
CS 395T

Compositional Protocol Logic

Outline

Floyd-Hoare logic of programs
• Compositional reasoning about properties of programs

DDMP protocol logic
• Developed by Datta, Derek, Mitchell, and Pavlovic for

logical reasoning about security properties

Floyd-Hoare Logic

Main idea: before-after assertions
• F <P> G

– If F is true before executing P, then G is true after

Total correctness or partial correctness
• Total correctness: F [P] G

– If F is true, then P will halt and G will be true

• Partial correctness: F {P} G
– If F is true and if P halts, then G will be true

While Programs

P ::= x := e |
P ; P |
if B then P else P |
while B do P

where x is any variable
e is any integer expression
B is a Boolean expression (true or false)

Assignment and Rule of Consequence

Assignment axiom: F(t) { x := t } F(x)
• If F holds for t, and t is assigned to x, then F holds

for x aftewards
• This assumes that there is no aliasing!
• Examples:

7=7 { x := 7 } x=7
(y+1)>0 { x := y+1 } x>0
x+1=2 { x := x+1 } x=2

Rule of consequence:
If F { P } G and F’ → F and G → G’,
then F’ { P } G’

Simple Examples

Assertion: y>0 { x := y+1 } x>0
Proof:

(y+1)>0 { x := y+1 } x>0 (assignment axiom)
y>0 { x := y+1 } x>0 (rule of consequence)

Assertion: x=1 { x := x+1 } x=2
Proof:

x+1=2 { x := x+1 } x=2 (assignment axiom)
x=1 { x := x+1 } x=2 (rule of consequence)

y>0 → y+1>0

Conditional

F & B { P } G
F &¬B { Q } G

F { if B then P else Q } G

• Example:

true { if y ≥ 0 then x := y else x := -y } x ≥ 0

Sequence

F { P } G

G { Q } H

F { P; Q } H

• Example:

x=0 { x := x+1 ; x := x+1 } x=2

Loop Invariant

F & B { P } F

F { while B do P } F &¬B

• Example:

true { while x ≠ 0 do x := x-1 } x=0

F is the loop invariant; it
should hold before and
after the loop body

Example: Compute d=x-y

Assertion: y≤x {d:=0; while (y+d)<x do d := d+1} y+d=x

Proof:
• Choose loop invariant F = y+d≤x

y+d≤x & B {Q} y+d≤x

y+d≤x {while B do Q} y+d≤x &¬B

– Important: proving a property of the entire loop has been reduced to
proving a property of one iteration of the loop

• To prove y+d≤x & B {Q} y+d≤x, use assignment axiom and
sequence rule

P B Q

After loop execution,
y+d≤x &¬(y+d<x),
thus y+d=x

Goal: Logic for Security Protocols

“Floyd-Hoare” reasoning about security properties
• Would like to derive global properties of protocols from

local assertions about each protocol participant
• Use a rigorous logical framework to formalize the

reasoning that each participant carries out

Compositionality is important
• Security properties must hold even if the protocol is

executed in parallel with other protocols
• Compositionality is the main advantage of process

calculi and protocol logics

Intuition

Reason about local information
• I chose a fresh, unpredictable number
• I sent it out encrypted
• I received it decrypted
• Therefore: someone decrypted it

Incorporate knowledge about protocol into reasoning
• According to the protocol specification, server only sends m if it

received m’
• If server not corrupt and I receive m signed by server, then

server received m’

{Na}pk(B)

A Na

Alice’s “View” of the Protocol

Honest principals,
attacker

Protocol
spec

Private
data

Sent and received messages

Example: Challenge-Response

A B

m, A

Alice’s reasoning:
• If Bob is honest, then only Bob can generate his signature
• If honest Bob generates a signature of the form sigB{m, n, A}, then
1. Bob must have received m, A from Alice
2. Bob sent sigB{m, n, A} as part of his 2nd message

Alice concludes:
• Received(B,msg1) & Sent(B,msg2)

n, sigB{m, n, A}

sigA{m, n, B}

protocol-independent reasoning

protocol-specific reasoning

Protocol Composition Logic
[Datta et al.]

A formal language for describing protocols
• Terms and actions instead of informal arrows-and-

messages notation

Operational semantics
• Describe how the protocol executes

Protocol logic
• State security properties (in particular, secrecy and

authentication)

Proof system
• Axioms and inference rules for formally proving

security properties

Terms

t ::= c | constant
x | variable
N | name
K | key
t, t | tuple
sigK{t} | signature
encK{t} encryption

Actions

new m generate fresh value
send U, V, t send term t from U to V
receive U, V, x receive term and assign into variable x
match t/p(x) match term t against pattern p(x)

A thread is a sequence of actions
• Defines the “program” for a protocol participant, i.e., what

messages he sends and receives and the checks he performs
• For notational convenience, omit “match” actions

– Write “receive sigB{A, n}” instead of “receive x; match x/sigB{A, n}”

Challenge-Response Threads

A B

m, A

n, sigB{m, n, A}

sigA{m, n, B}

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B};

]

Execution Model

A protocol is a finite set of roles
• Initial configuration specifies a set of principals and

keys; assignment of ≥1 role to each principal

A run is a concurrent execution of the roles
• Models a protocol session
• Send and receive actions are matched up

Position in runsend{x}Bnew x
A

receive{x}B
B

receive{z}B

send{z}Bnew z
C

Action Formulas

Predicates over action sequences
a ::= Send(X,m) | Message m was sent in thread X

Receive(X,m) | Message m was received in thread X

New(X,t) | Term t was generated as new in X

Decrypt(X,t) | Term t was decrypted in thread X

Verify(X,t) Term t was verified in X

Formulas

ϕ ::= a | Action formula

Has(X,m) | Thread X created m or received
a message containing m and has
keys to extract m from the message

Fresh(X,t) | Term t hasn’t been “seen” outside X

Honest(N) | Principal N follows protocol rules in
all of its threads

Contains(t,t’) | Term t contains subterm t’

¬ϕ | ϕ1∧ ϕ2 | ∃x ϕ |
ϕ | ϕ Temporal logic operators on

past actions

Modal operator [actions]X ϕ After actions, X reasons ϕ

ϕ was true

Trace Semantics

Protocol Q
• Defines a set of roles (e.g., initiator and responder)
Run R
• Sequence of actions by principals following protocol

roles and the attacker (models a protocol session)
Satisfaction
• Q, R |= [actions]P ϕ

– Some role of principal P in R performs exactly actions and ϕ
is true in the state obtained after actions complete

• Q |= [actions]P ϕ
– Q, R |= [actions] P φ for all runs R of Q

Specifying Authentication

Initiator authentication in Challenge-Response

CR |= [InitCR(A, B)]A Honest(B) ⊃
ActionsInOrder(

Send(A, {A,B,m}),
Receive(B, {A,B,m}),
Send(B, {B,A,{n, sigB{m, n, A}}}),
Receive(A, {B,A,{n, sigB{m, n, A}}})

)

After initiator executes his program If B is honest…

…then msg sends and receives
must have happened in order
prescribed by protocol spec

Specifying Secrecy

Shared secret in key establishment

KE |= [InitKE(A, B)] A Honest(B) ⊃
(Has(X, m) ⊃ X=A ∨ X=B)

After initiator executes his program If B is honest…

… then if some party X knows secret m,
then X can only be either A, or B

Proof System

Goal: formally prove properties of security
protocols
Axioms are simple formulas
• Provable by hand

Inference rules are proof steps
Theorem is a formula obtained from axioms by
application of inference rules

Sample Axioms

New data
• [new x]P Has(P,x)
• [new x]P Has(Y,x) ⊃ Y=P

Acquiring new knowledge
• [receive m]P Has(P,m)

Performing actions
• [send m]P Send(P,m)
• [match x/sigX{m}] P Verify(P,m)

Reasoning About Cryptography

Pairing
• Has(X, {m,n}) ⊃ Has(X, m) ∧ Has(X, n)

Symmetric encryption
• Has(X, encK(m)) ∧ Has(X, K-1) ⊃ Has(X, m)

Public-key encryption
• Honest(X) ∧ Decrypt(Y, encX{m}) ⊃ X=Y

Signatures
• Honest(X) ∧ Verify(Y, sigX{m}) ⊃
∃ m’ (Send(X, m’) ∧ Contains(m’, sigX{m})

Sample Inference Rules

[actions]P Has(X, t)
[actions; action]P Has(X, t)

[actions]P φ [actions]P ϕ
[actions]P φ ∧ ϕ

Honesty Rule

∀roles R of Q. ∀ initial segments A ⊆ R.

Q |- [A]X φ
Q |- Honest(X) ⊃ φ

• Finitary rule (finite number of premises to choose from)
– Typical protocol has 2-3 roles, typical role has 1-3 actions

• Example:
– If Honest(X) ⊃ (Sent(X,m) ⊃ Received(X,m’)) and

Y receives a message from X, then Y can conclude
Honest(X) ⊃ Received(X,m’)

Correctness of Challenge-Response

CR |- [InitCR(A, B)]A Honest(B) ⊃ ActionsInOrder(
Send(A, {A,B,m}),
Receive(B, {A,B,m}),
Send(B, {B,A,{n, sigB {m, n, A}}}),
Receive(A, {B,A,{n, sigB {m, n, A}}})

)

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B}};

]

1: A Reasons about Own Actions

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B};

]

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

CR |- [InitCR(A, B)]A

Verify(A, sigB{m, n, A})

If A completed a protocol session,
it must have verified B’s signature
at some point

2: Properties of Signatures

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B};

]

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

CR |- [InitCR(A, B)]A Honest(B) ⊃
∃ t’ (Send(B, t’) ∧

Contains(t’, sigB{m, n, A})

If A completed protocol and B is
honest, then B must have sent its
signature as part of some message

Honesty Invariant

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B};

]

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

This condition disambiguates
sigx(…) sent by responder from
sigA(…) sent by initiator

CR |- Honest(X) ∧
Send(X, t’) ∧ Contains(t’, sigx{y, x, Y}) ∧

¬ New(X, y) ⊃
Receive(X, {Y, X, {y, Y}})

Honest responder only
sends his signature if
he received a properly
formed first message of
the protocol

Reminder: Honesty Rule

∀roles R of Q. ∀ initial segments A ⊆ R.

Q |- [A]X φ
Q |- Honest(X) ⊃ φ

3: Use Honesty Rule

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B};

]

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

CR |- [InitCR(A, B)]A Honest(B) ⊃
Receive(B, {A,B,{m,A}})

If A completed protocol and
B is honest, then B must have
received A’s first message

4: Nonces Imply Temporal Order

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B};

]

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X};

]

CR |- [InitCR(A, B)] A Honest(B) ⊃
ActionsInOrder(…)

Complete Proof

Properties of Proof System

Soundness
• If φ is a theorem, then φ is a valid formula

– Q |- φ implies Q |= φ

• Informally: if we can prove something in the logic,
then it is actually true

Proved formula holds in any step of any run
• There is no bound on the number of sessions!
• Unlike finite-state checking, the proved property is

true for the entire protocol, not for specific session(s)

Weak Challenge-Response

A B

m

n, sigB{m, n}

sigA{m, n}

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x};

]

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n};

]

1: A Reasons about Own Actions

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n};

]

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x};

]

WCR |- [InitWCR(A, B)]A

Verify(A, sigB{m, n})

2: Properties of Signatures

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n}};

]

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x}};

]

WCR |- [InitWCR(A, B)]A Honest(B) ⊃
∃ t’ (Send(B, t’) ∧

Contains(t’, sigB{m, n})

Honesty Invariant

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n};

]

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x};

]

WCR |- Honest(X) ∧
Send(X, t’) ∧ Contains(t’, sigx{y, x}) ∧

¬ New(X, y) ⊃
Receive(X, {Y, X, {y}})

In this protocol, sigx{y,x}
does not explicitly include
identity of intended
recipient Y

3: Use Honesty Rule

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n};

]

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x};

]

WCR |- [InitWCR(A, B)]A Honest(B) ⊃
Receive(B, {Y,B,sigY{y,n}})

B receives 3rd message
from someone, not
necessarily A

Failed Proof and Counterexample

WCR does not provide the strong authentication
property for the initiator
Counterexample: intruder can forge sender’s
and receiver’s identity in first two messages
• A -> X(B) A, B, m
• X(C) -> B C, B, m [X pretends to be C]
• B -> X(C) n, sigB(m, n)
• X(B) -> A n, sigB(m, n)

Further Work on Protocol Logic

See papers by Datta, Derek, Mitchell, and
Pavlovic on the course website
• With a Diffie-Hellman primitive, prove authentication

and secrecy for key exchange (STS, ISO-97898-3)
• With symmetric encryption and hashing, prove

authentication for ISO-9798-2, SKID3

Work on protocol derivation
• Build protocols by combining standard parts

– Similar to the derivation of JFK described in class

• Reuse proofs of correctness for building blocks
– Compositionality pays off!

	Compositional Protocol Logic
	Outline
	Floyd-Hoare Logic
	While Programs
	Assignment and Rule of Consequence
	Simple Examples
	Conditional
	Sequence
	Loop Invariant
	Example: Compute d=x-y
	Goal: Logic for Security Protocols
	Intuition
	Alice’s “View” of the Protocol
	Example: Challenge-Response
	Protocol Composition Logic
	Terms
	Actions
	Challenge-Response Threads
	Execution Model
	Action Formulas
	Formulas
	Trace Semantics
	Specifying Authentication
	Specifying Secrecy
	Proof System
	Sample Axioms
	Reasoning About Cryptography
	Sample Inference Rules
	Honesty Rule
	Correctness of Challenge-Response
	1: A Reasons about Own Actions
	2: Properties of Signatures
	Honesty Invariant
	Reminder: Honesty Rule
	3: Use Honesty Rule
	4: Nonces Imply Temporal Order
	Complete Proof
	Properties of Proof System
	Weak Challenge-Response
	1: A Reasons about Own Actions
	2: Properties of Signatures
	Honesty Invariant
	3: Use Honesty Rule
	Failed Proof and Counterexample
	Further Work on Protocol Logic

