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Compositional Protocol Logic



Outline

Floyd-Hoare logic of programs
• Compositional reasoning about properties of programs

DDMP protocol logic
• Developed by Datta, Derek, Mitchell, and Pavlovic for 

logical reasoning about security properties



Floyd-Hoare Logic

Main idea: before-after assertions
• F <P> G

– If F is true before executing P,  then G is true after

Total correctness or partial correctness
• Total correctness: F [P] G

– If F is true, then P will halt and G will be true

• Partial correctness: F {P} G
– If F is true and if  P halts, then G will be true



While Programs

P  ::=  x := e  |
P ; P  |
if B then P else P  |
while B do P

where x is any variable
e is any integer expression
B is a Boolean expression (true or false)



Assignment and Rule of Consequence

Assignment axiom: F(t)  { x := t }  F(x)
• If F holds for t, and t is assigned to x, then F holds 

for x aftewards
• This assumes that there is no aliasing!
• Examples:

7=7         { x := 7 }       x=7
(y+1)>0  { x := y+1 }    x>0
x+1=2     { x := x+1 }    x=2

Rule of consequence:
If  F { P } G  and  F’ → F  and  G → G’,
then  F’ { P } G’



Simple Examples

Assertion: y>0  { x := y+1 }  x>0
Proof:

(y+1)>0   { x := y+1 }  x>0            (assignment axiom)
y>0         { x := y+1 }  x>0            (rule of consequence)

Assertion:  x=1  { x := x+1 }  x=2
Proof:

x+1=2     { x := x+1 }    x=2           (assignment axiom)
x=1         { x := x+1 }    x=2           (rule of consequence)

y>0 → y+1>0



Conditional

F & B  { P } G
F &¬B { Q } G

F  { if B then P else Q } G

• Example:

true  { if  y ≥ 0  then x := y  else  x := -y }  x ≥ 0



Sequence

F { P } G

G { Q } H

F  {  P; Q } H

• Example:

x=0  { x := x+1 ;  x := x+1 }    x=2



Loop Invariant

F & B  { P }  F

F  { while B do P } F &¬B  

• Example:

true  { while  x ≠ 0  do  x := x-1 }  x=0

F is the loop invariant; it 
should hold before and 
after the loop body



Example: Compute d=x-y

Assertion: y≤x {d:=0; while (y+d)<x do d := d+1} y+d=x

Proof:
• Choose loop invariant F = y+d≤x

y+d≤x & B  {Q}  y+d≤x

y+d≤x {while B do Q} y+d≤x &¬B  

– Important: proving a property of the entire loop has been reduced to 
proving a property of one iteration of the loop

• To prove   y+d≤x & B  {Q}  y+d≤x,   use assignment axiom and 
sequence rule

P B Q

After loop execution, 
y+d≤x &¬(y+d<x), 
thus y+d=x 



Goal: Logic for Security Protocols

“Floyd-Hoare” reasoning about security properties
• Would like to derive global properties of protocols from 

local assertions about each protocol participant
• Use a rigorous logical framework to formalize the 

reasoning that each participant carries out 

Compositionality is important
• Security properties must hold even if the protocol is 

executed in parallel with other protocols
• Compositionality is the main advantage of process 

calculi and protocol logics



Intuition

Reason about local information
• I chose a fresh, unpredictable number
• I sent it out encrypted
• I received it decrypted 
• Therefore: someone decrypted it

Incorporate knowledge about protocol into reasoning
• According to the protocol specification, server only sends m if it 

received m’
• If server not corrupt and I receive m signed by server, then 

server received m’

{Na}pk(B)

A Na



Alice’s “View” of the Protocol

Honest principals,
attacker

Protocol
spec

Private 
data

Sent and received messages



Example: Challenge-Response

A B

m, A

Alice’s reasoning:
• If Bob is honest, then only Bob can generate his signature 
• If honest Bob generates a signature of the form sigB{m, n, A}, then
1. Bob must have received m, A from Alice
2. Bob sent sigB{m, n, A} as part of his 2nd message

Alice concludes:
• Received(B,msg1) & Sent(B,msg2)

n, sigB{m, n, A}

sigA{m, n, B}

protocol-independent reasoning

protocol-specific reasoning



Protocol Composition Logic
[Datta et al.]

A formal language for describing protocols
• Terms and actions instead of informal arrows-and-

messages notation

Operational semantics
• Describe how the protocol executes

Protocol logic
• State security properties (in particular, secrecy and 

authentication)

Proof system
• Axioms and inference rules for formally proving 

security properties



Terms

t ::= c | constant 
x | variable
N | name
K | key
t, t | tuple
sigK{t} | signature
encK{t} encryption



Actions

new m generate fresh value
send U, V, t send term t from U to V
receive U, V, x receive term and assign into variable x
match t/p(x) match term t against pattern p(x)

A thread is a sequence of actions
• Defines the “program” for a protocol participant, i.e., what 

messages he sends and receives and the checks he performs
• For notational convenience, omit “match” actions

– Write “receive sigB{A, n}” instead of “receive x; match x/sigB{A, n}”



Challenge-Response Threads

A B

m, A

n, sigB{m, n, A}

sigA{m, n, B}

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B};

]



Execution Model

A protocol is a finite set of roles
• Initial configuration specifies a set of principals and 

keys; assignment of ≥1 role to each principal

A run is a concurrent execution of the roles
• Models a protocol session
• Send and receive actions are matched up

Position in runsend{x}Bnew x
A

receive{x}B
B

receive{z}B

send{z}Bnew z
C



Action Formulas

Predicates over action sequences
a ::= Send(X,m) | Message m was sent in thread X

Receive(X,m) | Message m was received in thread X

New(X,t)       | Term t was generated as new in X

Decrypt(X,t)  | Term t was decrypted in thread X

Verify(X,t) Term t was verified in X



Formulas

ϕ ::= a | Action formula

Has(X,m) | Thread X created m or received
a message containing m and has
keys to extract m from the message

Fresh(X,t) | Term t hasn’t been “seen” outside X

Honest(N) | Principal N follows protocol rules in
all of its threads

Contains(t,t’) | Term t contains subterm t’

¬ϕ | ϕ1∧ ϕ2 | ∃x ϕ |
ϕ |  ϕ Temporal logic operators on

past actions

Modal operator [actions]X ϕ After actions, X reasons ϕ

ϕ was true



Trace Semantics

Protocol Q
• Defines a set of roles (e.g., initiator and responder)
Run R
• Sequence of actions by principals following protocol 

roles and the attacker (models a protocol session)
Satisfaction
• Q, R |= [ actions ]P ϕ

– Some role of principal P in R performs exactly actions and ϕ
is true in the state obtained after actions complete

• Q |= [ actions ]P ϕ
– Q, R |= [ actions ] P  φ for all runs R of Q



Specifying Authentication

Initiator authentication in Challenge-Response

CR |= [ InitCR(A, B) ]A  Honest(B) ⊃
ActionsInOrder(

Send(A, {A,B,m}), 
Receive(B, {A,B,m}), 
Send(B, {B,A,{n, sigB{m, n, A}}}), 
Receive(A, {B,A,{n, sigB{m, n, A}}})

)

After initiator executes his program If B is honest…

…then msg sends and receives
must have happened in order
prescribed by protocol spec



Specifying Secrecy

Shared secret in key establishment

KE |= [ InitKE(A, B) ] A  Honest(B) ⊃
(Has(X, m) ⊃ X=A ∨ X=B )

After initiator executes his program If B is honest…

… then if some party X knows secret m,
then X can only be either A, or B



Proof System

Goal: formally prove properties of security 
protocols
Axioms are simple formulas
• Provable by hand

Inference rules are proof steps
Theorem is a formula obtained from axioms by 
application of inference rules



Sample Axioms

New data
• [ new x ]P Has(P,x)
• [ new x ]P Has(Y,x) ⊃ Y=P

Acquiring new knowledge
• [ receive m ]P Has(P,m)

Performing actions
• [ send m ]P Send(P,m)
• [ match x/sigX{m} ] P Verify(P,m)



Reasoning About Cryptography

Pairing
• Has(X, {m,n}) ⊃ Has(X, m) ∧ Has(X, n)

Symmetric encryption 
• Has(X, encK(m)) ∧ Has(X, K-1) ⊃ Has(X, m)

Public-key encryption
• Honest(X) ∧ Decrypt(Y, encX{m}) ⊃ X=Y

Signatures
• Honest(X) ∧ Verify(Y, sigX{m}) ⊃
∃ m’ ( Send(X, m’) ∧ Contains(m’, sigX{m})



Sample Inference Rules

[ actions ]P Has(X, t)
[ actions; action ]P Has(X, t)

[ actions ]P φ [ actions ]P ϕ
[ actions ]P φ ∧ ϕ



Honesty Rule

∀roles R of Q. ∀ initial segments A ⊆ R.

Q  |- [ A ]X φ
Q |- Honest(X) ⊃ φ

• Finitary rule (finite number of premises to choose from)
– Typical protocol has 2-3 roles,  typical role has 1-3 actions

• Example:
– If  Honest(X)  ⊃ (Sent(X,m) ⊃ Received(X,m’)) and 

Y receives a message from X, then Y can conclude 
Honest(X)  ⊃ Received(X,m’)



Correctness of Challenge-Response

CR |- [ InitCR(A, B) ]A  Honest(B)  ⊃ ActionsInOrder(
Send(A, {A,B,m}), 
Receive(B, {A,B,m}), 
Send(B, {B,A,{n, sigB {m, n, A}}}), 
Receive(A, {B,A,{n, sigB {m, n, A}}})

)

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B}};

]



1: A Reasons about Own Actions

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B};

]

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

CR |- [ InitCR(A, B) ]A 

Verify(A, sigB{m, n, A})

If A completed a protocol session,
it must have verified B’s signature
at some point



2: Properties of Signatures

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B};

]

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

CR |- [ InitCR(A, B) ]A Honest(B) ⊃
∃ t’ ( Send(B, t’) ∧

Contains(t’, sigB{m, n, A})

If A completed protocol and B is
honest, then B must have sent its
signature as part of some message



Honesty Invariant

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B};

]

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

This condition disambiguates 
sigx(…) sent by responder from
sigA(…) sent by initiator

CR |- Honest(X) ∧
Send(X, t’) ∧ Contains(t’, sigx{y, x, Y}) ∧

¬ New(X, y) ⊃
Receive(X, {Y, X, {y, Y}})

Honest responder only
sends his signature if
he received a properly
formed first message of
the protocol



Reminder: Honesty Rule

∀roles R of Q. ∀ initial segments A ⊆ R.

Q  |- [ A ]X φ
Q |- Honest(X) ⊃ φ



3: Use Honesty Rule

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B};

]

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

CR |- [ InitCR(A, B) ]A Honest(B) ⊃
Receive(B, {A,B,{m,A}})

If A completed protocol and 
B is honest, then B must have 
received A’s first message



4: Nonces Imply Temporal Order

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B};

]

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

CR |- [ InitCR(A, B) ] A Honest(B) ⊃
ActionsInOrder(…)



Complete Proof



Properties of Proof System

Soundness
• If φ is a theorem, then φ is a valid formula

– Q |- φ implies Q |= φ

• Informally: if we can prove something in the logic, 
then it is actually true

Proved formula holds in any step of any run
• There is no bound on the number of sessions!
• Unlike finite-state checking, the proved property is 

true for the entire protocol, not for specific session(s)



Weak Challenge-Response

A B

m

n, sigB{m, n}

sigA{m, n}

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x};

]

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n};

]



1: A Reasons about Own Actions

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n};

]

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x};

]

WCR |- [ InitWCR(A, B) ]A 

Verify(A, sigB{m, n})



2: Properties of Signatures

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n}};

]

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x}};

]

WCR |- [ InitWCR(A, B) ]A Honest(B) ⊃
∃ t’ ( Send(B, t’) ∧

Contains(t’, sigB{m, n})



Honesty Invariant

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n};

]

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x};

]

WCR |- Honest(X) ∧
Send(X, t’) ∧ Contains(t’, sigx{y, x}) ∧

¬ New(X, y) ⊃
Receive(X, {Y, X, {y}})

In this protocol, sigx{y,x}
does not explicitly include
identity of intended
recipient Y



3: Use Honesty Rule

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n};

]

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x};

]

WCR |- [ InitWCR(A, B) ]A Honest(B) ⊃
Receive(B, {Y,B,sigY{y,n}})

B receives 3rd message
from someone, not
necessarily A



Failed Proof and Counterexample

WCR does not provide the strong authentication 
property for the initiator
Counterexample: intruder can forge sender’s 
and receiver’s identity in first two messages
• A     ->  X(B) A, B, m
• X(C) ->  B C, B, m         [X pretends to be C]
• B     ->  X(C) n, sigB(m, n)
• X(B) ->  A n, sigB(m, n)



Further Work on Protocol Logic

See papers by Datta, Derek, Mitchell, and 
Pavlovic on the course website
• With a Diffie-Hellman primitive, prove authentication 

and secrecy for key exchange (STS, ISO-97898-3)
• With symmetric encryption and hashing, prove 

authentication for ISO-9798-2, SKID3

Work on protocol derivation
• Build protocols by combining standard parts

– Similar to the derivation of JFK described in class

• Reuse proofs of correctness for building blocks
– Compositionality pays off!
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