all of its threads Term t contains subterm t'

Temporal logic operators on past actions

After actions, X reasons ϕ

Trace Semantics

Protocol Q

- Defines a set of roles (e.g., initiator and responder)
- Run R
 - Sequence of actions by principals following protocol roles and the attacker (models a protocol session)

Satisfaction

- Q, R |= $[actions]_P \varphi$
 - Some role of principal P in R performs exactly actions and ϕ is true in the state obtained after actions complete
- $Q \models [actions]_P \varphi$

- Q, R |= $[actions]_P \phi$ for all runs R of Q

Specifying Authentication

Initiator authentication in Challenge-Response

After initiator executes his program

If B is honest...

 $CR \models [InitCR(A, B)]_A Honest(B) \supset$ ActionsInOrder(

Send(A, {A,B,m}), Receive(B, {A,B,m}), Send(B, {B,A,{n, sig_B{m, n, A}}}), Receive(A, {B,A,{n, sig_B{m, n, A}}})

> ...then msg sends and receives must have happened in order prescribed by protocol spec

Specifying Secrecy

Shared secret in key establishment

After initiator executes his program

If B is honest...

 $\begin{array}{lll} \mathsf{KE} \ & \mid = \ \left[\ \mathsf{Init}\mathsf{KE}(\mathsf{A}, \ \mathsf{B}) \ \right]_{\mathsf{A}} \ \mathsf{Honest}(\mathsf{B}) \supset \\ & (\mathsf{Has}(\mathsf{X}, \ \mathsf{m}) \supset \mathsf{X} {=} \mathsf{A} \lor \mathsf{X} {=} \mathsf{B} \) \end{array}$

... then if some party X knows secret m, then X can only be either A, or B

Proof System

 Goal: formally prove properties of security protocols

Axioms are simple formulas

- Provable by hand
- Inference rules are proof steps

Theorem is a formula obtained from axioms by application of inference rules

Sample Axioms

New data

- [new x]_P Has(P,x)
- [new x]_P Has(Y,x) \supset Y=P
- Acquiring new knowledge
 - [receive m]_P Has(P,m)
- Performing actions
 - [send m]_P \$Send(P,m)
 - [match x/sig_x{m}] P

Reasoning About Cryptography

Pairing

- Has(X, {m,n}) \supset Has(X, m) \land Has(X, n)
- Symmetric encryption
 - Has(X, enc_K(m)) \land Has(X, K⁻¹) \supset Has(X, m)
- Public-key encryption
 - Honest(X) $\land \diamondsuit$ Decrypt(Y, enc_X{m}) $\supset X = Y$

Signatures

Honest(X) ∧ ◇Verify(Y, sig_X{m}) ⊃
 ∃ m' (◇Send(X, m') ∧ Contains(m', sig_X{m}))

Sample Inference Rules

[actions]_P Has(X, t) [actions; action]_P Has(X, t)

 $\begin{bmatrix} actions \end{bmatrix}_{P} \phi \qquad [actions]_{P} \phi \\ \hline [actions]_{P} \phi \land \phi \end{bmatrix}$

Honesty Rule

 $\forall \text{roles R of Q. } \forall \text{ initial segments A} \subseteq \text{R.}$ $\begin{array}{c} Q & |- & [\text{ A }]_X \phi \\ \hline Q & |- & \text{Honest}(X) \supset \phi \end{array}$

- Finitary rule (finite number of premises to choose from)
 Typical protocol has 2-3 roles typical role has 1-3 actions
 - Typical protocol has 2-3 roles, typical role has 1-3 actions
- Example:
 - If Honest(X) ⊃ (Sent(X,m) ⊃ Received(X,m')) and
 Y receives a message from X, then Y can conclude
 Honest(X) ⊃ Received(X,m')

Correctness of Challenge-Response

 $\begin{array}{l} \mathsf{CR} \mid - [\mathsf{InitCR}(\mathsf{A}, \mathsf{B})]_{\mathsf{A}} \mathsf{Honest}(\mathsf{B}) \ \supset \mathsf{ActionsInOrder}(\\ & \mathsf{Send}(\mathsf{A}, \{\mathsf{A},\mathsf{B},\mathsf{m}\}),\\ & \mathsf{Receive}(\mathsf{B}, \{\mathsf{A},\mathsf{B},\mathsf{m}\}),\\ & \mathsf{Send}(\mathsf{B}, \{\mathsf{B},\mathsf{A},\{\mathsf{n}, \mathsf{sig}_{\mathsf{B}}\ \{\mathsf{m}, \mathsf{n}, \mathsf{A}\}\}\}),\\ & \mathsf{Receive}(\mathsf{A}, \{\mathsf{B},\mathsf{A},\{\mathsf{n}, \mathsf{sig}_{\mathsf{B}}\ \{\mathsf{m}, \mathsf{n}, \mathsf{A}\}\}\}) \end{array}$

1: A Reasons about Own Actions

InitCR(A, X) = [
 new m;
 send A, X, {m, A};
 receive X, A, {x, sig_x{m, x, A}};
 send A, X, sig_A{m, x, X};

RespCR(B) = [
 receive Y, B, {y, Y};
 new n;
 send B, Y, {n, sig_B{y, n, Y}};
 receive Y, B, sig_Y{y, n, B};

CR |- [InitCR(A, B)]_A \Diamond Verify(A, sig_B{m, n, A})

If A completed a protocol session, it must have verified B's signature at some point

2: Properties of Signatures

InitCR(A, X) = [
 new m;
 send A, X, {m, A};
 receive X, A, {x, sig_x{m, x, A}};
 send A, X, sig_A{m, x, X};

RespCR(B) = [
 receive Y, B, {y, Y};
 new n;
 send B, Y, {n, sig_B{y, n, Y}};
 receive Y, B, sig_Y{y, n, B};

CR |- [InitCR(A, B)]_A Honest(B) \supset \exists t' (\diamond Send(B, t') \land Contains(t', sig_B{m, n, A})

If A completed protocol and B is honest, then B must have sent its signature as part of some message

Honesty Invariant

InitCR(A, X) = [
 new m;
 send A, X, {m, A};
 receive X, A, {x, sig_x{m, x, A}};
 send A, X, sig_A{m, x, X};

RespCR(B) = [
 receive Y, B, {y, Y};
 new n;
 send B, Y, {n, sig_B{y, n, Y}};
 receive Y, B, sig_Y{y, n, B};

the protocol

This condition disambiguates $sig_x(...)$ sent by responder from $sig_A(...)$ sent by initiator

Reminder: Honesty Rule

 \forall roles R of Q. \forall initial segments A ⊆ R. Q |- [A]_X ϕ Q |- Honest(X) ⊃ ϕ

3: Use Honesty Rule

InitCR(A, X) = [
 new m;
 send A, X, {m, A};
 receive X, A, {x, sig_x{m, x, A}};
 send A, X, sig_A{m, x, X};

RespCR(B) = [
 receive Y, B, {y, Y};
 new n;
 send B, Y, {n, sig_B{y, n, Y}};
 receive Y, B, sig_Y{y, n, B};

CR |- [InitCR(A, B)]_A Honest(B) \supset \Diamond Receive(B, {A,B,{m,A}})

> If A completed protocol and B is honest, then B must have received A's first message

4: Nonces Imply Temporal Order

]

InitCR(A, X) = [
 new m;
 send A, X, {m, A};
 receive X, A, {x, sig_x{m, x, A}};
 send A, X, sig_A{m, x, X};

]

RespCR(B) = [
 receive Y, B, {y, Y};
 new n;
 send B, Y, {n, sig_B{y, n, Y}};
 receive Y, B, sig_Y{y, n, B};

CR |- [InitCR(A, B)]_A Honest(B) \supset ActionsInOrder(...)

Complete Proof

$\mathbf{AM1}$	$(A \mathrel{B} \eta)[\]_{A,\eta} \operatorname{Has}(A,A,\eta) \wedge \operatorname{Has}(A,B,\eta)$
AN3	$[(\nu m)]_{A,\eta}$ Fresh (A, m, η)
AA1	$[\langle A, B, m \rangle]_{A,\eta} \diamondsuit \text{Send}(A, \{A, B, m\}, \eta)$
AA1	$[(B, A, n, \{m, n, A \}_{\overline{B}})]_{A,n}$
	\bigotimes Receive $(A, \{B, A, n, \{ m, n, A \}_{\overline{B}}\}, \eta)$
AA1	$[(\{[m, n, A]\}_{\overline{B}}/\{[m, n, A]\}_{B})]_{A,\eta} \diamondsuit \text{Verify}(A, \{[m, n, A]\}_{\overline{B}}, \eta)$
AA1	$[\langle A, B, \{m, n, B\}_{\overline{A}} \rangle]_{A, \eta} \diamondsuit Send(A, \{A, B, \{m, n, B\}_{\overline{A}}\}, \eta)$
AF1, AF2	$(A B \eta)[(\nu m)\langle A, B, m \rangle(x)(x/B, A, n, \{m, n, A\}_{\overline{B}})$
	$(\{m, n, A\}_{\overline{B}}/\{[m, n, A]\}_{B})\langle A, B, \{m, n, B\}_{\overline{A}}\rangle]_{A, n}$
	ActionsInOrder(Send($A, \{A, B, m\}, \eta$), Receive($A, \{B, A, n, \{[m, n, A]\}_{\overline{B}}\}, \eta$),
	$Send(A,\{A,B,\{\!\mid\! m,n,B\}\!\}_{\overline{A}}\},\eta))$
$\mathbf{N1}$	\diamondsuit New $(A, m, \eta) \supset \neg$ \diamondsuit New (B, m, η')
5, VER	$Honest(B) \land \diamondsuit Verify(A, \{\![m, n, A]\!]_{\overline{B}}, \eta) \supset$
	$\exists \eta'. \exists m'. (\diamondsuit CSend(B,m',\eta') \land (\{\!\!\{m,n,A\}\!\!\}_{\overline{B}} \subseteq m'))$
HON	$Honest(B) \supset (\exists \eta'. \exists m'. ((\diamondsuit CSend(B, m', \eta') \land$
	$\{\! m,n,A \}_{\overline{B}} \subseteq m' \land \neg \diamondsuit New(B,m,\eta')) \supset$
	$(m' = \{B, A, \{n, \{m, n, A\}_{\overline{B}}\}\} \land \diamondsuit Receive(B, \{A, B, m\}, \eta') \land$
	$ActionsInOrder(Receive(B, \{A, B, m\}, \eta'), New(B, n, \eta'),$
	$Send(B, \{B, A, \{n, \{m, n, A \}_{\overline{B}}\}\}, \eta')))))$
2, 3, 11, AF3	$Honest(B) \supset After(Send(A, \{A, B, m\}, \eta),$
	$Receive(B, \{A, B, m\}, \eta'))$
$11, \mathbf{AF2}$	$Honest(B) \supset After(Receive(B, \{A, B, m\}, \eta'),$
	$Send(B, \{B, A, \{n, \{ m, n, A \}_{\overline{B}}\}\}, \eta'))$
11, 4, AF3	$Honest(B) \supset After(Send(B, \{B, A, \{n, \{m, n, A\}_{\overline{B}}\}\}, \eta'),$
	$Receive(A, \{B, A, \{n, \{[m, n, A]\}_{\overline{B}}\}\}, \eta))$
$10-13, \mathbf{AF2}$	$Honest(B) \supset \exists \eta'. (ActionsInOrder(Send(A, \{A, B, m\}, \eta),$
	$Receive(B, \{A, B, m\}, \eta'), Send(B, \{B, A, \{n, \{m, n, A\}\}_{\overline{B}}\}\}, \eta'),$
	$Receive(A, \{B, A, \{n, \{[m, n, A]\}_{\overline{B}}\}\}, \eta))$

Table 8. Deductions of A executing Init role of CR

Properties of Proof System

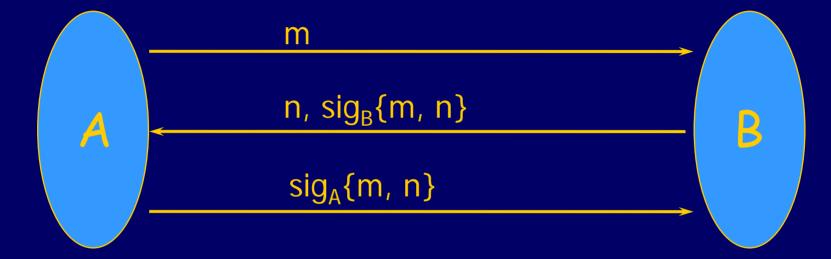
Soundness

- If φ is a theorem, then φ is a valid formula
 Q |- φ implies Q |= φ
- Informally: if we can prove something in the logic, then it is actually true

Proved formula holds in any step of any run

- There is no bound on the number of sessions!
- Unlike finite-state checking, the proved property is true for the entire protocol, not for specific session(s)

Weak Challenge-Response



]

```
InitWCR(A, X) = [
```

]

```
new m;
send A, X, {m};
receive X, A, {x, sig<sub>x</sub>{m, x}};
send A, X, sig<sub>A</sub>{m, x};
```

RespWCR(B) = [
 receive Y, B, {y};
 new n;
 send B, Y, {n, sig_B{y, n}};
 receive Y, B, sig_Y{y, n};

1: A Reasons about Own Actions

]

```
InitWCR(A, X) = [
    new m;
    send A, X, {m};
    receive X, A, {x, sig<sub>x</sub>{m, x}};
    send A, X, sig<sub>A</sub>{m, x};
```

]

```
RespWCR(B) = [
    receive Y, B, {y};
    new n;
    send B, Y, {n, sig<sub>B</sub>{y, n}};
    receive Y, B, sig<sub>Y</sub>{y, n};
```

```
WCR |- [InitWCR(A, B)]<sub>A</sub>
\DiamondVerify(A, sig<sub>B</sub>{m, n})
```

2: Properties of Signatures

```
InitWCR(A, X) = [
    new m;
    send A, X, {m};
    receive X, A, {x, sig<sub>x</sub>{m, x}};
    send A, X, sig<sub>A</sub>{m, x}};
```

]

```
RespWCR(B) = [
    receive Y, B, {y};
    new n;
    send B, Y, {n, sig<sub>B</sub>{y, n}};
    receive Y, B, sig<sub>Y</sub>{y, n}};
```

WCR |- [InitWCR(A, B)]_A Honest(B) \supset $\exists t' (\diamondsuit Send(B, t') \land$ Contains(t', sig_B{m, n})

]

Honesty Invariant

```
InitWCR(A, X) = [
    new m;
    send A, X, {m};
    receive X, A, {x, sig<sub>x</sub>{m, x}};
    send A, X, sig<sub>A</sub>{m, x};
```

```
RespWCR(B) = [
    receive Y, B, {y};
    new n;
    send B, Y, {n, sig<sub>B</sub>{y, n}};
    receive Y, B, sig<sub>Y</sub>{y, n};
```

recipient Y

```
WCR |- Honest(X) \land
\diamondsuit Send(X, t') \land Contains(t', sig_{x}{y, x}) \land
\neg \diamondsuit New(X, y) \supset
\diamondsuit Receive(X, {Y, X, {y}}) In this protocol, sig_{x}{y,x}
does not explicitly include
identity of intended
```

3: Use Honesty Rule

InitWCR(A, X) = [
 new m;
 send A, X, {m};
 receive X, A, {x, sig_x{m, x}};
 send A, X, sig_A{m, x};

RespWCR(B) = [
 receive Y, B, {y};
 new n;
 send B, Y, {n, sig_B{y, n}};
 receive Y, B, sig_Y{y, n};

WCR |- [InitWCR(A, B)]_A Honest(B) \supset \Diamond Receive(B, {Y,B,sig_Y{y,n}})

> B receives 3rd message from someone, not necessarily A

Failed Proof and Counterexample

 WCR does not provide the strong authentication property for the initiator

- Counterexample: intruder can forge sender's and receiver's identity in first two messages
 - A -> X(B) A, B, m
 - X(C) -> B C, B, m [X pretends to be C]
 - B -> X(C) n, sig_B(m, n)
 - X(B) -> A
 n, sig_B(m, n)

Further Work on Protocol Logic

- See papers by Datta, Derek, Mitchell, and Pavlovic on the course website
 - With a Diffie-Hellman primitive, prove authentication and secrecy for key exchange (STS, ISO-97898-3)
 - With symmetric encryption and hashing, prove authentication for ISO-9798-2, SKID3
- Work on protocol derivation
 - Build protocols by combining standard parts
 - Similar to the derivation of JFK described in class
 - Reuse proofs of correctness for building blocks
 - Compositionality pays off!