0x1A Great Papers in Computer Security

Vitaly Shmatikov

http://www.cs.utexas.edu/~shmat/courses/cs380s/
Secure Multi-Party Computation

◆ General framework for describing computation between parties who do not trust each other

◆ Example: elections
 • N parties, each one has a “Yes” or “No” vote
 • Goal: determine whether the majority voted “Yes”, but no voter should learn how other people voted

◆ Example: auctions
 • Each bidder makes an offer
 • Goal: determine whose offer won without revealing losing offers
More Examples

◆ Example: distributed data mining
 - Two companies want to compare their datasets without revealing them
 - For example, compute the intersection of two customer lists

◆ Example: database privacy
 - Evaluate a query on the database without revealing the query to the database owner
 - Evaluate a statistical query without revealing the values of individual entries
A Couple of Observations

◆ We are dealing with distributed multi-party protocols
 • “Protocol” describes how parties are supposed to exchange messages on the network
◆ All of these tasks can be easily computed by a trusted third party
 • Secure multi-party computation aims to achieve the same result without involving a trusted third party
How to Define Security?

- Must be mathematically rigorous
- Must capture all realistic attacks that a malicious participant may try to stage
- Should be “abstract”
 - Based on the desired “functionality” of the protocol, not a specific protocol
 - Goal: define security for an entire class of protocols
Functionality

K mutually distrustful parties want to jointly carry out some task

Model this task as a “functionality”

\[f: (\{0,1\}^*)^K \rightarrow (\{0,1\}^*)^K \]

K inputs (one per party); each input is a bitstring

K outputs

Assume that this functionality is computable in probabilistic polynomial time
Ideal Model

- Intuitively, we want the protocol to behave “as if” a trusted third party collected the parties’ inputs and computed the desired functionality
 - Computation in the ideal model is secure by definition!

\[f_1(x_1, x_2), f_2(x_1, x_2) \]
Slightly More Formally

A protocol is secure if it emulates an ideal setting where the parties hand their inputs to a “trusted party,” who locally computes the desired outputs and hands them back to the parties.

[Goldreich-Micali-Wigderson 1987]
Adversary Models

- Some participants may be dishonest (corrupt)
 - If all were honest, we would not need secure multi-party computation

- Semi-honest (aka passive; honest-but-curious)
 - Follows protocol, but tries to learn more from received messages than he would learn in the ideal model

- Malicious
 - Deviates from the protocol in arbitrary ways, lies about his inputs, may quit at any point

- For now, focus on semi-honest adversaries and two-party protocols
Correctness and Security

◆ How do we argue that the real protocol “emulates” the ideal protocol?

◆ Correctness
 • All honest participants should receive the correct result of evaluating functionality f
 – Because a trusted third party would compute f correctly

◆ Security
 • All corrupt participants should learn no more from the protocol than what they would learn in the ideal model
 • What does a corrupt participant learn in ideal model?
 – His own input and the result of evaluating f
Simulation

- Corrupt participant’s view of the protocol = record of messages sent and received
 - In the ideal world, this view consists simply of his input and the result of evaluating f

- How to argue that real protocol does not leak more useful information than ideal-world view?

- Key idea: simulation
 - If real-world view (i.e., messages received in the real protocol) can be simulated with access only to the ideal-world view, then real-world protocol is secure
 - Simulation must be indistinguishable from real view
Technicalities

- **Distance** between probability distributions A and B over a common set X is
 \[\frac{1}{2} \sum_X (|\Pr(A=x) - \Pr(B=x)|) \]

- **Probability ensemble** \(A_i \) is a set of discrete probability distributions
 - Index \(i \) ranges over some set \(I \)

- **Function** \(f(n) \) is **negligible** if it is asymptotically smaller than the inverse of any polynomial
 \[\forall \text{ constant } c \exists m \text{ such that } |f(n)| < \frac{1}{n^c} \forall n > m \]
Indistinguishability Notions

- Distribution ensembles A_i and B_i are equal
- Distribution ensembles A_i and B_i are statistically close if $\text{dist}(A_i, B_i)$ is a negligible function of i
- Distribution ensembles A_i and B_i are computationally indistinguishable ($A_i \approx B_i$) if, for any probabilistic polynomial-time algorithm D, $|\Pr(D(A_i)=1) - \Pr(D(B_i)=1)|$ is a negligible function of i

- No efficient algorithm can tell the difference between A_i and B_i except with a negligible probability
SMC Definition (First Attempt)

◆ Protocol for computing $f(X_A, X_B)$ between A and B is secure if there exist efficient simulator algorithms S_A and S_B such that for all input pairs (x_A, x_B) ...

◆ Correctness: $(y_A, y_B) \approx f(x_A, x_B)$
 • Intuition: outputs received by honest parties are indistinguishable from the correct result of evaluating f

◆ Security: $\text{view}_A(\text{real protocol}) \approx S_A(x_A, y_A)$
 $\text{view}_B(\text{real protocol}) \approx S_B(x_B, y_B)$
 • Intuition: a corrupt party’s view of the protocol can be simulated from its input and output

◆ This definition does not work! Why?
Randomized Ideal Functionality

Consider a coin flipping functionality
\[f() = (b, -) \] where \(b \) is random bit
- \(f() \) flips a coin and tells A the result; B learns nothing

The following protocol “implements” \(f() \)
1. A chooses bit \(b \) randomly
2. A sends \(b \) to B
3. A outputs \(b \)

It is obviously insecure (why?)

Yet it is correct and simulatable according to our attempted definition (why?)
SMC Definition

❖ Protocol for computing $f(X_A, X_B)$ betw. A and B is secure if there exist efficient simulator algorithms S_A and S_B such that for all input pairs (x_A, x_B) ...

❖ correctness: $(y_A, y_B) \approx f(x_A, x_B)$
❖ Security: $(\text{view}_A(\text{real protocol}), y_B) \approx (S_A(x_A, y_A), y_B)$
 $(\text{view}_B(\text{real protocol}), y_A) \approx (S_B(x_B, y_B), y_A)$
 • Intuition: if a corrupt party’s view of the protocol is correlated with the honest party’s output, the simulator must be able to capture this correlation

❖ Does this fix the problem with coin-flipping f?
Oblivious Transfer (OT)

- Fundamental SMC primitive

- A inputs two bits, B inputs the index of one of A’s bits
- B learns his chosen bit, A learns nothing
 - A does not learn which bit B has chosen; B does not learn the value of the bit that he did not choose
- Generalizes to bitstrings, M instead of 2, etc.

[Rabin 1981]
One-Way Trapdoor Functions

- Intuition: one-way functions are easy to compute, but hard to invert (skip formal definition)
 - We will be interested in one-way permutations

- Intuition: one-way trapdoor functions are one-way functions that are easy to invert given some extra information called the trapdoor
 - Example: if $n=pq$ where p and q are large primes and e is relatively prime to $\varphi(n)$, $f_{e,n}(m) = m^e \mod n$ is easy to compute, but it is believed to be hard to invert
 - Given the trapdoor d s.t. $de=1 \mod \varphi(n)$, $f_{e,n}(m)$ is easy to invert because $f_{e,n}(m)^d = (m^e)^d = m \mod n$
Hard-Core Predicates

Let $f: S \rightarrow S$ be a one-way function on some set S

$B: S \rightarrow \{0,1\}$ is a hard-core predicate for f if

- Intuition: there is a bit of information about x such that learning this bit from $f(x)$ is as hard as inverting f
- $B(x)$ is easy to compute given $x \in S$
- If an algorithm, given only $f(x)$, computes $B(x)$ correctly with prob $> \frac{1}{2} + \varepsilon$, it can be used to invert $f(x)$ easily
 - Consequence: $B(x)$ is hard to compute given only $f(x)$

Goldreich-Levin theorem

- $B(x,r) = r \cdot x$ is a hard-core predicate for $g(x,r) = (f(x),r)$
 - $f(x)$ is any one-way function, $r \cdot x = (r_1 x_1) \oplus ... \oplus (r_n x_n)$
Oblivious Transfer Protocol

- Assume the existence of some family of one-way trapdoor permutations

A chooses a one-way permutation F and corresponding trapdoor T.

B chooses his input i (0 or 1).

A chooses random $r_{0,1}$, x, $y_{not\ i}$.

A computes $y_i = F(x)$.

B computes $m_i \oplus (r_i \cdot x)$.

$= (b_i \oplus (r_i \cdot T(y_i))) \oplus (r_i \cdot x)$

$= (b_i \oplus (r_i \cdot T(F(x)))) \oplus (r_i \cdot x) = b_i$
Proof of Security for B

\[r_0, r_1, y_0, y_1 \]

\[b_0 \oplus (r_0 \cdot T(y_0)), b_1 \oplus (r_1 \cdot T(y_1)) \]

\[y_0 \text{ and } y_1 \text{ are uniformly random regardless of A’s choice of permutation } F \text{ (why?)} \]

Therefore, A’s view is independent of B’s input i.
Proof of Security for A (Sketch)

Need to build a simulator whose output is indistinguishable from B’s view of the protocol.

Choose random F, random $r_{0,1}$, x, $y_{not\ i}$, computes $y_i = F(x)$, sets $m_i = b_i \oplus (r_i \cdot T(y_i))$, and random $m_{not\ i}$.

Knows i and b_i (why?)

The only difference between simulation and real protocol:

In simulation, $m_{not\ i}$ is random (why?)

In real protocol, $m_{not\ i} = b_{not\ i} \oplus (r_{not\ i} \cdot T(y_{not\ i}))$
Proof of Security for A (Cont’d)

◆ Why is it computationally infeasible to distinguish random \(m \) and \(m' = b \oplus (r \cdot T(y)) \)?
 - \(b \) is some bit, \(r \) and \(y \) are random, \(T \) is the trapdoor of a one-way trapdoor permutation

◆ \((r \cdot x)\) is a hard-core bit for \(g(x, r) = (F(x), r) \)
 - This means that \((r \cdot x)\) is hard to compute given \(F(x) \)

◆ If \(B \) can distinguish \(m \) and \(m' = b \oplus (r \cdot x') \) given only \(y = F(x') \), we obtain a contradiction with the fact that \((r \cdot x')\) is a hard-core bit
 - Proof omitted
Naor-Pinkas Oblivious Transfer

Setting: order-

Messages m_0 and m_1

Chooser does not know discrete log of C

Choice: bit σ

S

C

Chooses random k

Sets $PK_\sigma = g^k$, $PK_{1-\sigma} = C/PK_\sigma$

g^r, $m_0 \oplus \text{Hash}((PK_0)^r, 0)$, $m_1 \oplus \text{Hash}((PK_1)^r, 1)$

Computes $(g^r)^k = (PK_\sigma)^r$ and decrypts m_σ

Chooser knows discrete log either for PK_0, or for PK_1, but not both

Chooser does not know the discrete log of $PK_{1-\sigma}$, thus cannot distinguish between a random value g_z and $(PK_{1-\sigma})^r$ - why?
A. Yao

Protocols for Secure Computations

(FOCS 1982)
Yao’s Protocol

- Compute **any** function securely
 - ... in the semi-honest model; can be extended to malicious
- First, convert the function into a **boolean circuit**

![Boolean circuit diagram]

Truth tables:

- **AND**
 - Truth table:
 - x | y | z |
 - 0 | 0 | 0 |
 - 0 | 1 | 0 |
 - 1 | 0 | 0 |
 - 1 | 1 | 1 |

- **OR**
 - Truth table:
 - x | y | z |
 - 0 | 0 | 0 |
 - 0 | 1 | 1 |
 - 1 | 0 | 1 |
 - 1 | 1 | 1 |
1: Pick Random Keys For Each Wire

◆ Evaluate **one gate** securely
 - Later generalize to the entire circuit

◆ Alice picks two **random keys** for each wire
 - One key corresponds to “0”, the other to “1”
 - 6 keys in total for a gate with 2 input wires
Alice encrypts each row of the truth table by encrypting the output-wire key with the corresponding pair of input-wire keys.

Original truth table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Encrypted truth table:

\[
E_{k_{0x}}\left(E_{k_{0y}}(k_{0z})\right) \\
E_{k_{0x}}\left(E_{k_{1y}}(k_{0z})\right) \\
E_{k_{1x}}\left(E_{k_{0y}}(k_{0z})\right) \\
E_{k_{1x}}\left(E_{k_{1y}}(k_{1z})\right)
\]
3: Send Garbled Truth Table

- Alice randomly permutes ("garbles") encrypted truth table and sends it to Bob

\[
\begin{align*}
\text{Garbled truth table:} & \\
E_{k_{0x}}(E_{k_{0y}}(k_{0z})) & \\
E_{k_{0x}}(E_{k_{1y}}(k_{0z})) & \\
E_{k_{1x}}(E_{k_{0y}}(k_{0z})) & \\
E_{k_{1x}}(E_{k_{1y}}(k_{1z})) & \\
E_{k_{0x}}(E_{k_{0y}}(k_{0z})) & \\
\end{align*}
\]

Does not know which row of garbled table corresponds to which row of original table.
4: Send Keys For Alice’s Inputs

- Alice sends the key corresponding to her input bit
 - Keys are random, so Bob does not learn what this bit is

Garbled truth table:

- $E_{k_1x}(E_{k_0y}(k_{0z}))$
- $E_{k_0x}(E_{k_1y}(k_{0z}))$
- $E_{k_1x}(E_{k_1y}(k_{1z}))$
- $E_{k_0x}(E_{k_0y}(k_{0z}))$

If Alice’s bit is 1, she simply sends k_{1x} to Bob; if 0, she sends k_{0x}

Learns $K_{b'x}$ where b' is Alice’s input bit, but not b' (why?)
5: Use OT on Keys for Bob’s Input

Alice and Bob run oblivious transfer protocol

- Alice’s input is the two keys corresponding to Bob’s wire
- Bob’s input into OT is simply his 1-bit input on that wire

Garbled truth table:

- $E_{k_0x}(E_{k_0y}(k_{0z}))$
- $E_{k_0x}(E_{k_1y}(k_{0z}))$
- $E_{k_1x}(E_{k_0y}(k_{1z}))$
- $E_{k_1x}(E_{k_1y}(k_{1z}))$

Knows $K_{b'x}$ where b' is Alice’s input bit and K_{by} where b is his own input bit

Run oblivious transfer
- Alice’s input: k_{0y}, k_{1y}
- Bob’s input: his bit b

Bob learns k_{by}

What does Alice learn?
6: Evaluate One Garbled Gate

◆ Using the two keys that he learned, Bob decrypts exactly one of the output-wire keys

- Bob does not learn if this key corresponds to 0 or 1
 - Why is this important?

Garbled truth table:

- Suppose $b'=0$, $b=1$
 - This is the only row Bob can decrypt. He learns K_{0z}
In this way, Bob evaluates entire garbled circuit

- For each wire in the circuit, Bob learns only one key
- It corresponds to 0 or 1 (Bob does not know which)
 - Therefore, Bob does not learn intermediate values (why?)

Bob tells Alice the key for the final output wire and she tells him if it corresponds to 0 or 1

- Bob does not tell her intermediate wire keys (why?)
Brief Discussion of Yao’s Protocol

- Function must be converted into a circuit
 - For many functions, circuit will be huge (can use BDD)
- If \(m \) gates in the circuit and \(n \) inputs, then need 4\(m \) encryptions and \(n \) oblivious transfers
 - Oblivious transfers for all inputs can be done in parallel
- Yao’s construction gives a constant-round protocol for secure computation of any function in the semi-honest model
 - Number of rounds does not depend on the number of inputs or the size of the circuit!