0x1A Great Papers in Computer Security

Vitaly Shmatikov

http://www.cs.utexas.edu/~shmat/courses/cs380s/
W. Diffie and M. Hellman

New Directions in Cryptography

(ToIT 1976)
Diffie-Hellman Key Establishment

- Alice and Bob never met and share no secrets
- Public information: p and g, where p is a large prime number, g is a generator of \mathbb{Z}^*_p
 - $\mathbb{Z}^*_p = \{1, 2 \ldots p-1\}; \forall a \in \mathbb{Z}^*_p \exists i$ such that $a = g^i \mod p$

- Alice picks secret, random X
- Bob picks secret, random Y
- Alice computes $g^x \mod p$
- Bob computes $g^y \mod p$
- Alice sends $g^x \mod p$ to Bob
- Bob sends $g^y \mod p$ to Alice
- Alice computes $k = (g^y)^x = g^{xy} \mod p$
- Bob computes $k = (g^x)^y = g^{xy} \mod p$
Why Is Diffie-Hellman Secure?

◆ Discrete Logarithm (DL) problem: given $g^x \mod p$, it’s hard to extract x
 • There is no known efficient algorithm for doing this
 • This is not enough for Diffie-Hellman to be secure!

◆ Computational Diffie-Hellman (CDH) problem: given g^x and g^y, it’s hard to compute $g^{xy} \mod p$
 • ... unless you know x or y, in which case it’s easy

◆ Decisional Diffie-Hellman (DDH) problem: given g^x and g^y, it’s hard to tell the difference between $g^{xy} \mod p$ and $g^r \mod p$ where r is random
Security of Diffie-Hellman Protocol

◆ Assuming the DDH problem is hard, Diffie-Hellman protocol is a secure key establishment protocol against passive attackers
 - Eavesdropper can’t tell the difference between the established key and a random value
 - Can use the established key for symmetric cryptography
 – Approx. 1000 times faster than modular exponentiation
◆ Basic Diffie-Hellman protocol is not secure against an active, man-in-the-middle attacker
Public-Key Encryption

- **Key generation**: computationally easy to generate a pair (public key PK, private key SK)
 - Computationally infeasible to determine private key SK given only public key PK

- **Encryption**: given plaintext M and public key PK, easy to compute ciphertext C=\(E_{PK}(M)\)

- **Decryption**: given ciphertext C=\(E_{PK}(M)\) and private key SK, easy to compute plaintext M
 - Infeasible to compute M from C without SK
 - Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M
ElGamal Encryption

◆ Key generation
 • Pick a large prime \(p \), generator \(g \) of \(\mathbb{Z}_p^* \)
 • Private key: random \(x \) such that \(1 \leq x \leq p-2 \)
 • Public key: \((p, g, y = g^x \mod p) \)

◆ Encryption
 • Pick random \(k \), \(1 \leq k \leq p-2 \)
 • \(E(m) = (g^k \mod p, m \cdot y^k \mod p) = (\gamma, \delta) \)

◆ Decryption
 • Given ciphertext \((\gamma, \delta)\), compute \(\gamma^{-x} \mod p \)
 • Recover \(m = \delta \cdot (\gamma^{-x}) \mod p \)
When Is Encryption “Secure”?

- Hard to recover the key?
 - What if attacker can learn plaintext without learning the key?

- Hard to recover plaintext from ciphertext?
 - What if attacker learns some bits or some property of the plaintext?

- (Informal) goal: ciphertext should hide all “useful” information about the plaintext
 - ... except its length
Attack Models

Assume that the attacker knows the encryption algorithm and wants to decrypt some ciphertext:

- **Ciphertext-only attack**
- **Known-plaintext attack (stronger)**
 - Knows some plaintext-ciphertext pairs
- **Chosen-plaintext attack (even stronger)**
 - Can obtain ciphertext for any plaintext of his choice
- **Chosen-ciphertext attack (very strong)**
 - Can decrypt any ciphertext except the target
The Chosen-Plaintext (CPA) Game

Idea: attacker should not be able to learn any property of the encrypted plaintext

- Attacker chooses as many plaintexts as he wants and learns the corresponding ciphertexts
- When ready, he picks two plaintexts M_0 and M_1
 - He is even allowed to pick plaintexts for which he previously learned ciphertexts!
- He receives either a ciphertext of M_0, or a ciphertext of M_1
- He wins if he guesses correctly which one it is
CPA Game: Formalization

Define $\text{Enc}(M_0, M_1, b)$ to be a function that returns encrypted M_b.

- Define Enc as a magic box that computes ciphertexts on attacker’s demand... he can obtain a ciphertext of any plaintext M by submitting $M_0=M_1=M$, or he can submit $M_0\neq M_1$.

- Attacker’s goal is to learn just one bit b.

Chosen-Plaintext Security

Consider two experiments (A is the attacker)

Experiment 0
A interacts with Enc(-,-,0)
and outputs bit d

Experiment 1
A interacts with Enc(-,-,1)
and outputs bit d

- Identical except for the value of the secret bit
- d is attacker’s guess of the secret bit

Attacker’s advantage is defined as

\[
\left| \operatorname{Prob}(A \text{ outputs 1 in Exp0}) - \operatorname{Prob}(A \text{ outputs 1 in Exp1}) \right|
\]

Encryption scheme is chosen-plaintext secure if this advantage is negligible for any efficient A

If A “knows” secret bit, he should be able to make his output depend on it
Simple Example

◆ Any deterministic, stateless encryption scheme is insecure against chosen-plaintext attack
 • Attacker can easily distinguish encryptions of different plaintexts from encryptions of identical plaintexts

Attacker A interacts with Enc(-,-,b)
 Let X,Y be any two different plaintexts
 \(C_1 \leftarrow \text{Enc}(X,Y,b); \)
 \(C_2 \leftarrow \text{Enc}(Y,Y,b); \)
 If \(C_1 = C_2 \) then output 1 else output 0

◆ The advantage of this attacker A is 1

\[\text{Prob}(\text{A outputs 1 if } b=0) = 0 \quad \text{Prob}(\text{A outputs 1 if } b=1) = 1 \]
Semantic Security

- Ciphertext hides even partial information about the plaintext
 - No matter what prior knowledge attacker has about the plaintext, it does not increase after observing ciphertext

- Equivalent to ciphertext indistinguishability under the chosen-plaintext attack
 - It is infeasible to find two messages whose encryptions can be distinguished

[Goldwasser and Micali 1982]
Semantic Security of ElGamal

Semantic security of ElGamal encryption is equivalent to DDH

- Given an oracle for breaking DDH, show that we can find two messages whose ElGamal ciphertexts can be distinguished.

- Given an oracle for distinguishing ElGamal ciphertexts, show that we can break DDH.

 - Break DDH = given a triplet \(<g^a, g^b, Z> \), we can decide whether \(Z=g^{ab} \mod p \) or \(Z \) is random.
DDH \Rightarrow ElGamal

- Pick any two messages m_0, m_1
- Receive $E(m) = g^k, m \cdot y^k$
 - $y = g^x$ is the ElGamal public key
 - To break ElGamal, must determine if $m=m_0$ or $m=m_1$
- Run the DDH oracle on this triplet:

 \[
 <g^k, y^g^v, (m \cdot y^k) \cdot g^{kv}/m_0> = <g^k, g^{x+v}, m \cdot g^{(x+v)k}/m_0>
 \]
 - v is random
- If this is a DH triplet, then $m=m_0$, else $m=m_1$
- This breaks semantic security of ElGamal (why?)
Suppose some algorithm A breaks ElGamal

- Given any public key, A produces plaintexts m_0 and m_1 whose encryptions it can distinguish with advantage Adv.

We will use A to break DDH

- Decide, given (g^a, g^b, Z), whether $Z = g^{ab} \mod p$ or not.

Give $y = g^a \mod p$ to A as the public key.

A produces m_0 and m_1.

Toss a coin for bit x and give A the ciphertext $(g^b, m_x \cdot Z) \mod p$.

- This is a valid ElGamal encryption of m_x iff $Z = g^{ab} \mod p$.

(1) ElGamal \Rightarrow DDH
(2) ElGamal ⇒ DDH

◆ A receives \((g^b, m^x \cdot Z) \mod p\)
 • This is a valid ElGamal encryption of \(m^x\) iff \(Z = g^{ab} \mod p\)
◆ A outputs his guess of bit \(x\) (why?)
◆ If A guessed \(x\) correctly, we say that \(Z = g^{ab} \mod p\), otherwise we say that \(Z\) is random
◆ What is our advantage in breaking DDH?
 • If \(Z = g^{ab} \mod p\), we are correct with probability \(\text{Adv}(A)\)
 • If \(Z\) is random, we are correct with probability \(\frac{1}{2}\)
 • Our advantage in breaking DDH is \(\text{Adv}(A)/2\)
Beyond Semantic Security

- **Chosen-ciphertext security**
 - "Lunch-time" attack [Naor and Yung 1990]
 - Adaptive chosen-ciphertext security [Rackoff and Simon 1991]

- **Non-malleability** [Dolev, Dwork, Naor 1991]
 - Infeasible to create a "related" ciphertext
 - Implies that an encrypted message cannot be modified without decrypting it
 - Equivalent to adaptive chosen-ciphertext security