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1. INTRODUCTION

There are numerous notions of fairness in distributed systems, most of which are
related to the scheduling of concurrent actions [Francez 1986]. Lately, there has
been an interesting adaption of the term to protocols used in the field of electronic
commerce [Asokan 1998]. There, fairness refers to the equal treatment of parties
(or agents) which are involved in some form of electronic business transaction.

The basic operation necessary in the usual form of commercial interaction is
the exchange of one item for another. This can be a purchase of some item in
exchange for payment, or the signing of a contract, where signed terms of agreement
are exchanged. In his recent thesis, Asokan [1998] defines fairness as a security
requirement on exchanges:

An exchange is fair if at the end of the exchange, either each player
receives the item it expects or neither player receives any additional
information about the other’s item. [Asokan 1998, p. 8]

While there are some weaknesses in this definition (see for example the discussion
in Pagnia and Vogt [1999]), this notion of fairness can be used to define a new
problem in distributed systems: the problem of fair exchange between two parties.

There exist a variety of fair exchange protocols in the literature, all with their
own specifications and system models [Camp et al. 1996; Tygar 1996; Asokan et al.
1997; Asokan et al. 1998a; Asokan et al. 1998b; Pagnia and Vogt 1999; Vogt and
Pagnia 1999]. A unifying aspect of these protocols however is that — apart from the
two involved parties P and @ that exchange an item — almost all of the protocols
refer to an additional reliable entity which supports the completion of the protocol
in some cases. This entity is commonly referred to as a trusted third party, trustee
or judge. It has been an open question whether or not fair exchange is possible
without such a trusted third party. In this paper, we explore this question for one
particular system model and one formalization of fair exchange along the lines of
Asokan [1998]. We will show, that under certain assumptions fair exchange is in fact
impossible by relating the problem to other problems in distributed systems. As
this is only a preliminary report of current research results, some questions remain
open. We state these questions at the relevant places (marked using marginal notes)
and thereby hope to spawn some discussion and further work on this subject. To
remain brief in this paper, we also omit an exhaustive discussion of the related
literature [Camp et al. 1996; Tygar 1996; Asokan et al. 1997; Asokan et al. 1998a;
Asokan 1998; Asokan et al. 1998b; Pagnia and Vogt 1999; Vogt and Pagnia 1999].
We plan to return to these tasks soon.

This report is structured as follows: first we present the system model used in this
paper in Section 2. A formalization of strong fair exchange in this system model
and the impossibility result is then presented in Section 3. Section 4 contains some
remarks as to what qualities a trusted third party must have in order to effectively
support strong fair exchange. Finally, Section 5 concludes this report.

2. SYSTEM MODEL

In this section, we try to formalize the system model presented in Asokan [1998].
A system is a “thing” that interacts with its environment in a discrete fashion
across a well-defined boundary (called interface) [Lamport 1989]. Specifications for
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such a system identify the intended behavior at the interface. We will take the
state-based approach to specifying such a system [Lamport 1989] and so we have
the notion of a state which completely describes the state of the interface at any
given point in time. The state consists of input variables and output variables.
Both types of variables may be read by both environment and system, but input
variables may only be written by the environment whereas output variables may
only be written by the system. If this is done, the interface state changes and we
say that a state transition occurs. A behavior of the system is a sequence of states
obtained from observing a sequence of state transitions. A property is defined as
a set of behaviors. A system by itself defines a property, which is the set of all
possible behaviors which may be observed at its interface. A property p is said to
hold for some system, if the set of behaviors defined by the system is a subset of
p. Since we are only concerned with problems, we do not need to define programs
or protocols which run within the system and produce behaviors at the interface.
In our sense, a specification S is a property describing those behaviors that are
intended at the interface. A program p is said to be correct regarding S iff S holds
for p. A specification usually consists of two properties: an environment assumption
F and a system guarantee M. This signifies that all behaviors are correct iff they
are in M or not in E. This underlines the contract nature of a specification: if a
specification S holds for some system, then we know that the system will guarantee
M if the environment guarantees E.

There are many ways to specify the system in the context of fair exchange between
two parties. First and foremost, there must be the two involved parties P and @
that want to exchange items by writing and reading some local variables. The
entities P and @) can be any autonomous system, e.g., a process, a mobile agent or
even a human user sitting in front of a computer. These two agents together with
some communication system form the components.

There is a fundamental distinction between modeling the system as an open or
closed system. A system is closed if it does not interact with its environment
[Lamport 1989]. In a closed system, both P and @ are fully part of the system,
whereas in an open system, P and () are part of the environment. These two
approaches are depicted in Figure 1.

P H <+—protocol— H Q <—protocol——

system system

interface
EI] (a) (b)

Fig. 1. System for fair exchange scenario: open (a) and closed (b).

In the open system, the interfaces of P and () can be seen as two remote com-
puter terminals. Thus, P and () have some “representative” within the system
that feeds their input into a message passing protocol. In the closed approach,
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these representatives are indistinguishable from P and @) themselves. Thus, both
approaches are similar but still lead to different type of results.

We will focus on the closed system approach since this seems more natural in the
context of distributed systems. We will discuss the consequences of choosing the
open system model briefly in Section 4. In the closed system model, both P and @
are modeled as two distinct processes that communicate via an interface through
a message subsystem. A specification of a closed system relates the behaviors of
internal variables existing at the interfaces of submodules.

As in Asokan [1998], we place no restrictions on the timeliness behavior of the
system except that the underlying method of information exchange is reliable (this
is the resilient channel assumption of Asokan [1998, p. 14]). We further assume
that all information passing through the communication system is and will remain
confidential (this is the confidential channel assumption of Asokan [1998, p. 14]).
The only way that P and @ can influence the progress of the system is by writing
arbitrary values into their input variables or by completely stopping to interact with
the system (this equals the possible actions of both participating parties described
by Asokan [1998, p. 14] if one or both parties are dishonest or want to abandon the
exchange).

We assume that there is no trusted authority of any kind that either P or () may
turn to in the case they believe that something went wrong during the exchange.
This means that there is no additional active entity with an additional interface to
or within the system that participates in the exchange. For the moment it suffices
to think of this fact as “P and @) being alone” in the system. We will return to the
question of what actually is a trusted third party later in Section 4.

3. IMPOSSIBILITY RESULT

In this section, we first formally define the strong fair exchange problem, then define
a variation of the consensus problem and relate both to one another. Finally, we
discuss the applicability of results concerning consensus to strong fair exchange.

3.1 Specification

We follow the specification of Asokan [1998] for fair exchange with the Strong
Fairness property and try to adequately formalize those parts of the specification
which remain informal in the text. The same specification also appears in Asokan,
Shoup, and Waidner [1998a] and a similar one appears in Asokan, Shoup, and
Waidner [1998b].

P Q
input ip,dg,Q iQ,dp, P
output | ig with desc(iq) =dg | ip with desc(ip) =dp
or “aborted” “aborted”

Table 1. Input and output values of fair exchange [Asokan 1998].

3.1.1 Original Informal Specification. Table 1 gives the values involved in fair
exchange taken from Asokan [1998, p. 9]. It is assumed that there is some function
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desc which maps any exchangeable item to some “description” which may then be
compared against some expected description value (in our context this may be a list
of item features, a price, etc.). This is necessary since both parties must be able to
describe their desired item without actually posessing it. Consequently, apart from
the exchangeable items ip and ig both parties possess a description dg and dp of
what they expect of ig and ip. Naturally, both parties must know the identities or
pseudonyms of the other.

When the fair exchange protocol has terminated, there are two possible outcomes.
The first is the case for a successful protocol execution, where both P and () possess
the desired item. The other case is an “unsuccessful” protocol execution where the
exchange has not taken place and — instead of receiving ¢p and ig — both parties
receive some indication that the exchange has been aborted. We assume that items
are atomic in the sense that no part of the item is of any use by itself.

According to Asokan [1998, p. 9f], a protocol which solves fair exchange must have
certain properties called Effectiveness, Fairness, Timeliness and Non-repudiability.
We will omit a discussion of Non-repudiability here because it “is not an integral
requirement for fair exchange” [Asokan 1998, p. 10]. Also, there are two notions of
Fairness of which we will only consider that of Strong Fairness. (We will discuss
the notion of Weak Fairness briefly in Section 4.) The properties are described as
follows:

—Effectiveness: “If P and @) both behave correctly and do not want to abandon the
exchange, then when the protocol has completed, P has ig such that desc(ig) =
dg and @ has ip such that desc(ip) = dp.”

—Strong Fairness: “When the protocol has completed, either P has i¢g such that
desc(ig) = dg, or () has gained no additional information about ip. The same
conditions similarly count for @).”

—Timeliness: “P can be sure that the protocol will be completed at a certain point
in time. At completion, the state of the exchange as of this point is either final
or changes to the state will not degrade the level of fairness reached so far.”

3.1.2 Formalization. We now formalize these three properties in the context of
the system model described in Section 2.

Since we are in a state-based system, we must re-formulate the above conditions
in terms of input and output variables at the protocol interface. So we must think
of an exchangeable item and its potential description as some bitstring (i.e., some
“number”) which is written and stored in some variable.

Table 2 shows the relevant data structures in terms of Asokan [1998]. Here,
ip and ig designate input variables of the system in which P and ) write some
value (possibly the exchangeable item). Equally, dg, dp, P and @ hold the values
described above. There is an additional item store called ep and eg which is an
output variable of the system. We assume that ep and eg are in some “empty”
state initially and that a subsequent change indicates protocol completion. Upon
successful completion, ep and eg will contain the exchanged item. Otherwise they
will contain a special marker value indicated as “aborted”. We assume that ep
and eg are only written once and are never changed thereafter. This assumption
is not undue since multiple rounds of the protocol could use version numbers to
distinguish the messages of every round. Thus, all messages of a particular round
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can be held back or discarded if the two parties have agreed on a different round
number and started the protocol again. However, we assume that an item is not
revocable meaning that, for example, once P has aquired knowledge about ig, @
can do nothing to destroy the usefulness of ig to P.

Description at P | at @
exchangable item store (input) ip iQ
description of wanted item store (input) | dg dp
partner store (input) Q P
exchanged item store (output) ep eQ

| indication of malevolence | mp | mgq |

Table 2. Data structures of involved processes.

Table 2 also contains an additional entry mp and mg which are boolean values
indicating whether P or ) are dishonest or want to abandon the exchange. These
values are analogous to the introduction of “error variables” when modelling faults
in fault-tolerant computing [Gértner 1998]. They are needed for formal specification
purposes only. If the variable m of a particular process equals false and remains
unchanged then we say that the process behaves non-malevolently (or simply: it
behaves). If m equals true at some point during the system execution, then we say
that the process behaves malevolently (or simply: it misbehaves).

We consider each of the above three properties (Effectiveness, Timeliness and
Strong Fairness) in turn and derive a formal equivalent which best meets our un-
derstanding of the informal descriptions of Asokan [1998].

3.1.2.1 Effectiveness. The Effectiveness property is a safety property which en-
sures that an effective exchange can actually take place. This means that starting
with two “well-behaved” nodes P and () and two “well-shaped” items ip and ig will
result in a “well-executed” exchange. Also, the effectiveness requirement ensures
that a mismatch of descriptions must end in an abort of the exchange.

—Effectiveness: Both parties receive the other’s item if they both behave non-
malevolently and the items are the ones which are anticipated. If the items are
not the ones expected, then both partners will abandon the exchange. Formally:

(dp = desc(ip) A dg = desc(ig) A stable(mp = mg = false) = ep = ig Aeg
P esc(ip)V esc(ig) = ep = “aborted” A eg = “aborte
d # d ; dQ # d Q 13 b d77 Q “ b d”

The predicate stable(¢) means that the value of ¢ does not change. We need it to
specify the situations in which both partners well-behave. Note that this property
does not prescribe what happens if the descriptions match and one or the other
party misbehaves. Any outcome of the protocol is allowed as long it complies with
the other two requirements.

3.1.2.2 Timeliness. The Timeliness property above is a composition of a safety
and a liveness property. The liveness part states that the protocol will eventually
terminate. The safety part states that upon completion nothing “bad” happens to
the state which either partners are in. We have captured this safety part in the

= ip)/\
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assumption that ep and eq are only written once, so the Timeliness requirement
becomes a real liveness property.

—Timeliness: Eventually P will write a value to ep and @ will write a value to eg.

The formal version of this property requires the use of some form of temporal logic
(such as the © operator of Pnueli [1977] or the leads-to operator of Chandy and
Misra [1988]; we omit a treatment of these formalisms since they are not needed
for the further understanding of this paper).

3.1.2.3 Strong Fairness. While Effectiveness ensures that an effective protocol
completion is possible, Strong Fairness rules out some unwanted behaviors where
one party gains an advantage over the other.

—(Strong) Fairness: There are no behaviors in which @) receives ip and P receives
“aborted” or P receives ig and () receives “aborted”. Formally:

—-((ep = ip AN eo = “aborted”) V (eo = ip A ep = “aborted”
Q Q Q

Overall, Effectiveness determines the outcome if descriptions don’t match or both
descriptions match and both parties are willing to perform the exchange. Fairness
globally restricts the outcome to those behaviors that place no disadvantage on
either party. Timeliness guarantees eventual termination of the protocol. As usual,
it remains an open question whether or not the formal versions of the above prop-
erties accurately reflect their meaning, especially the meaning which Asokan [1998]
wanted to communicate.

3.2 Decision Problems and Consensus

In this section, we define the class of decision problems in the system model pre-
sented above. Decision problems are defined for a set of communicating processes
in distributed systems [Tel 1994, p. 387] where it is required that each correct (i.e.,
non-malevolent or non-faulty) process irreversably writes some “decision value” to
its output. This decision value usually depends in some form on the input values
of the processes. Prominent instances of decision problems are election (where it is
required that one process decides to become leader and all other correct processes
decide to become non-leader) and consensus (where all correct processes must de-
cide on a single value).

Consider a distributed system with a set of n processes py,...,p,. As we are in
a state-based environment, we will define decision problems using two variables ;
and ¢;. Here, 7; is the propose variable at process p; and §; is the decision variable
at p;. Both can take any value v from a finite set V' of decision values. If some value
v is placed into 7;, we say that p; proposes v. Dually, if p; places some value v in
d; then we say that p; decides v. We assume that processes propose and decide at
most once and that they must propose a value before they can decide. We also need
to define the notion of a decision vector, which is a vector (z1,...,z,) consisting
of the decision values of each p; (if p; has not yet decided or is not correct, x; has
some undefined value ).

An algorithm which solves the decision problem must fulfill the following three
correctness conditions:

—Termination: eventually every correct process decides.
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—Consistency: at any point in time, the decision vector is an element of some fixed
set D of decision vectors.

—Non-triviality: at least two essentially different outcomes of the algorithm must
be possible in different executions.

In contrast to Termination (which is a liveness property), Consistency and Non-
triviality are both safety properties; while Consistency makes it possible to place
restrictions on the decision values of the processes, the Non-triviality condition rules
out trivial algorithms where processes do not communicate.

We have already noted that consensus is an instantiation of a decision problem:
this means that any algorithm that solves the decision problem can also solve con-
sensus. But equally this implies that conditions under which consensus is impossible
render solutions to the decision problem impossible.

3.3 Relating Decision Problems to Strong Fair Exchange

There are some obvious analogies between decision problems and strong fair ex-
change. This becomes even more obvious if we restrict our attention to decision
problems for n = 2, i.e., with only two processes p; and p; which play the role of
P and (@ in fair exchange. As we have specified decision problems using only two
variables at one process, we can view the communication subsystem between p; and
p2 as the “subsystem” of Figure 1 (b). The “interface” of p; is an input variable 7;
and an output variable §;. Obviously they resemble the original item store ip/ig
and the exchanged item store ep/eq, respectively.

The obvious analogy in requirements is the liveness property: Timeliness is equiv-
alent to Termination (except for the small word “correct” which appears in Termi-
nation and does not appear in Timeliness; we will return to this point shortly). The
question remains, how do Consistency and Non-triviality relate to Effectiveness and
Strong Fairness?

First of all, the output vectors of decision problems are easily defined for fair
exchange. There are only two possible outcomes for (ep,eq), namely (ig,ip) or
(aborted, aborted). Both outcomes are possible as stated jointly by Effectiveness
and Strong Fairness, so both imply the Non-triviality condition. But because Effec-
tiveness and Strong Fairness also completely define the set of output vectors they
also play the role of the Consistency requirement. So at first glance it seems as if
strong fair exchange is a decision problem.

There is a slight distinction, however, between decision problems and fair ex-
change. Decision problems are only interesting to solve if they are studied in faulty
environments. The effects of faults onto the behavior of a process are usually defined
by a failure model. A simple and intensely studied failure model for example is crash
in which processes simply stop taking steps forever [Hadzilacos and Toueg 1994].
Depending on the failure model, the specification of decision problems cannot place
restrictions on the values decided by faulty nodes. This is why the specification of
decision problems always refers to the set of correct processes, which — in the case
of the crash failure model — are all processes that eventually survive.

In fair exchange, we have a “failure model” similar to that of crash in that one
way to misbehave is simply to stop interacting with the system at all (cf. Section 2).
However, the formal fair exchange specification above places a strong restriction on
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the decision value of a “crashed” (i.e., misbehaving) process, namely, that it must
eventually be written. We do not know how the specification of Asokan [1998] is
to be understood in this respect? When does a misbehaving peer “know” that
the protocol has completed? If strong fair exchange restricts the decision values of
misbehaving peers, then it restricts the set of possible decision vectors substantially.
But nevertheless, strong fair exchange as specified above is a decision problem.

The failure semantics of a peer in Asokan [1998] can be understood as a process
crash or as a process crash with subsequent recovery. The latter is known as the
crash-recovery failure model [Aguilera et al. 1998]. Since crash-recovery is a more
malign failure model than crash (in the sense described in Hadzilacos and Toueg
[1994] and Gértner [1998]) we will assume that the failure model which participating
parties follow is in fact crash. So, to make the specification more realistic, we should
alter the Timeliness requirement in the following way:

—Timeliness: Eventually a process that behaves non-malevolently will write a value
to its exchanged item store e.

This interprets the definition of Asokan [1998] in the following way: “a misbehaving
peer does not need to know whether or not the protocol has terminated.”

3.4 Fair Exchange as hard as Consensus

In the previous section, we have argued that strong fair exchange is an instance of a
decision problem. How do strong fair exchange and consensus relate to oneanother?
We show here that strong fair exchange is at least as difficult to solve as consensus.
We do this by constructing a consensus algorithm using an algorithm for strong fair
exchange. We conjecture that it is impossible to perform the opposite, i.e., build
an algorithm for strong fair exchange from a consensus algorithm.

function consensus(w € {0,1}) returns ¢ € {0,1}
local variable t € {0, 1, “aborted” }
begin
t := strong-fair_ezchange(r, desc(1)); {* 1 x}
if ¢t # “aborted” then return 1 end
t := strong-fair_exchange(r, desc(0)); {* 2 x}
if ¢t # “aborted” then return 0 end
if 7 =1 then
t := strong_fair_ezchange(1l, desc(0)); {* 3 x}
if t # “aborted” then return 0;
else return 7 end
else {x 7 =0 *}
t := strong_fair_ezchange(0, desc(1)); {* 4 x}
if ¢t # “aborted” then return 0;
else return 7 end
end
end

Fig. 2. Consensus algorithm using strong fair exchange.

We will construct a consensus algorithm merely involving two parties p; and
p2 which want to reach consensus on a boolean value 0 or 1. We assume that
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both parties have access to a function called strong_fair_exchange which takes some
exchangeable item and a description of some desired item and returns either the
desired item or the special token “aborted”. The function is supposed to satisfy
the formal specification of strong fair exchange from Section 3.1.

Figure 2 shows the pseudocode of a consensus algorithm built using strong fair
exchange. The consensus algorithm takes the proposed boolean value and equally
returns the decided boolean value based on the results of the fair exchange function.
The algorithm (which was not designed for efficiency) can be described as “gradually
increasing knowledge” about the peer process. We assume that at least one process
(name it P) behaves non-malevolently. Then there can be exactly six different
initial settings which we have to consider. These are shown (together with the
return value §) in Table 3 where “m” signified that () misbehaves during every
invocation of the exchange function.

([ Pl@ 4]
1 1 1
0 0 0
0 1 0
1 0 0
0O |m]|O0
1 m |1

Table 3. Possible initial settings for consensus via fair exchange (“m” signified that @ misbehaves
during the protocol execution).

The first invocation of strong_fair_exchange will succeed if both parties behave
and have proposed “1”. This is guaranteed by the Effectiveness requirement and
shown in the first line of Table 3. An aborted exchange can only be due to the peer
behaving malevolently or either party proposing “0”.

The second invocation clarifies this question a little further: if the second ex-
change succeeds, both parties have proposed “0” (see the second line in Table 3).
An aborted exchange can of course mean that the peer has misbehaved. But it can
also mean that locally 7 equals 1 and the peer has proposed “0”, or 7 = 0 and the
peer has proposed “1”.

Now we determine whether or not the peer is misbehaving. This is done by
checking for the remaining two cases (lines 3 and 4 of Table 3). If the final exchange
aborts, then the peer must be misbehaving.

Now we must show that the algorithm in Figure 2 in fact solves consensus, given
that strong_fair_exchange solves strong fair exchange. Note that we assume that
if a peer misbehaves in some invocation of strong fair exchange, then it must also
misbehave in all future invocations within the consensus function! Obviously, the
algorithm is no consensus algorithm if, for example, a peer misbehaves within the
first invocation but later consistently proposes 7 = 1.

3.4.1 Termination. The Termination condition of consensus states that every
correct process eventually decides. Given the Timeliness property of strong fair
exchange, it is easy to see that the consensus function in Figure 2 will terminate

open
question
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and thus lead the invoking process to a decision. With the original Timeliness
property of strong fair exchange, we actually imposes a decision on all processes.
The weaker Timeliness requirement of Section 3.3, however, imposes a decision only
on the non-misbehaving nodes. As misbehavior mimics crash, the outcome is the
real Termination property of consensus.

3.4.2 Consistency. The Consistency requirement of consensus is often called agree-
ment [Schiper 1997] and states, that all correct processes must decide the same.
There are only two parties involved here. If both parties propose “1”, then the
Effectiveness property of strong fair exchange ensures that the first invocation of
strong_fair_exchange will succeed at both nodes. Thus, both will decide “1”.

If both parties propose “0”, then Effectiveness guarantees that the second invo-
cation will succeed at both nodes. Thus both will decide “0”.

If the partners propose different values, the next (case 3 or case 4) invocation of
the exchange will succeed. In both cases, both parties will decide “0”.

Now we only have to consider executions of the protocol where at most one
party, say (), misbehaves. As mentioned above, we assume that a misbehavior
within one invocation results in misbehavior within the following invocations of
strong_fair_exchange as well. Because P is the only process that decides, it can
decide arbitrarily. (In the protocol it decides on its own proposed value.)

3.4.3 Non-triviality. The Non-triviality condition of consensus is sometimes called
validity and states that the decided value of any process must have been proposed
by some process. Table 3 shows all the possible outcomes of the consensus function
according to the different initial settings. It shows that the descision value always
has been proposed by at least one process. Thus, Non-triviality holds.

Overall, this shows that the algorithm in Figure 2 is a correct consensus algorithm
given the correctness of strong fair exchange and the “failure” assumption about
the processes. Consequently, strong fair exchange is at least as hard to solve as
consensus which is articulated by the following Lemma.

LEMMA 1. Let S be a system which solves strong fair exchange in the given
system model. Then there exists a system C which solves consensus in the same
system model.

3.5 Impossibility

Now we turn to the central result of this report: the impossibility of strong fair
exchange in the given system model. We base the result on the widely cited theorem
by Fischer, Lynch, and Paterson [1985] (here we follow the presentation given by
Tel [1994, p. 393f]).

THEOREM 1. (Impossibility of Distributed Consensus with One Faulty Process
[Fischer et al. 1985]) There is no asynchronous, deterministic, I1-crash-tolerant con-
sensus protocol.

As we have already shown, strong fair exchange is at least as hard as consensus,
i.e., if consensus is impossible to solve in the given system model, then so is strong
fair exchange. It remains to validate that we use the same system model as Fischer,
Lynch, and Paterson [1985], which we will do now.
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In the previous sections, we have made no assumptions about the program na-
ture of the underlying system. Especially, we have implicitly assumed deterministic
systems as opposed to probabilistic systems. As Theorem 1 only rules out prob-
abilistic solutions (not nondeterministic ones), we are conform with the system
model of Fischer, Lynch, and Paterson [1985] in this respect.

Asokan describes the system model used in his/her thesis as the asynchronous
communication model: “we make no timing assumptions such as bounds on message
delays, or deviations between local clocks.” [Asokan 1998, p. 14] This is exactly
the model which Fischer, Lynch, and Paterson [1985] use and which is commonly
referred to as the asynchronous system model [Schneider 1993].

The term “l-crash-tolerant” refers to the crash failure model for processes which
has been mentioned earlier in Section 3.3. This means that at any point in time at
most one process can simply stop executing steps. The problem with this failure
model in the asynchronous case is that a crashed process is indistinguishable from
one which is merely “very slow” [Chandy and Misra 1986]. This is the central
argument on which the impossibility result of Fischer, Lynch, and Paterson [1985]
is based: let p be a process which — by chance — is the first to write its decision
value. Because of the non-triviality property, p must wait for at least one message
from one of its peers. How long should p wait for this message? If its peer has
crashed, p must at some point assume this fact and decide. But if the assumption
was wrong (i.e., the peer was only very slow), the decision value of the peer (sent in
the message) might be different from the decision value of p, violating agreement.
There is no way out of this dilemmal

We have also already noted above that assumptions about the participating par-
ties are similar to the crash failure model for processes. Either P or () can simply
stop participating in the current and any future exchange. We have discussed above
that this in fact resembles the process crash failure model.

Overall, we find that the system model is the same, so Theorem 1 gives us:

THEOREM 2. There exists no asynchronous strong fair exchange protocol toler-
ant against misbehaving nodes.

PRrROOF. Assume that there is a protocol S which solves strong fair exchange.
Then due to Lemma 1 there exists a protocol which solves consensus. Because this
is a contradiction to Theorem 1, there cannot exist such a protocol S. O

Of course, this result only holds for the system model and the malevolent behavior
of exchange participants described above. As in consensus, weakening any of the
requirements will probably result in a solvability of the problem. For example,
if we model the system as an open system (as indicated in Figure 1 (a)) and we
assume that P and @ have no control over the internals of the system, then apart
from writing the input variables, P and @ do not further participate actively in the
exchange. The system itself is assumed to be reliable. Hence, in contrast to the
system model of Fischer, Lynch, and Paterson [1985] the open model may “force”
a participant to decide by simply writing some value to eg or ep. Consequently,
once P and @ have placed their items into the respective input variables and have
indicated that they are willing to start the exchange, the system will bring the
exchange to an end no matter what the participants do. This is a clear difference
to the model of Fischer, Lynch, and Paterson [1985]. However, in a sense, the
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system itself (or a part of it) could be viewed as a trusted third party because
all that P and @ can see are the values presented at their interfaces (which they
must naturally believe). In fact, it seems to us that any requirement which makes
strong fair exchange solvable seems to relate to some notion of a trusted third party.
Thus, it should be rewarding to study this question further, which we attempt in
the following section.

4. WHAT IS A TRUSTED THIRD PARTY?

As discussed at the end of the previous section, modeling the system as a reliable
open system makes solutions to strong fair exchange possible if the system itself
has some additional properties. If, for example, it may store arbitrary items then
the system together with the “representatives” of P and () behind the interface
is exactly the trusted third party of Biirk and Pfitzmann [1990]. Thus we have
to exclude such modeling or restrict the system to be a simple message passing
subsystem (whatever that means?!). A possible necessary aspect of a trusted third
party therefore could be that third parties are able to impose some behavior onto P
and/or @ (or their representatives within the system) without their own will. This
aspect can also lead to a clarification of another terminological problem: often, a
public court, the legal system of a country or some public instutution are referred
to as “trusted third parties”. These participants clearly lie outside of the system
and can only enforce some “state” onto a peer outside of the system.

Often protocols require a trusted third party outside of the system to work. For
example, the Weak Fairness requirement of fair exchange is partly based on the
fact that a participant “can prove to an arbiter” [Asokan 1998] that the other party
has received its item. Still, how to formalize these notions involving outside third
parties remains an open question to us.

Because of the close relationship between strong fair exchange and consensus it
may be interesting to study methods which help solve consensus under the crash
failure model. Such methods must make it possible to distinguish a crashed process
from a very slow one. The most basic way is to introduce some explicit notion of
time into the system [Dolev et al. 1987; Dwork et al. 1988]. So can a reliable source
of time be viewed as a trusted third party? Since strong fair exchange is probably
harder to solve than consensus, we conjecture that time alone is not enough. But
some form of synchrony seems to be necessary.

A different approach to solve consensus is to introduce an implicit notion of time
through a construct called a failure detector [Chandra and Toueg 1996]. In the
context of fair exchange, this would mean to introduce some program component
which serves as a “malevolence detector”, i.e., it indicates whether the other node is
cheating or not. This abstraction seems to fit better into the conceptual framework
of electronic commerce, but seems to be of no help in solving strong fair exchange.
It is not the question whether or not the peer is cheating or not, which seems
important, but rather how to guarantee progress when every participant may fear
that its next step will be a loosing one.

Overall, introducing the notion of a trusted third party into a system seems to be
equivalent to introducing some explicit or implicit form of synchrony. This results
in the following corollary:
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COROLLARY 1. There is no strong fair exchange protocol tolerant against mis-
behaving nodes without o trusted third party.

PRrROOF. A trusted third party is equivalent to introducing some form of syn-
chrony. Thus, if there is no trusted third party we have an asynchronous system.
Now Theorem 2 proves the Corollary. O

Asokan [1998] cites a suite of protocols that achieve fair exchange without a
trusted third party, which are called gradual exchange protocols. This seems to
contradict our findings. However, the idea of gradual exchange protocols is to
repeatedly exchange “small” parts of a larger item so that a possible unfair move
by a peer does not cause “too much damage”. This means that the advantage that
a peer can achieve over the other can be made arbitrary small. However, there is
some point in the protocol after which a peer receives “the final bit” of information
that makes the other’s item useful. By stopping the protocol at this point, the
misbehaving peer can achieve full advantage over the other. Thus, the final bit
should be exchanged fairly. Hence, gradual exchange can be reduced to strong fair
exchange and consequently does not contradict our results.

5. CONCLUSIONS

We have formally defined the problem of strong fair exchange in distributed systems
and have argued that it is impossible to solve without a notion of a trusted third
party. We are not aware of any other formal definition of the problem and so we are
at risk that our understanding of the subject matter does not match the intuition
of other authors in the field. Nevertheless, we think that a formal definition of
the problem can contribute to a deeper understanding of the (im)possibilities of
exchange protocols in electronic commerce.

As this is only a preliminary research report, the exposition has been unpolished,
we have come across a lot of open questions, many ideas remain sketchy and deserve
some additional attention. We plan to consider these questions in more detail in
the future.
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