
Probabilistic Model Checking of
an Anonymity System

Vitaly Shmatikov�
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 U.S.A.

shmat@csl.sri.com

Abstract

We use the probabilistic model checker PRISM to analyze the Crowds
system for anonymous Web browsing. This case study demonstrates how
probabilistic model checking techniques can be used to formally analyze se-
curity properties of a peer-to-peer group communication system based on
random message routing among members. The behavior of groupmem-
bers and the adversary is modeled as a discrete-time Markov chain, and the
desired security properties are expressed as PCTL formulas. The PRISM
model checker is used to perform automated analysis of the system and ver-
ify anonymity guarantees it provides. Our main result is a demonstration of
how certain forms of probabilistic anonymity degrade when group size in-
creases or random routing paths are rebuilt, assuming that the corrupt group
members are able to identify and/or correlate multiple routing paths originat-
ing from the same sender.

1 Introduction

Formal analysis of security protocols is a well-established field. Model checking
and theorem proving techniques [Low96, MMS97, Pau98, CJM00] have been ex-
tensively used to analyze secrecy, authentication and other security properties of�Supported in part by DARPA contract N66001-00-C-8015 “Agile Management of Dynamic Col-
laboration.”

protocols and systems that employ cryptographic primitives such as public-key en-
cryption, digital signatures, etc. Typically, the protocol is modeled at a highly ab-
stract level and the underlying cryptographic primitives are treated as secure “black
boxes” to simplify the model. This approach discovers attacks that would succeed
even if all cryptographic functions were perfectly secure.

Conventional formal analysis of security is mainly concerned with security
against the so calledDolev-Yao attacks, following [DY83]. A Dolev-Yao attacker is
a non-deterministic process that has complete control overthe communication net-
work and can perform any combination of a given set of attacker operations, such
as intercepting any message, splitting messages into parts, decrypting if it knows
the correct decryption key, assembling fragments of messages into new messages
and replaying them out of context, etc.

Many proposed systems for anonymous communication aim to provide strong,
non-probabilistic anonymity guarantees. This includes proxy-based approaches
to anonymity such as the Anonymizer [Ano], which hide the sender’s identity
for each message by forwarding all communication through a special server, and
MIX-based anonymity systems [Cha81] that blend communication between dif-
ferent senders and recipients, thus preventing a global eavesdropper from linking
sender-recipient pairs. Non-probabilistic anonymity systems are amenable to for-
mal analysis in the same non-deterministic Dolev-Yao modelas used for verifica-
tion of secrecy and authentication protocols. Existing techniques for the formal
analysis of anonymity in thenon-deterministicmodel include traditional process
formalisms such as CSP [SS96] and a special-purpose logic ofknowledge [SS99].

In this paper, we useprobabilisticmodel checking to analyze anonymity prop-
erties of a gossip-based system. Such systems fundamentally rely on probabilistic
message routing to guarantee anonymity. The main representative of this class of
anonymity systems is Crowds [RR98]. Instead of protecting the user’s identity
against a global eavesdropper, Crowds provides protectionagainst collaborating
local eavesdroppers. All communication is routed randomlythrough a group of
peers, so that even if some of the group members collaborate and share collectedlo-
cal information with the adversary, the latter is not likely to distinguish true senders
of the observed messages from randomly selected forwarders.

Conventional formal analysis techniques that assume a non-deterministic at-
tacker in full control of the communication channels are notapplicable in this case.
Security properties of gossip-based systems depend solelyon theprobabilisticbe-
havior of protocol participants, and can be formally expressed only in terms of
relative probabilities of certain observations by the adversary. The system must be
modeled as a probabilistic process in order to capture its properties faithfully.

Using the analysis technique developed in this paper—namely, formalization
of the system as a discrete-time Markov chain and probabilistic model checking of

2

this chain with PRISM—we uncovered two subtle properties ofCrowds that cause
degradation of the level of anonymity provided by the systemto the users. First,
if corrupt group members are able to detect that messages along different routing
paths originate from the same (unknown) sender, the probability of identifying that
sender increases as the number of observed paths grows (the number of paths must
grow with time since paths are rebuilt when crowd membershipchanges). Sec-
ond, the confidence of the corrupt members that they detectedthe correct sender
increases with the size of the group. The first flaw was identified by the authors of
Crowds [RR98] and analyzed (independently of this paper) byMalkhi [Mal01] and
Wright et al. [WALS02], while the second flaw, to the best of our knowledge,was
reported for the first time in the conference version of this paper [Shm02]. In con-
trast to the analysis by Wrightet al. that relies on manual probability calculations,
we discovered both potential vulnerabilities of Crowds by automated probabilistic
model checking.

Previous research on probabilistic formal models for security focused on (i)
probabilistic characterization of non-interference [Gra92, SG95, VS98], and (ii)
process formalisms that aim to faithfully model probabilistic properties of crypto-
graphic primitives [LMMS99, Can00]. This paper attempts todirectly model and
analyze security properties based on discrete probabilities, as opposed to asymp-
totic probabilities in the conventional cryptographic sense. Our analysis method
is applicable to other probabilistic anonymity systems such as Freenet [CSWH01]
and onion routing [SGR97]. Note that the potential vulnerabilities we discovered in
the formal model of Crowds may not manifest themselves in theimplementations
of Crowds or other, similar systems that take measures to prevent corrupt routers
from correlating multiple paths originating from the same sender.

2 Markov Chain Model Checking

We model the probabilistic behavior of a peer-to-peer communication system as a
discrete-time Markov chain (DTMC), which is a standard approach in probabilistic
verification [LS82, HS84, Var85, HJ94]. Formally, aMarkov chaincan be defined
as consisting in a finite set of statesS, the initial states0, the transition relationT : S � S ! [0; 1℄ such that8s 2 S Ps02S T (s; s0) = 1, and a labeling function
from states to a finite set of propositionsL : S ! 2AP .

In our model, the states of the Markov chain will represent different stages of
routing path construction. As usual, a state is defined by thevalues of all system
variables. For each states, the corresponding row of the transition matrixTs de-
fines the probability distributions which govern the behavior of group members
once the system reaches that state.

3

2.1 Overview of PCTL

We use the temporal probabilistic logic PCTL [HJ94] to formally specify properties
of the system to be checked. PCTL can express properties of the form “under any
scheduling of processes, the probability that eventE occurs is at leastp.”

First, definestate formulasinductively as follows:� ::= true j false j a j � ^ � j � _ � j :� j P>p[℄
where atomic propositionsa are predicates over state variables. State formulas of
the formP>p[℄ are explained below.

Definepath formulasas follows:	 ::= X � j � U�k � j � U �
Unlike state formulas, which are simply first-order propositions over a single

state, path formulas represent properties of a chain of states (herepath refers to a
sequence of state space transitions rather than a routing path in the Crowds speci-
fication). In particular,X� is trueiff � is true for every state in the chain;�1 U �2
is trueiff �1 is true for all states in the chain until�2 becomes true, and�2 is true
for all subsequent states;�1 U�k �2 is trueiff �1 U �2 and there are no more thank states before�2 becomes true.

For any states and path formula , P>p[℄ is a state formula which is true
iff state space paths starting froms satisfy path formula with probability greater
thanp.

For the purposes of this paper, we will be interested in formulas of the formP>p[true U �℄, evaluated in the initial states0. Here� specifies a system con-
figuration of interest, typically representing a particular observation by the adver-
sary that satisfies the definition of a successful attack on the protocol. PropertyP>p[true U �℄ is a liveness property: it holds ins0 iff � will eventually hold with
greater thanp probability. For instance, ifobserve3 is a state variable represent-
ing the number of times one of the corrupt members received a message from the
honest member no.3, thenP>0:5[true U observe3 > 1℄ holds ins0 iff the prob-
ability of corrupt members eventually observing member no.3 twice or more is
greater than50%.

Expressing properties of the system in PCTL allows us to reason formally about
the probability of corrupt group members collecting enoughevidence to success-
fully attack anonymity. We use model checking techniques developed for verifica-
tion of discrete-time Markov chains to compute this probability automatically.

4

2.2 PRISM model checker

The automated analyses described in this paper were performed using PRISM, a
probabilistic model checker developed by Kwiatkowskaet al. [KNP01]. The tool
supports both discrete- and continuous-time Markov chains, and Markov decision
processes. As described in section 4, we model probabilistic peer-to-peer com-
munication systems such as Crowds simply as discrete-time Markov chains, and
formalize their properties in PCTL.

The behavior of the system processes is specified using a simple module-based
language inspired by Reactive Modules [AH96]. State variables are declared in the
standard way. For example, the following declaration

deliver: bool init false;

declares a boolean state variabledeliver , initialized tofalse, while the following
declaration

const TotalRuns = 4;
...
observe1: [0..TotalRuns] init 0;

declares a constantTotalRuns equal to4, and then an integer array of size5,
indexed from0 to TotalRuns , with all elements initialized to0.

State transition rules are specified using guarded commandsof the form

[] <guard> -> <command>;

where<guard> is a predicate over system variables, and<command>is the tran-
sition executed by the system if the guard condition evaluates totrue. Command
often has the formX 01 =<expression> 1^ ... ^X 0n =<expression> n,
which means that in the next state (i.e., that obtained after the transition has been
executed), state variableXi is assigned the result of evaluating arithmetic expres-
sion<expression> i

If the transition must be chosen probabilistically, the discrete probability dis-
tribution is specified as

[] <guard> -> <prob1>:<command1> +
... +
<probN>:<commandN>;

Transition represented bycommandi is executed with probabilityprob i, and�i prob i = 1. Security properties to be checked are stated as PCTL formulas
(see section 2.1).

5

Given a formal system specification, PRISM constructs the Markov chain and
determines the set of reachable states, using MTBDDs and BDDs, respectively.
Model checking a PCTL formula reduces to a combination of reachability-based
computation and solving a system of linear equations to determine the probability
of satisfying the formula in each reachable state. The modelchecking algorithms
employed by PRISM include [BdA95, BK98, Bai98]. More details about the im-
plementation and operation of PRISM can be found athttp://www.cs.bham.
ac.uk/˜dxp/prism/ and in [KNP01].

Since PRISM only supports model checking of finite DTMC, in our case study
of Crowds we only analyze anonymity properties offinite instances of the system.
By changing parameters of the model, we demonstrate how anonymity properties
evolve with changes in the system configuration. Wrightet al. [WALS02] investi-
gated related properties of the Crowds system in the generalcase, but they do not
rely on tool support and their analyses are manual rather than automated.

3 Crowds Anonymity System

Providing an anonymous communication service on the Internet is a challenging
task. While conventional security mechanisms such as encryption can be used to
protect the content of messages and transactions, eavesdroppers can still observe
the IP addresses of communicating computers, timing and frequency of communi-
cation, etc. A Web server can trace the source of the incomingconnection, further
compromising anonymity. The Crowds system was developed byReiter and Ru-
bin [RR98] for protecting users’ anonymity on the Web.

The main idea behind gossip-based approaches to anonymity such as Crowds
is to hide each user’s communications by routing them randomly within a crowd
of similar users. Even if an eavesdropper observes a messagebeing sent by a
particular user, it can never be sure whether the user is the actual sender, or is
simply routing another user’s message.

3.1 Path setup protocol

A crowd is a collection of users, each of whom is running a special process called
a jondowhich acts as the user’s proxy. Some of the jondos may be corrupt and/or
controlled by the adversary. Corrupt jondos may collaborate and share their obser-
vations in an attempt to compromise the honest users’ anonymity. Note, however,
that all observations by corrupt group members arelocal. Each corrupt member
may observe messages sent to it, but not messages transmitted on the links be-
tween honest jondos. An honest crowd member has no way of determining whether

6

a particular jondo is honest or corrupt. The parameters of the system are the total
number of membersN , the number of corrupt membersC, and theforwarding
probability pf which is explained below.

To participate in communication, all jondos must register with a special server
which maintains membership information. Therefore, everymember of the crowd
knows identities of all other members. As part of the join procedure, the members
establish pairwise encryption keys which are used to encrypt pairwise communi-
cation, so the contents of the messages are secret from an external eavesdropper.

Anonymity guarantees provided by Crowds are based on the path setup pro-
tocol, which is described in the rest of this section. The path setup protocol is
executed each time one of the crowd members wants to establish an anonymous
connection to a Web server. Once a routing path through the crowd is established,
all subsequent communication between the member and the Webserver is routed
along it. We will call one run of the path setup protocol asession. When crowd
membership changes, the existing paths must be scrapped anda new protocol ses-
sion must be executed in order to create a new random routing path through the
crowd to the destination. Therefore, we’ll use termspath reformulationandproto-
col sessioninterchangeably.

When a user wants to establish a connection with a Web server,its browser
sends a request to the jondo running locally on her computer (we will call this
jondo theinitiator). Each request contains information about the intended desti-
nation. Since the objective of Crowds is to protect thesender’sidentity, it is not
problematic that a corrupt router can learn the recipient’sidentity. The initiator
starts the process of creating a random path to the destination as follows:� The initiator selects a crowd member at random (possibly itself), and for-

wards the request to it, encrypted by the corresponding pairwise key. We’ll
call the selected member theforwarder.� The forwarder flips a biased coin. With probability1 � pf , it delivers the
request directly to the destination. With probabilitypf , it selects a crowd
member at random (possibly itself) as the next forwarder in the path, and
forwards the request to it, re-encrypted with the appropriate pairwise key.
The next forwarder then repeats this step.

Each forwarder maintains an identifier for the created path.If the same jondo
appears in different positions on the same path, identifiersare different to avoid
infinite loops. Each subsequent message from the initiator to the destination is
routed along this path,i.e., the paths arestatic—once established, they are not
altered often. This is necessary to hinder corrupt members from linking multiple

7

paths originating from the same initiator, and using this information to compromise
the initiator’s anonymity as described in section 3.2.3.

3.2 Anonymity properties of Crowds

The Crowds paper [RR98] describes several degrees of anonymity that may be
provided by a communication system. Without using anonymizing techniques,
none of the following properties are guaranteed on the Web since browser requests
contain information about their source and destination in the clear.

Beyond suspicion Even if the adversary can see evidence of a sent message, the
real sender appears to be no more likely to have originated itthan any other
potential sender in the system.

Probable innocence The real sender appears no more likely to be the originator
of the message than to not be the originator,i.e., the probability that the
adversary observes the real sender as the source of the message is less than12 .

Possible innocence It appears to the adversary that there is a nontrivial probability
that the message was originated by someone other than the real sender.

Probable innocence can be interpreted asplausible deniability. A system that
guarantees the probable innocence property for message senders does not necessar-
ily hide the sender’s identity from the adversary. It merelyputs the12 upper bound
on the probability of detection. If the sender is observed bythe adversary, she can
then plausibly argue that she has been routing someone else’s messages.

The Crowds paper focuses on providing anonymity against local, possibly co-
operating eavesdroppers, who can share their observationsof communication in
which they are involved as forwarders, but cannot observe communication involv-
ing only honest members. We also limit our analysis to this case.

3.2.1 Anonymity for a single route

It is proved in [RR98] that, for any given routing path, the path initiator in a crowd
of n members with forwarding probabilitypf hasprobable innocenceagainst
collaborating crowd members if the following inequality holds:n � pfpf � 12 (+ 1) (1)

More formally, letH1+ be the event that at least one of the corrupt crowd
members is selected for the path, andI be the event that the path initiator appears in

8

the path immediately before a corrupt crowd member (i.e., the adversary observes
the real sender as the source of the messages routed along thepath). Condition
1 guarantees thatP (IjH1+) � 12 . Note that this does not preclude the adversary
from observing the path initiator more often than any other crowd member,i.e.,
probable innocenceis a weaker anonymity property thanbeyond suspicion.

3.2.2 Linkability of multiple routes

To maintain an anonymous connection when crowd membership changes, each ini-
tiator must rebuild its routing path to the destination through the new crowd. As
a result of random forwarder selection, it is possible that both the old and the new
path include corrupt forwarders. In general, it will not be immediately obvious
to the adversary who controls both corrupt forwarders that the two paths originate
from the same member. Session-specific information contained in the message
may, however, provide clues that help the adversary link thepaths. For example,
if the initiator visits the same set of websites and/or its browsing patterns persist
from session to session, it is relatively easy for the adversary to guess that mes-
sages observed along two different paths originate from thesame place. Linking
is even easier in the case of anonymous Web browsing since browser requests may
contain cookies or other persistent data, relating sessions by the same (anonymous)
user. Except cautioning the users “from continuing to browse the content related to
what she was browsing prior to [path reformulation], lest collaborators are attempt-
ing to link paths based on that content” [RR98], the Crowds systemper sedoes
not provide protection against path linkage. Therefore, weassume in our analysis
that attacks based on multiple-path observations are feasible. Other gossip-based
anonymity systems such as onion routing [SGR97] may providestronger protec-
tion against path linkability (e.g., by inserting decoy traffic), making path linking
attacks less feasible.

3.2.3 Anonymity for multiple routes

To prevent corrupt crowd members from linking multiple paths and using this infor-
mation to infer the initiator’s identity, the Crowds paper [RR98] suggests that paths
should be static. Crowd membership, however, must change over time: new mem-
bers join and some of the existing members fail, invalidating all paths in which they
were involved as forwarders. Even if joins are batched, all paths must be scrapped
and new paths built periodically. We demonstrate in section6.1 that anonymity
guarantees provided by Crowds degrade significantly if the adversary links only a
relatively small (3-6) number of paths originating from thesame member.

Malkhi [Mal01] and Wrightet al. [WALS02] have made a similar observation,

9

proving that, given multiple linked paths, the initiator appears more often as a sus-
pect than a random crowd member. The automated analysis described in section 6.1
confirms and quantifies this result. (The technical results of [Shm02] on which this
paper is based had been developed independently of [Mal01] and [WALS02], be-
fore the latter was published). In general, [Mal01] and [WALS02] conjecture that
there can be no reliable anonymity method for peer-to-peer communication if in
order to start a new communication session, the initiator must originate the first
connection before any processing of the session commences.This implies that
anonymity is impossible in a gossip-based system with corrupt routers in the ab-
sence of decoy traffic.

In section 6.3, we show that, for any given number of observedpaths, the
adversary’s confidence in its observations increases with the size of the crowd. This
result contradicts the intuitive notion that bigger crowdsprovide better anonymity
guarantees. It was discovered by automated analysis.

4 Formal Model of Crowds

In this section, we describe our probabilistic formal modelof the Crowds system.
Since there is no non-determinism in the protocol specification (see section 3.1),
the model is a simple discrete-time Markov chain as opposed to a Markov deci-
sion process. In addition to modeling the behavior of the honest crowd members,
we also formalize the adversary. The protocol does not aim toprovide anonymity
against global eavesdroppers. Therefore, it is sufficient to model the adversary as a
coalition of corrupt crowd members who only have access to local communication
channels,i.e., they can only make observations about a path if one of them isse-
lected as a forwarder. By the same token, it is not necessary to model cryptographic
functions, since corrupt members know the keys used to encrypt peer-to-peer links
in which they are one of the endpoints, and have no access to links that involve
only honest members.

The modeling technique presented in this section is applicable with minor mod-
ifications to any probabilistic routing system. In each state of routing path construc-
tion, the discrete probability distribution given by the protocol specification is used
directly to define the probabilistic transition rule for choosing the next forwarder
on the path, if any. If the protocol prescribes an upper boundon the length of the
path (e.g., Freenet [CSWH01]), the bound can be introduced as a system parameter
as described in section 4.2.3, with the corresponding increase in the size of the state
space but no conceptual problems. Probabilistic model checking can then be used
to check the validity of PCTL formulas representing properties of the system.

In the general case, forwarder selection may be governed by non-deterministic

10

runCount Number of paths constructed so far (�TotalRuns).
good The selected forwarder is honest.
bad The selected forwarder is corrupt.
lastSeen Identity of the preceding forwarder on the path.
observe i Number of times corrupt members observed memberi.

Auxiliary flags
launch Holds only in the initial states0.
new Ready to construct another path.
start Beginning of new path construction.
run Continue path construction.
deliver Terminate the path.
recordLast Record the identity of the preceding forwarder.
badObserve A corrupt member is recording its observations.

Table 1: State variables.

rules. Non-deterministic transitions would give rise to a Markov decision process.
In the case of Crowds, however, forward selection is probabilistic rather than non-
deterministic. Therefore, there is no need to model the system as a Markov decision
process.

4.1 Overview of the model

We model crowd members’ behavior only in the path setup protocol, ignoring all
subsequent communication conducted along an established static path. Once a path
is set up, every forwarder on the path receives messages fromthe same member and
cannot gain any additional information about the true originator of the messages.

Since paths must be rebuilt on a regular basis, we introduce the number of path
reformulations (i.e., number of times the path construction protocol is executed)
as a parameter of the model (TotalRuns) and allow the adversary to accumulate
observations over time in order to try to infer the identity of the path initiator.
This assumes that a corrupt crowd member is capable of determining whether two
paths originate from the same initiator, without necessarily knowing that initiator’s
identity (see section 3.2.2).

Each state of our model represents a particular stage of routing path construc-
tion. In the multiple-path case, we distinguish different paths. A state is completely
defined by the values of state variables listed in table 1.

11

4.2 Model of honest members

4.2.1 Initiation

Path construction is initiated as follows (syntax of PRISM is described in section
2.2):

[] launch ->
runCount’=TotalRuns &
new’=true & launch’=false;

[] new & (runCount>0) ->
(runCount’=runCount-1) &
new’=false & start’=true;

[] start ->
lastSeen’=0 & deliver’=false &
run’=true & start’=false;

4.2.2 Forwarder selection

The initiator (i.e., the first crowd member on the path, the one whose identity must
be protected) randomly chooses the first forwarder from among allN group mem-
bers. We assume that all group members have an equal probability of being chosen,
but the technique can support any discrete probability distribution for choosing for-
warders.

Forwarder selection is a single step of the protocol, but we model it as two
probabilistic state transitions. The first determines whether the selected forwarder
is honest or corrupt, the second determines the forwarder’sidentity. The randomly
selected forwarder is corrupt with probabilitybadC= CN , and honest with proba-
bility goodC= 1�badC, whereN is the size of the crowd, andC is the number
of corrupt members.

[] (!good & !bad & !deliver & run) ->
goodC: good’=true & run’=false &

recordLast’=true +
badC: bad’=true & run’=false &

badObserve’=true;

4.2.3 Path construction

If the selected forwarder is honest, its identity is recorded in lastSeen . Record-
ing the forwarder’s identity models the fact that the sourceIP addresses of requests
routed by honest forwarders can be observed by a corrupt member if it happens to

12

be next on the path. Any of theN � C honest crowd members can be selected
as the forwarder with equal probability. To illustrate, fora crowd with 10 honest
members, the following transition models the second step offorwarder selection:

[] recordLast & CrowdSize=10 ->
0.1: lastSeen’=0 & run’=true &

recordLast’=false +
0.1: lastSeen’=1 & run’=true &

recordLast’=false +
...
0.1: lastSeen’=9 & run’=true &

recordLast’=false;

According to the protocol, each honest crowd member must decide whether
to continue building the path by flipping a biased coin. With probability pf , the
forwarder selection transition is enabled again and path construction continues,
and with probability1� pf the path is terminated at the current forwarder, and all
requests arriving from the initiator along the path will be delivered directly to the
recipient.

[] (good & !deliver & run) ->
// Continue path construction

PF: good’=false +
// Terminate path construction

notPF: deliver’=true;

The specification of the Crowds system imposes no upper boundon the length
of the path. Moreover, the forwarders are not permitted to know their relative
position on the path. Note, however, that the amount of information about the
initiator that can be extracted by the adversary from any path, or any finite number
of paths, is finite (see sections 4.3 and 4.5).

In systems such as Freenet [CSWH01], requests have ahops-to-livecounter to
prevent infinite paths, except with very small probability.To model this counter, we
may introduce an additional state variablepIndex that keeps track of the length
of the path constructed so far. The path construction transition is then coded as
follows:

// Example with Hops-To-Live
// (NOT CROWDS)
//
// Forward with prob. PF, else deliver

13

[] (good & !deliver & run &
pIndex<MaxPath) ->

PF: good’=false & pIndex’=pIndex+1 +
notPF: deliver’=true;

// Terminate if reached MaxPath,
// but sometimes not
// (to confuse adversary)
[] (good & !deliver & run &

pIndex=MaxPath) ->
smallP: good’=false +
largeP: deliver’=true;

Introduction ofpIndex obviously results in exponential state space explosion,
decreasing the maximum system size for which model checkingis feasible.

4.2.4 Transition matrix for honest members

To summarize the state space of the discrete-time Markov chain representing cor-
rect behavior of protocol participants (i.e., the state space induced by the above
transitions), lets(j)i1:::ik be the state in whichk links of thejth routing path from
the initiator have already been constructed, and assume that i1 : : : ik are the honest
forwarders selected for the path. Lets(j)i1:::ik be the state in which path construction

has terminated withi1 : : : ik as the final path, and let~s(j)::: be an auxiliary state.
Then, given the set of honest crowd membersH s.t. jHj = N � C, the transi-

tion matrix T is such thatT (s(j)i1:::ik ; s(j)i1:::ik) = 1 � pf , T (s(j)i1:::ik ; ~s(j)i1:::ik) = pf ,8i 2 H T (~s(j)i1:::ik ; s(j)i1:::ik;i) = 1N�C . Since there is noa priori upper bound on the
length of the path, the state space of the honest members is infinite.

4.3 Model of corrupt members

Following the standard approach in security analysis, we are interested in evalu-
ating security of the Crowds system against thestrongest possible adversary, i.e.,
the adversary who combines the capabilities of all hostile agents present in the sys-
tem. In the worst case, a single adversary controls all corrupt crowd members and
is able to correlate information obtained from different members. To model the
worst-case adversary, we collapse all corrupt members intoa single agent. In our
formal model, this is implemented by selecting the single-agent adversary as a for-
warder with probabilityCN (see section 4.2.2),i.e., the probability of selecting the
adversary is equal to the cumulative probability of selecting somecorrupt member.

14

This abstraction does not limit the class of attacks that canbe discovered using
the approach proposed in this paper. Any attack found in the model where indi-
vidual corrupt members are kept separate will be found in themodel where their
capabilities are combined in a single worst-case adversary. The reason for this
is that every observation made by one of the corrupt members in the model with
separate corrupt members will be made by the adversary in themodel where their
capabilities are combined. The amount of information available to the worst-case
adversary and, consequently, the inferences that can be made from it are at least as
large as those available to any individual corrupt member ora subset thereof.

In the adversary model of [RR98], each corrupt member can only observe its
local network. Therefore, it only learns the identity of thecrowd member imme-
diately preceding it on the path. We model this by having the corrupt member
read the value of thelastSeen variable, and record its observations. This cor-
responds to reading the source IP address of the messages arriving along the path.
For example, for a crowd of size 10, the transition is as follows:

[] lastSeen=0 & badObserve ->
observe0’=observe0 + 1 &
deliver’=true & run’=true &
badObserve’=false;

...
[] lastSeen=9 & badObserve ->

observe9’=observe9 + 1 &
deliver’=true & run’=true &
badObserve’=false;

The countersobserve i are persistent,i.e., they are not reset for each session
of the path setup protocol. This allows the adversary to accumulate observations
over several path reformulations. We assume that the adversary can detect when
two paths originate from the same member whose identity is unknown (see sec-
tion 3.2.2).

The adversary is only interested in learning the identity ofthefirst crowd mem-
ber in the path. Continuing path construction after one of the corrupt members has
been selected as a forwarder does not provide the adversary with any new infor-
mation. This is a very important property since it helps keepthe model of the
adversary finite. Even though there is no bound on the length of the path, at most
oneobservation per path is useful to the adversary. To simplifythe model, we as-
sume that the path terminates as soon as it reaches a corrupt member (modeled by
deliver’=true in the transition above). This is done to shorten the average
path length without decreasing the power of the adversary.

15

Each forwarder is supposed to flip a biased coin to decide whether to terminate
the path, but the coin flips are local to the forwarder and cannot be observed by
other members. Therefore, honest members cannot detect without cooperation that
corrupt members always terminate paths. In any case, corrupt members can make
their observable behavior indistinguishable from that of the honest members by
continuing the path with probabilitypf as described in section 4.2.3, even though
this yields no additional information to the adversary.

4.4 Multiple paths

The discrete-time Markov chain defined in sections 4.2 and 4.3 models construc-
tion of a single path through the crowd. As explained in section 3.2.2, paths have
to be reformulated periodically. The decision to rebuild the path is typically made
according to a pre-determined schedule,e.g., hourly, daily, or once enough new
members have asked to join the crowd. For the purposes of our analysis, we sim-
ply assume that paths are reformulated some finite number of times (determined
by the system parameterT=TotalRuns).

We analyze anonymity properties provided by Crowds afterT successive path
reformulations by considering the state space produced byT successive execu-
tions of the path construction protocol described in section 4.2. As explained in
section 4.3, the adversary is permitted to combine its observations of some or all of
theT paths that have been constructed (the adversary only observes the paths for
which some corrupt member was selected as one of the forwarders). The adversary
may then use this information to infer the path initiator’s identity. Because for-
warder selection is probabilistic, the adversary’s ability to collect enough informa-
tion to successfully identify the initiator can only be characterized probabilistically,
as explained in section 5.

4.5 Finiteness of the adversary’s state space

The state space of the honest members defined by the transition matrix of sec-
tion 4.2.4 is infinite since there is noa priori upper bound on the length of each
path. Corrupt members, however, even if they collaborate, can make at most one
observation per path, as explained in section 4.3. As long asthe number of path
reformulations is bounded (see section 4.4), only a finite number of paths will be
constructed and the adversary will be able to make only a finite number of observa-
tions. Therefore, the adversary only needs finite memory andthe adversary’s state
space is finite.

In general, anonymity is violated if the adversary has a highprobability of
making a certain observation (see section 5). To find out whether Crowds satisfies

16

Path reformulations
Crowd 3 4 5 6

5 honest members 1,198 3,515 8,653 18,817
10 honest members 6,563 30,070 111,294 352,535
15 honest members19,228 119,800 592,060 2,464,167
20 honest members42,318 333,455 2,061,951 10,633,591

Table 2: Size of state space.

a particular anonymity property, it is thus sufficient to look only at the adversary’s
state space. We can safely ignore the (infinite) state space of the honest members,
because only a finite subset thereof yields observations that can be used by the
adversary to infer the path initiator’s identity (see section 4.3). Because the state
space of the adversary’s observations is finite, the problemof finding anonymity
violations for a fixed number of path reformulations is simply the problem of com-
puting the probability of reaching some state in a finite state space, and can be
handled by probabilistic model checking.

5 Formalization of Anonymity Properties

For certain values of system parameters, Crowds ensures that the originator of
any path enjoysprobable innocenceagainst corrupt forwarders on that path (see
section 3.2.1). Suppose, however, that corrupt, collaborating crowd members are
able to link several paths originating from the same initiator as described in section
3.2.2. What is the likelihood that the corrupt members will be able to observe the
initiator with significantly higher probability than any other member? What is their
confidence in their observations? In this section, we formalize these questions as
PCTL formulas over the Markov chain representing the Crowdssystem. In section
6, we use the PRISM model checker to answer them.

The properties we analyze are somewhat different from thoseconsidered in the
original Crowds paper [RR98]. While Crowds may be “anonymous” in the prob-
able innocence sense of section 3.2, we believe that a user who employs Crowds
to hide her identity over multiple sessions with the same destination may want to
know what are the chances of detection even if such detectionis not, technically,
a violation of probable innocencefor any given path. Even though probable inno-
cence provides the user with plausible deniability for eachsession, if the user is
detected over multiple sessions, she will not be able to plausibly deny that she is
the real sender.

17

LetKi be the number of times the adversary observes a crowd memberi, i.e.,
there areKi paths in whichi selected a corrupt crowd member as the next for-
warder, thus permitting the adversary to recordi’s identity. LetK0 be the number
of times the path initiator is observed—either because a corrupt crowd member
was selected as the first forwarder, or because the initiatoritself was selected as
one of the forwarders on its own path, and is followed by a corrupt member.

We consider two notions of what it means for a crowd member to be detected.
With metric A, a member is detected if it is observed more often than any other
member,i.e., 8j 6= i Ki > Kj. With metric B, a member is detected if it is
observed at least twice,i.e., Ki > 1. The difference between these notions of
detection is discussed in section 6.2.

Define eventsEa
det; Eb

det; Eb
fpos; Eb

nofposas follows:Ea
det = K0 > Kj 8j 6= 0

(initiator observed more often than anybody else)Eb
det = K0 > 1

(initiator observed twice or more)Eb
fpos = Kj > 1 for somej 6= 0

(false positive: non-initiator observed twice or more)Eb
nofpos = Kj � 1 8j 6= 0

(complement of false positive)

We are interested in the following probabilities:Pa = P (Ea
det)

(detection of the true path initiator — metric A)Pb = P (Eb
det)

(detection of the true path initiator — metric B)Pconf = P (Eb
nofposjEb

det)
(detection ofonly the true initiator — metric B)

These probabilities arenotconditional on selection of at least one corrupt mem-
ber among the forwarders. In this setting, we analyze anonymity properties sim-
ply as a function of the total number of path reformulations without concern for
whether the adversary had a chance to observe all the reformulations.

Note also that while multiple agents may be “detected” according to metric B
(more than one agent may be observed at least twice by the adversary), at most one
agent may be “detected” according to metric A. Therefore, for metric A,Pconf is
always equal to1.

Event probabilities defined above are expressed as PCTL formulas and stated in
PRISM syntax. Since conditional probabilities are not supported in PRISM,Pconf

18

is computed as
P (Eb

nofpoŝ Eb
det)P (Eb

det) = P (Eb
nofposjEb

det). In PRISM syntax,[true U

F] > p stands for theP>p[true U �℄ (see section 2.1). Anonymity properties are
formalized as follows (for a crowd with 10 honest members):

// Detection (metric A)
launch ->

[true U (new & runCount=0 &
observe0 > observe1 &
observe0 > observe2 &
...
observe0 > observe9)] > 0.2

// Detection (metric B)
launch ->

[true U (new & runCount=0 &
observe0 > 1)] > 0.2

// False positive (metric B)
launch ->

[true U (new & runCount=0 &
observe0 <= 1 & (
observe1 > 1 |
...
observe9 > 1)] > 0.2

Recall thatlaunch is the flag which is true only in the initial state, whereas
new & runCount=0 is true only after all path reformulations have completed,
and the adversary has collected all available observations.

6 Analysis Results

After modeling the behavior of crowd members as described insection 4, and spec-
ifying anonymity properties as described in section 5, we used PRISM to perform
probabilistic model checking of different system configurations and compute the
relevant probabilities. Table 2 describes the size of the state space for models of
different size. The number of corrupt crowd members does notaffect the size of
the state space since all corrupt members are modeled as a single process (see sec-
tion 4.3). The only parameter affected by the number of corrupt members is the
probability of selecting a corrupt member as one of the forwarders.

19

Path reformulations
Crowd 3 4 5 6Pa 31.3% 34.5% 38.5% 42.5%

5 honest, 1 corrupt Pb 13.8% 23.5% 33.3% 42.7%Pconf 100.0% 97.4% 93.1% 86.9%Pa 25.4% 27.9% 31.6% 36.1%
10 honest, 2 corrupt Pb 10.4% 18.1% 26.3% 34.6%Pconf 100.0% 98.9% 96.2% 92.5%Pa 23.6% 25.8% 29.4% 34.0%
15 honest, 3 corrupt Pb 9.4% 16.5% 24.1% 31.8%Pconf 100.0% 98.9% 97.5% 95.0%Pa 22.6% 24.7% 28.2% 32.8%
20 honest, 4 corrupt Pb 8.9% 15.6% 23.0% 30.5%Pconf 100.0% 99.4% 97.8% 96.1%Pa 19.0% 20.4% 21.7% 23.2%
10 honest, 1 corrupt Pb 3.7% 6.8% 10.5% 14.5%Pconf 100.0% 99.6% 98.1% 96.6%Pa 16.7% 17.7% 18.7% 20.0%
20 honest, 2 corrupt Pb 3.0% 5.5% 8.6% 12.0%Pconf 100.0% 99.6% 98.8% 98.3%

Table 3: Probabilities of observations by the adversary.

As in most approaches based on model checking, the size of thestate space to
be explored increases exponentially with the size of the system, making analysis of
large systems infeasible. In the Crowds case, the model has relatively few dynamic
parameters and it is possible to analyze realistic system configurations with a few
dozen members, similar in size to the implementations of Crowds that have actually
been deployed. For example, the biggest configuration we analyzed involves 20
honest members,16 probability of selecting a corrupt member as a forwarder, and
6 path reformulations. Assuming that paths are rebuilt daily, as recommended by
the original Crowds paper [RR98, section 8.2], this roughlymodels a crowd of 24
members running for a week.

The state explosion problem is significantly worse for systems with parameters
whose value changes at each stage of routing path construction, e.g., thehops-to-
live counter (see section 4.2.3). For such systems, only fairly small configurations
(up to 10 members) can be feasibly analyzed with PRISM.

Table 3 lists computed event probabilities. In all of the experiments, forwarding

20

Figure 1: Metric A: probability of observing the true initiator more often than any
other member(16 of routers are corrupt)

probabilitypf = 0:8, and; n andpf satisfy condition 1. Therefore, for any given
single path, the initiator enjoys probable innocence.

Recall thatPa andPb are the probabilities of, respectively, observing the true
path initiator more often than any other crowd member and observing the initiator
twice or more, whilePconf = P (Eb

nofposjEb
det) is the probability of observingonly

the initiator twice or more.Pconf can be interpreted as the adversary’s “confidence.”
If Pconf is high, as soon as the corrupt members observe the same honest member
twice, they can be confident that the member is indeed the pathinitiator.

6.1 Increasing path reformulations

As conjectured by the original Crowds paper [RR98] and independently predicted
by Malkhi [Mal01] and Wrightet al. [WALS02], anonymity guarantees provided
by the system degrade with the increase in the number of different paths that may
be observed by the adversary and linked as initiated by the same crowd member.
This holds for both detection metrics considered in this paper. After relatively
few path reformulations—even if not all of the paths involvecorrupt members—

21

Figure 2: Metric B: probability of observing the true initiator at least twice(16 of
routers are corrupt)

the probability of observing the path initiator more often than any other member
grows significantly (figure 1), and so does the probability ofobserving the path
initiator more than twice (figure 2). This means that even with static paths and the
corresponding reduction in the frequency of path reformulation (see section 3.2.3),
the system could be vulnerable. For example, in a crowd of 6 members, only 1
of whom is corrupt, the single corrupt member has a better than 30% chance of
detecting the true path initiator (Ea

det andEb
det events) after 5 path reformulations

withoutassuming that it is selected as one of the forwarders in everypath.

6.2 Comparison of detection metrics

In our analysis, we consider two notions of what it means to “detect” a crowd mem-
ber. With metric A, a member is detected if it is observed by the adversary more
frequently than any other member. With metric B, a member is detected if it is
observed at least twice. Direct comparison between the two notions is not straight-
forward, and depends on non-technical factors outside the protocol specification,
such as the purpose of the adversary’s observations.

Metric A has the benefit of being unambiguous: no more than onecrowd mem-

22

Figure 3: Metric B: probability of observing onlythe true initiator at least twice(16
of routers are corrupt)

ber can possibly be detected. Therefore, the adversary’s “confidence”Pconf is al-
ways 100%. Metric B, on the other hand, provides stronger evidence (e.g., for
investigative purposes), at least for configurations wherePconf is high, since it al-
ways requires multiple observations of the same agent. For example, suppose there
have been 3 path reformulations, and a corrupt member was selected as a forwarder
in only 1 of the paths. Whichever honest member happened to precede the corrupt
member on that path will be considered “detected” accordingto metric A, since it
has been observed more often than any other member (1 > 0). In this case, metric
B would provide higher assurance that the true initiator hasbeen detected.

Since more than one member can be detected according to metric B, it is most
useful when the adversary’s “confidence”Pconf is high, i.e., for a small number of
paths or a large crowd (see section 6.3 for the explanation ofthe latter point). As
can be seen in table 3,Pconf decreases in each row with the increase in the number
of path reformulations. The reason for this is that as more paths are constructed,
the chances of a random honest member appearing twice or morebefore a corrupt
member and thus being mistaken for the initiator (Eb

fpos event) increase.

23

6.3 Increasing crowd size

A somewhat surprising result, uncovered by automated analysis with PRISM, is
the change inPconf for metric B with the increase in the size of the crowd as long
as the proportion of corrupt members remains constant. As the crowd grows,Pconf

actually increases for any given number of path reformulations (see figure 3). This
implies that the larger the crowd, the more confidence the adversary has that if it
observes the same honest member at least twice, that member is the true initiator.
Since the probability of detectionPb decreases only slightly with the increase in
the size of the crowd, increased confidence of the adversary in its observations can
be interpreted as a degradation of anonymity.

An intuitive explanation of this result is that in a sufficiently large crowd, a ran-
dom honest member has only a negligible chance of being selected for more than
one path (in the extreme case of an infinite crowd, the probability that a forwarder
who is not the initiator appears in two or more different paths is0). The only mem-
ber that has a non-negligible probability of appearing in multiple paths is the path
initiator. Therefore, assuming detection (Eb

det) occurs, the adversary’s confidence
that the true initiator was detected grows with the size of the crowd.

7 Conclusions

Probabilistic model checking is a well-established technique for verification of
hardware and concurrent protocols. The main contribution of this paper is to
demonstrate how it can be applied to the analysis of securityproperties based on
discrete probabilities. As a case study, we analyzed anonymity properties of the
Crowds system, a “real-world” protocol for anonymous Web browsing.

Anonymity in Crowds is based on constructing a random routing path to the
destination through a group of members, some of whom may be corrupt. The path
construction protocol is purely probabilistic, therefore, we modeled it as a discrete-
time Markov chain, without introducing non-determinism and thus avoiding the
need for Markov decision processes. We considered the worst-case local adver-
sary, who combines the capabilities of all corrupt crowd members, but can only
make an observation if one of the corrupt members was selected as a forwarder.
The adversary was permitted to combine its observations of afinite number of dif-
ferent paths, modeling the fact that paths in Crowds must be reformulated on a
regular basis. Since the number of paths is finite, the state space of the adversary’s
observations is also finite. Therefore, the problem of analyzing anonymity — that
is, computing the probability that the adversary will be able to successfully infer
the identity of the path initiator — is amenable to automatedprobabilistic model
checking.

24

In addition to proving feasibility of the model checking approach to verifica-
tion of probabilistic security properties, we uncovered potential vulnerabilities of
the Crowds system. These include the increase in the probability that the true path
initiator will be detected as the number of path reformulations grows, and the in-
crease in the adversary’s confidence with the increase in crowd size. The former
has been reported by other researchers (the model describedin this paper had been
constructed independently before the other results were published), while the lat-
ter was reported for the first time in the conference version of this paper. We also
show that correctly stating the definition of a successful “attack” on anonymity is
a non-trivial task. There are several possible definitions of what it means for the
adversary to “detect” the path initiator, and direct comparison between them is not
always possible.

Acknowledgements. This paper has greatly benefitted from the comments of the
anonymous reviewers, and discussions with Dahlia Malkhi and Jon Millen.

References

[AH96] R. Alur and T. Henzinger. Reactive modules. InProc. 11th Annual
IEEE Symposium on Logic in Computer Science (LICS), pages 207–
218, 1996.

[Ano] http://www.anonymizer.com .

[Bai98] C. Baier. On algorithmic verification methods for proba-
bilistic systems, 1998. Fakultät für Mathematik & Informatik,
Universität Mannheim.

[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and
nondeterministic systems. InProc. Foundations of Software Technol-
ogy and Theoretical Computer Science (FST & TCS), volume 1026 of
LNCS, pages 499–513. Springer-Verlag, 1995.

[BK98] C. Baier and M. Kwiatkowska. Model checking for a probabilis-
tic branching time logic with fairness. Distributed Computing,
11(3):125–155, 1998.

[Can00] R. Canetti. A unified framework for analyzing security
of protocols. IACR Cryptology ePrint Archive 2000/067
(http://eprint.iacr.org), December 2000.

25

[Cha81] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms.Communications of the ACM, 24(2):84–88, 1981.

[CJM00] E.M. Clarke, S. Jha, and W. Marrero. Verifying security protocols
with Brutus. ACM Transactions in Software Engineering Methodol-
ogy, 9(4):443–487, 2000.

[CSWH01] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet: A dis-
tributed anonymous information storage and retrieval system. InProc.
International Workshop on Design Issues in Anonymity and Unobserv-
ability, volume 2009 ofLNCS, pages 46–66. Springer-Verlag, 2001.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[Gra92] J.W. Gray. Toward a mathematical foundation for information flow
security.J. Computer Security, 1(3):255–294, 1992.

[HJ94] H. Hansson and B. Jonsson. A logic for reasoning abouttime and
probability. Formal Aspects of Computing, 6(5):512–535, 1994.

[HS84] S. Hart and M. Sharir. Probabilistic temporal logicsfor finite and
bounded models. InProc. ACM Symposium on the Theory of Comput-
ing (STOC), pages 1–13, 1984.

[KNP01] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic
symbolic model checker. Technical Report 760/2001, University of
Dortmund, September 2001. Also in Proc. PAPM/PROBMIV 2001
Tools Session.

[LMMS99] P. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic
polynomial-time equivalence and security analysis. InProc. World
Congress on Formal Methods, volume 1708 ofLNCS, pages 776–793.
Springer-Verlag, 1999.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. InProc. Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), volume 1055 ofLNCS, pages
147–166. Springer-Verlag, 1996.

[LS82] D. Lehmann and S. Shelah. Reasoning with time and chance. Infor-
mation and Control, 53(3):165–198, 1982.

[Mal01] D. Malkhi. Private communication, 2001.

26

[MMS97] J.C. Mitchell, M. Mitchell, and U. Stern. Automatedanalysis of cryp-
tographic protocols using Mur'. In Proc. IEEE Symposium on Secu-
rity and Privacy, pages 141–153, 1997.

[Pau98] L. Paulson. The inductive approach to verifying cryptographic proto-
cols. J. Computer Security, 6(1):85–128, 1998.

[RR98] M. Reiter and A. Rubin. Crowds: Anonymity for web transactions.
ACM Transactions on Information and System Security, 1(1):66–92,
1998.

[SG95] P. Syverson and J.W. Gray. The epistemic representation of informa-
tion flow security in probabilistic systems. InProc. 8th IEEE Com-
puter Security Foundations Workshop, pages 152–166, 1995.

[SGR97] P. Syverson, D. Goldschlag, and M. Reed. Anonymous connections
and onion routing. InProc. IEEE Symposium on Security and Privacy,
pages 44–54, 1997.

[Shm02] V. Shmatikov. Probabilistic analysis of anonymity. In Proc. 15th IEEE
Computer Security Foundations Workshop, pages 119–128, 2002.

[SS96] S. Schneider and A. Sidiroupoulos. CSP and anonymity. In Proc.
ESORICS, volume 1146 ofLNCS, pages 198–218. Springer-Verlag,
1996.

[SS99] P. Syverson and S. Stubblebine. Group principals andthe formal-
ization of anonymity. InProc. World Congress on Formal Methods,
volume 1708 ofLNCS, pages 814–833. Springer-Verlag, 1999.

[Var85] M. Vardi. Automatic verification of probabilistic concurrent finite-
state programs. InProc. 26th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 327–338, 1985.

[VS98] D. Volpano and G. Smith. Probabilistic non-interference in a concur-
rent language. InProc. 11th IEEE Computer Security Foundations
Workshop, pages 34–43, 1998.

[WALS02] M. Wright, M. Adler, B.N. Levine, and C. Shields. Ananalysis of
the degradation of anonymous protocols. InProc. ISOC Network and
Distributed System Security Symposium (NDSS), 2002.

27

