0x1A Great Papers in Computer Security

Vitaly Shmatikov

http://www.cs.utexas.edu/~shmat/courses/cs380s/
L. Zhuang, F. Zhou, D. Tygar

Keyboard Acoustic Emanations Revisited

(CCS 2005)
Acoustic Information in Typing

- Different keystrokes make different sounds
 - Different locations on the supporting plate
 - Each key is slightly different

- Frequency information in the sound of the typed key can be used to learn which key it is
 - Observed by Asonov and Agrawal (2004)
“Key” Observation

◆ Build acoustic model for keyboard and typist
◆ Exploit the fact that typed text is non-random (for example, English)
 ● Limited number of words
 ● Limited letter sequences (spelling)
 ● Limited word sequences (grammar)
◆ This requires a language model
 ● Statistical learning theory
 ● Natural language processing
Sound of a Keystroke

- Each keystroke is represented as a vector of Cepstrum features
 - Fourier transform of the decibel spectrum
 - Standard technique from speech processing

[Zhuang, Zhou, Tygar]
Bi-Grams of Characters

- Group keystrokes into N clusters
- Find the best mapping from cluster labels to characters
- Unsupervised learning: exploit the fact that some 2-character combinations are more common
 - Example: “th” vs. “tj”
 - Hidden Markov Models (HMMs)

[Zhuang, Zhou, Tygar]
Add Spelling and Grammar

- Spelling correction
- Simple statistical model of English grammar
 - Tri-grams of words
- Use HMMs again to model

[Zhuang, Zhou, Tygar]
the big money fight has drawn the support of dozens of companies in the entertainment industry as well as attorneys generals in states, who fear the film-sharing software will encourage illegal activity, stem the growth of small artists and lead to lost jobs and diminished sales tax revenue.

Before spelling and grammar correction

After spelling and grammar correction

_____ = errors in recovery □ = errors corrected by grammar
Feedback-based Training

- Recovered characters + language correction provide feedback for more rounds of training
- Output: keystroke classifier
 - Language-independent
 - Can be used to recognize random sequence of keys
 - For example, passwords
 - Representation of keystroke classifier
 - Neural networks, linear classification, Gaussian mixtures

[Zhuang, Zhou, Tygar]
Overview

Initial training

- wave signal (recorded sound)
 - Feature Extraction
 - Unsupervised Learning
 - Language Model Correction
 - Sample Collector
 - Classifier Builder

Keystroke classifier
recovered keystrokes

Subsequent recognition

- wave signal
 - Feature Extraction
 - Keystroke Classifier
 - Language Model Correction (optional)

recovered keystrokes

[Zhuang, Zhou, Tygar]
Experiment: Single Keyboard

- Logitech Elite Duo wireless keyboard
- 4 data sets recorded in two settings: quiet and noisy
 - Consecutive keystrokes are clearly separable
- Automatically extract keystroke positions in the signal with some manual error correction
Results for a Single Keyboard

[Datasets]

<table>
<thead>
<tr>
<th></th>
<th>Recording length</th>
<th>Number of words</th>
<th>Number of keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 1</td>
<td>~12 min</td>
<td>~400</td>
<td>~2500</td>
</tr>
<tr>
<td>Set 2</td>
<td>~27 min</td>
<td>~1000</td>
<td>~5500</td>
</tr>
<tr>
<td>Set 3</td>
<td>~22 min</td>
<td>~800</td>
<td>~4200</td>
</tr>
<tr>
<td>Set 4</td>
<td>~24 min</td>
<td>~700</td>
<td>~4300</td>
</tr>
</tbody>
</table>

[Initial and final recognition rate]

<table>
<thead>
<tr>
<th></th>
<th>Set 1 (%)</th>
<th>Set 2 (%)</th>
<th>Set 3 (%)</th>
<th>Set 4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Char</td>
<td>Word</td>
<td>Char</td>
<td>Word</td>
</tr>
<tr>
<td>Initial</td>
<td>35 76</td>
<td>39 80</td>
<td>32 73</td>
<td>23 68</td>
</tr>
<tr>
<td>Final</td>
<td>90 96</td>
<td>89 96</td>
<td>83 95</td>
<td>80 92</td>
</tr>
</tbody>
</table>
Experiment: Multiple Keyboards

- Keyboard 1: Dell QuietKey PS/2
 - In use for about 6 months

- Keyboard 2: Dell QuietKey PS/2
 - In use for more than 5 years

- Keyboard 3: Dell Wireless Keyboard
 - New
Results for Multiple Keyboards

12-minute recording with app. 2300 characters

<table>
<thead>
<tr>
<th></th>
<th>Keyboard 1 (%)</th>
<th>Keyboard 2 (%)</th>
<th>Keyboard 3 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Word</td>
<td>Char</td>
<td>Word</td>
</tr>
<tr>
<td>Initial</td>
<td>31</td>
<td>72</td>
<td>20</td>
</tr>
<tr>
<td>Final</td>
<td>82</td>
<td>93</td>
<td>82</td>
</tr>
</tbody>
</table>
Defenses

- Physical security
- Two-factor authentication
- Masking noise
- Keyboards with uniform sound (?)